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Abstract

Many therapeutic agents that are used in patients with diabetes mitigate oxidative stress. These 

agents are of particular interest because oxidative stress is elevated in diabetes and is thought to 

contribute to vascular dysfunction. Agents that merely quench already formed reactive oxygen 

species have demonstrated limited success in improving cardiovascular outcomes. Thus, although 

vitamin E, C, and alpha lipoic acid appeared promising in animal models and initial human 

studies, subsequent larger trials have failed to demonstrate improvement in cardiovascular 

outcomes. Drugs that limit the production of oxidative stress are more successful in improving 
vascular outcomes in patients with diabetes. Thus, although statins, ACE inhibitors, ARBs and 

thiazolinediones are used for varied clinical purposes, their increased efficacy in improving 

cardiovascular outcomes is likely related to their success in reducing the production of reactive 

oxygen species at an earlier part of the cascade, thereby more effectively decreasing the oxidative 

stress burden. In particular, statins and ACE inhibitors/ARBs appear the most successful at 

reducing oxidative stress and vascular disease and have potential for synergistic effects.
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2. INTRODUCTION

The unifying theory that hyperglycemia induced elevations in superoxide production 

underlie the activation of many pathways involved in the pathogenesis of diabetic vascular 

disease naturally raised an interest in the role of antioxidant treatment. However, it appears 

that not all antioxidants improve vascular function. In fact, antioxidants that simply 

neutralize the excess oxidative burden present in diabetes appear less effective than 

antioxidants that block production of reactive oxygen species and limit the cascading 

increase in oxidative stress. In the following review, we briefly discuss the importance of 
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oxidative stress in mediating vascular dysfunction in diabetes, common surrogate measures 

of vascular disease and finally, we review the vascular benefits of several therapeutic agents 

that have known antioxidant properties.

3. DIABETES IS AN OXIDATIVE STRESS DISORDER

3.1. Increased superoxide production

The diabetic state is associated with excess superoxide production. The failure of insulin to 

stimulate glucose uptake by fat and muscle tissues, results in hyperglycemia; this causes an 

increase in intracellular glucose concentrations in insulin-independent cell types, such as 

endothelium. Increased intracellular glucose concentrations result in an increased rate of 

glycolysis, which in turn increases the flux of pyruvate (the product of glycolysis) through 

the tricarboxylic acid (TCA) cycle. It is the increased flux of pyruvate through the TCA 

cycle that appears responsible for over-production of superoxide. The mitochondrial electron 

transport chain prematurely transfers electrons to oxygen thereby generating excess 

superoxide (1). It should be noted that hyperglycemia is not the only mechanism by which 

diabetes causes increased superoxide production. Diabetes is also associated with increased 

levels of free fatty acids, which contribute to increased superoxide production (2).

3.2. Oxidative stress and NO

Increased superoxide and reactive oxygen species negatively affect vascular health by 

downregulating endothelial dervived nitric oxide (NO). NO plays a key role in vasodilation 

as well as in maintaining a healthy vessel wall by inhibiting inflammation, cellular 

proliferation and thrombosis. Decreased NO bioavailability not only increases vascular tone, 

but also promotes structural and biological changes that lead to atherosclerosis. Decreased 

bioavailability is a result of both NO quenching by peroxynitrite and decreased NO 

production (1–3)

3.3. Quenching of NO to form peroxynitrite

The superoxide anion reacts with NO to form peroxynitrite, thus reducing the quantity of 

NO available to the vasculature “see Figure 1”. Peroxynitrite post-translationally modifies 

macromolecules, resulting in impaired protein and lipid function which promotes vascular 

dysfunction and atherosclerosis (4). The degradation of tyrosine nitrated proteins produces 

free nitrotyrosine. This marker of nitrosative stress has been found in tissues, atherosclerotic 

lesions and blood (5, 6, 7). In addition to modification of biomolecules, peroxynitrite may 

also modulate important signaling pathways and trigger mitochondrial dysfunction and cell 

death in endothelial cells and cardiomyocytes as described further below (8).

3.4. Decreased NO production

Peroxynitrite also inactivates (6R)-5,6,7,8-tetrahydro-L-biopterin (BH4), a cofactor involved 

in the production of NO. BH4 oxidation uncouples endothelial NO synthase (eNOS), the 

enzyme responsible for NO production. Normally, production of NO requires dimerization 

of eNOS, the presence of L-arginine, and the cofactor BH4. When these conditions are 

present, eNOS oxidizes its substrate L-arginine to produce L-citrulline and NO. BH4 
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deficiency uncouples the eNOS complex and promotes production of superoxide by eNOS, 

thus producing more oxidative stress “see Figure 2”.

3.5. Oxidative stress or nitrosative stress and PARP activation

Oxidative stress or nitrosative stress, in the form of peroxynitrite also causes DNA single 

strand breaks and is one source of poly(ADP-ribose) polymerase (PARP) activation (4). The 

activation of PARP is an important mediator of vascular dysfunction in diabetes (8–10). 

PARP activation initiates a series of cell cycle events “see Figure 3” that deplete intracellular 

nicotinamide adenine dinucleotide (NAD) and adenosine 5′-triphosphate (ATP) pools, thus 

limiting glycolysis and mitochondrial respiration, leading to vascular cell dysfunction and 

death (3). Protein kinase C (PKC) activity, advanced glycation end-product/receptor for 

advanced glycation end-product (AGE/RAGE) interactions, and the hexosamine pathway 

can also be activated by PARP activation as a result of Glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) dysfunction (11, 12). PARP activation is elevated in subjects with 

diabetes and is associated with an impairment in vascular reactivity (13). Recent evidence 

suggests that increased PARP acitivity is present in subjects with diabetes even prior to the 

onset of microvascular disease (14).

3.6. Further pathways activated by increased superoxide production

In addition to elevated levels of peroxynitrite, decreased NO and PARP activation, at least 

four cellular processes have been previously noted to contribute to diabetic microvascular 

complications. These include: 1) increased flux through the polyol/aldose pathway, 2) 

activation of PKC, 3) increased production of AGEs and 4) increased flux through the 

hexosamine pathway. All of these pathways are activated by hyperglycemia induced 

superoxide production (15). “see Figure 4”

3.7. PKC activation

Hyperglycemia induced elevations in superoxide anion activate PKC, and activation of PKC 

further contributes to superoxide generation (1). PKC may also be activated by chronically 

elevated diacylglycerol (DAG) levels from increased de novo synthesis of DAG from 

glycolytic intermediates, increased activity of the polyol pathway, and via ligation of RAGE 

(16). The DAG-PKC pathway is activated to maximal levels in three to five days after the 

initiation of hyperglycemia and remains elevated for many years (17, 18). The activation of 

PKC increases the activity of membrane associated nicotinamide adenine dinucleotide 

phosphate (NADPH) oxidases which generate superoxide anion (19). Thus, PKC activation 

by oxidative stress generates more oxidative stress, creating a vicious circle of positive 

feedback.

Increased PKC activity is associated with abnormal vascular function and although blocking 

PKC activity appears to improve microvascular function in animal models, it has little 

benefit in humans. Activation of PKC results in abnormal vasodilation, increased vascular 

permeability, increased microvascular protein accumulation, increased plasminogen activator 

inhibitor-1 (PAI-1) expression, and activation of nuclear factor-kappa B (NF-kB) in 

endothelial cells and vascular smooth muscle cells. Inhibition of PKC with ruboxistaurin (or 

LY333531) greatly improves microvascular flow to the retina, kidney, endoneural blood 
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supply and mesenteric bed in animal models (15, 20, 21). Despite these promising findings, 

ruboxistaurin has had less robust results in humans (22).

3.8. Advanced glycation end products and receptor for advanced glycation end products

AGEs are formed intra- and extracellularly non-enzymatically when reducing sugars 

combine with free amino groups of proteins, lipids, and guanyl nucleotides. These reactions 

are irreversible for the most part and accumulate with time. AGEs can alter the structure and 

function of intra- and extracellular proteins by forming covalent crosslinks. In addition, 

AGEs help make lipids more atherogenic by glycation and subsequent oxidation. AGEs also 

cause production of reactive oxygen species and block endothelial NO activity (23).

In addition to their direct effects on macromolecules, AGEs also bind and activate RAGE. 

Activation of RAGE by AGEs results in sustained activation of NF-kB and its target genes 

(24). AGE-bound RAGE also increases endothelial cell permeability to macromolecules. 

Elevated levels of AGEs have been noted in the serum of diabetic patients and correlate with 

progression of diabetic complications such as nephropathy (25, 26). Treatment of animals 

with inhibitors of AGE formation, such as aminoguanide, can prevent diabetic microvascular 

complications (27).

3.9. Polyol pathway

Increased intracellular glucose generates increased flux through the polyol pathway, by 

engaging the key enzyme, aldose reductase, which usually has a low affinity for glucose. 

Aldose reductase reduces glucose to sorbital, which is further oxidized to fructose, which 

consumes cellular NADPH, increasing cellular oxidative stress. Increased flux through the 

polyol pathway has been implicated in activation of PKC. Inhibition of aldose reductase has 

been shown to prevent diabetic nephropathy, retinopathy, and neuropathy in animal models 

(15). Larger clinical trials in humans, however, have had mixed results, thus raising 

questions regarding the importance of this mechanism (28, 29).

3.10. Hexosamine pathway

Hyperglycemia also shunts glucose through the hexosamine pathway. A glycolytic 

intermediate, fructose-6-phosphate (Fruc-6P) is converted with glucosamine-6-phosphate, 

and ultimately to N-acetylglucosamine. Hyperglycemia is associated with an increase in O-

linked N-acetylglucosamine modification and decreases O-linked phosphorylation of the 

transcription factor Sp1, resulting in increased gene expression of transforming growth 

factor beta (TGF-beta) and PAI-1.(15) Elevated glucose levels also result in inhibition of 

eNOS, which is accompanied by a twofold increase in O-linked N-acetylglucosamine 

modification of eNOS and a reciprocal decrease in O-linked serine phosphorylation (30).

4. VASCULAR DISEASE IN DIABETES

Endothelial dysfunction in both the micro- and macro-circulation is the final result of 

oxidative stress initiated, self perpetuating cascade of events (31). Progressive capillary 

changes including neovasculariztion in retinopathy, and narrowing and/or microthrombosis 

in peripheral neuropathy are the result of hyperglycemia induced increases in endothelial 
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cell permeability, vascular inflammation, and other structural changes. A reduction in 

hyperglycemia by intensive glycemic control protocol has been shown in two separate 

landmark trials to decrease progression and occurrence of microvascular complications 

(retinopathy, neuropathy, and nephropathy) in both type 1 and 2 diabetes (32, 33).

In contrast, glycemic control has been demonstrated to conclusively improve macrovascular 

outcomes in only type 1 diabetes. Despite this, macrovascular disease such as myocardial 

infarction (MI), cerebrovascular accidents, and peripheral arterial disease continues to 

account for a substantial portion of the mortality and morbidity in both type 1 and 2 

diabetes. Improved glycemic control in type 1 diabetes has been associated with 

dramatically lower rates of macrovascular disease (42% decrease) (34, 35). However, despite 

reductions in all cause mortality associated with tighter glycemic control macrovascular 

event rates in type 2 diabetes are not improved with tighter glycemic control unless 

metformin was part of the regimen (33, 36). Patients with metformin included as part of 

their regimen are better able to maintain glycemic control over 3 years compared to other 

regimens and have greater improvements in all cause mortality and decrease in stroke rates 

(37). Thus, treatment of usual cardiovascular risk factors such as hyperlipidemia and 

hypertension in type 2 diabetes plays a larger role in lowering the risk of macrovascular 

events, suggesting that oxidative stress induced by these traditional cardiovascular risk 

factors appears more important than that induced by hyperglycemia in such patients.

5. METHODS OF ASSESSING ENDOTHELIAL FUNCTION

Prior to the development of macrovascular and microvascular clinical disease early changes 

in endothelial function can be measured. These changes reflect alterations in the regulation 

of vascular tone or reactivity which is influenced by endothelial NO production (endothelial-

dependent vasoreactivity) as well as vascular smooth muscle relaxation in response to NO 

(endothelial-independent vasoreactivity). In endothelial dependent vasodilation, 

acetylcholine, shear stress or hypoxia can activate endothelial cells to release NO. The 

stimuli of shear stress and hypoxia are utilized in the flow mediated dilation (FMD) 

technique to produce endothelium-dependent vasodilation. In contrast, endothelium-

independent vasodilation occurs as a result of smooth muscle cell relaxation in direct 

response to exogenous NO (from NO donors such as nitroglycerin or nitroprusside). 

Vasoreactivity, which refers to both endothelial dependent and independent vasodilation in 

response to a stimulus, is a means to quantify endothelial cell and vascular smooth muscle 

function.

5.1. Macrocirculatory measurements

Macrovascular disease is most commonly assessed by ultrasound measurements of brachial 

artery diameter and the common carotid intima-media thickness (IMT). Changes in brachial 

artery diameter after stimuli measure early functional changes associated with 

atherosclerosis. Endothelium-dependent vasodilation of the brachial artery can be assessed 

by intra-arterial infusion of substances that act on the endothelium to release NO, such as 

acetylcholine, or by FMD. FMD is induced by occluding the brachial artery with a 

pneumatic tourniquet to the upper limb for a total of 5 minutes (38). Tissue hypoxia and pH 
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changes in the area distal to the occlusion cause reactive vasodilation in the skin and muscle 

microcirculation immediately after release of the occlusion. This process causes a brief 

period of high blood flow and increased shear stress in the brachial artery that stimulates the 

endothelial production of NO and vasodilation that can be measured on high resolution 

ultrasound. “see Figure 5” Endothelium-independent vasodilatory function of the brachial 

artery can be assessed by intra-arterial or sublingual administration of NO donors such as 

nitroglycerin or nitroprusside.

In contrast, common carotid IMT identifies anatomic changes consistent with early 

atherosclerosis. Carotid artery intima-media thickness (IMT) is an ultrasound measure of the 

distance between the intima to the outer edge of the media. Increased intima-media 

thickness occurs early in the process of atherosclerotic plaque formation prior to luminal 

narrowing. IMT is associated with the presence of conventional atherosclerotic risk factors 

and can predict the development of cardiovascular events (39, 40).

5.2. Microcirculatory measurements

Microcirculatory vascular reactivity is most commonly assessed by LASER Doppler 

flowmetry to measure blood flow in the skin. Blood flow is estimated from the combination 

of number and velocity of moving red cells within arterioles, capillaries, and postcapillary 

venules. A LASER beam is delivered to the skin via a fiber optic light guide, and reflected 

light is gathered by a second set of photodetectors. Light reflected by moving objects, such 

as red blood cells, is reflected at a different frequency. The Doppler shifted fraction of the 

light signal and the mean Doppler frequency shift is calculated to generate a value in mV, 

which is proportional to the quantity and velocity of red blood cells with the measured 

superficial skin microcirculation (41).

The microcirculation can be studied without systemic side effects by using iontophoresis and 

microdialysis techniques that allow for precise, local delivery of vasoactive agents. 

Iontophoresis uses a small charge to facilitate transcutaneous delivery of charged substances 

into the skin without trauma or pain. The length of stimulation, strength of current used, and 

area of delivery determine the number of molecules transported. Endothelium-dependent 

vasodilation is assessed by delivery of acetylcholine using anodal current given its positive 

charge, whereas endothelium-independent vasodilation is assessed by the delivery of the 

anion sodium nitroprusside using cathodal current. Microdialysis can be used to deliver 

larger, water-soluble vasoactive agents that lack a charge. These techniques allow for non-

invasive measurement of abnormal endothelial function prior to the development of overt 

clinical disease.

6. THERAPEUTIC INTERVENTIONS THAT MODIFY OXIDATIVE STRESS

In subsequent sections we will discuss how these measurements of vascular function, animal 

models, and larger clinical trials have been used to evaluate the efficacy of therapeutic agents 

in combating the increased oxidative stress in diabetes and subsequent ill effects on the 

vasculature. These agents include vitamins E, C, alpha-lipoic acid, statins, angiotensin 

converting enzyme inhibitors (ACE inhibitors), angiotensin II receptor blockers (ARBs) and 

thiazolinedones. Many other agents have been noted to have antioxidant properties, but have 
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not been evaluated in human clinical trials, and are beyond the scope of this review. 

Therefore, we will limit our discussion to those compounds noted above.

6.1. Vitamin E

Vitamin E is a fat soluble vitamin with known anti-oxidant properties. It is frequently co-

administered with vitamin C because its oxidized form is regenerated by vitamin C. Vitamin 

E and C supplementation improves markers of oxidative stress and endothelium-dependent 

vasodilation in experimental diabetic models (42–45). Acute administration of vitamin E has 

generally been shown to improve endothelial dependent brachial artery vasodilatation in 

both type 1 and 2 diabetes (46).

Chronic administration of vitamin E was found to be vasoconstrictive in patients with type 1 

and 2 diabetes (47). Treatment with twelve months of vitamin E at doses of 1,800 IU per day 

is associated with no improvement in FMD, a deterioration in endothelial independent 

vasodilation and a trend towards increased systolic blood pressure. Vitamin E does not 

change microcirculatory responses to either acetylcholine and nitroprusside or progression 

of diabetic retinopathy after twelve months (47). Thus, chronic administration of vitamin E 

appears to worsen endothelial independent vasoreactivity and increase blood pressure in 

patients with diabetes.

Several prospective interventional trials have found that vitamin E decreases cardiovascular 

events in the general population and in patients with a high risk of cardiac disease, but 

without diabetes. In particular, vitamin E was reported to reduce the risk of non-fatal MI 

when administered at doses of 400–800 IU per day in patients with prior symptomatic 

coronary atherosclerosis (CHAOS trial) (48). However, it is also associated with a 

disturbing, non-significant trend towards an excess of cardiovascular deaths.

A lack of benefit with vitamin E supplementation in a subsequent series of randomized trials 

dampened enthusiasm for vitamin E’s utility as an antioxidant in diabetes. In fact, both 

cardiovascular outcomes and atherosclerosis progression by carotid IMT are not improved 

by vitamin E in a group of high risk patients with vascular disease or diabetes (HOPE study 

and SECURE trial) (49–52). The lack of benefit in regards to cardiovascular outcomes and 

nephropathy persisted after a subgroup analysis of patients with diabetes. In addition, there 

was no reduction in cardiovascular events or death in 1031 patients with diabetes after 

vitamin E supplementation in the PPP trial (53). In addition, an increased risk of adverse 

events with vitamin E supplementation raises further concerns about its use. Vitamin E 

supplementation appeared safe during the initial HOPE study with a follow-up period of 4.5 

years, but extended followup for a total of 7 years was associated with an increased risk of 

heart failure. The excess heart failure risk was also evident after 3.5 years of follow-up of 

post-infarction patients supplemented with vitamin E in the GISSI-Prevenzione trial (54, 

55). In fact, patients with left ventricular dysfunction (ejection fraction <50%) who are 

treated with vitamin E demonstratd a 50% increased risk of developing congestive heart 

failure (p=0.034).

In addition, higher doses are associated with increased mortality risk. In a meta-analysis of 

vitamin E trials prior to August 2004, low dose vitamin E (<150 IU per day) was associated 
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with a non-significant decrease in all cause mortality (56). Doses larger that 150 IU per day 

are associated with a progressive increase in all cause mortality as dose increased. 

Furthermore, the benefical effect of low dose vitamin E was attenuated when adjustments 

were made for concomitant use of other vitamin supplements. Thus, the routine use of 

vitamin E supplementation with or without vitamin C cannot be recommended in patients 

with diabetes.

6.2. Vitamin C

Vitamin C, also called ascorbic acid, is a water soluble vitamin with many biological roles in 

addition to its function as an antioxidant. Vitamin C stabilizes eNOS cofactor BH4, leading 

to increases in NO production. It also prevents oxidation of LDL and regenerates oxidized 

vitamin E. Initial physiologic studies demonstrate improvement in endothelial function with 

acute infusion of vitamin C in patients with acute hyperglycemia, type I and II diabetes and 

hypertension (57–60). Longer term, orally delivered vitamin C has variable effectiveness in 

improving brachial artery reactivity in patients with type II diabetes (61, 62).

Epidemiologic data suggest that higher intake of vitamin C is associated with improvements 

in mortality, particularly from cardiovascular causes. The First National Health and Nutrition 

Examination Survey (NHANES I) studied a cohort of 11,348 adults for 10 years (63). In this 

cohort, increased vitamin C intake (approx 300mg per day) was associated with a 45 to 25% 

risk reduction in all cause mortality and mortality from cardiovascular causes in men and 

women respectively. Vitamin C supplement use was associated with a significantly lower 

risk (28%) of coronary disease (relative risk of 0.72) after controlling for other 

cardiovascular risk factors in an observational study of 85,118 female nurses followed for 16 

years (4, 64). This benefit was noted again by researchers in the EPIC-Norfolk prospective 

population study (65). The highest quartile of ascorbic acid had an odds ratio for future 

coronary artery disease of 0.67 compared with those in the lowest quartile. There are no 

randomized, controlled studies addressing the cardiovascular benefits of vitamin C 

supplementation independent of other vitamin supplements. Therefore, at this time, the use 

of vitamin C for cardiovascular benefits cannot be recommended in diabetes or the general 

population.

6.3. Alpha-lipoic acid

Alpha-lipoic acid is a more potent antioxidant than either vitamin E or C, and a critical 

cofactor in aerobic metabolism. Alpha-Lipoic acid reduced to its conjugate base, 

dihydrolipoate, is able to regenerate other antioxidants such as vitamins E and C, as well as 

reduced glutathione. Thus, one might expect more potent vascular benefits.

Diabetic animal models demonstrate improvements in metabolic profile and the 

microvasculature after treatment with alpha-lipoic acid. Thus, blood glucose, plasma insulin, 

cholesterol, triglycerides and lipid peroxidation improvements are associated with increased 

antioxidant enzymatic activity (catalase and glutathione peroxidase activity) (66). These 

benefits are partly attributable to the recovery of insulin producing cells in the pancreas, and 

are significant enough to prevent atherosclerotic lesions (67). In the microvasculature of 

diabetic rats, alpha-lipoic acid reduces nitrotyrosine levels and prevents pathologic retinal 
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vessel changes (68). In endothelial cell cultures, alpha-lipoic acid prevents AGE dependent 

depletion of reduced glutathione and ascorbic acid and subsequent activation of NF-kappa B 

(69). Thus, it appears alpha-lipoic acid supplementation reduces oxidative stress and thereby 

improves metabolic derangements and microvascular function in animal and in vitro models.

Alpha-lipoic acid has been mainly studied in randomized controlled human clinical trials for 

the treatment of diabetic polyneuropathy. Short term IV alpha-lipoic acid for 19 days 

appeared to improve symptoms, and longer term alpha-lipoic acid (IV infusions, followed by 

oral therapy for 2 years) were reported to improve objective peripheral nerve function (70, 

71). Prolonged treatment of four years duration in the NATHAN 1 trial found improvements 

in only some neuropathic deficits and symptoms, but not objective nerve conduction in 

patients with mild to moderate distal symmetric neuropathy (72). In addition, there was a 

nonsignificant trend towards an increased rate of serious adverse events from 28% to 38% in 

the active treatment group. Thus, although there may be a possibility of improvements in 

neuropathy with short term IV infusion of alpha-lipoic acid, these improvements have not 

been sustained with long term oral therapy and are may increase the risk of serious adverse 

events.

The effects of alpha-lipoic acid on autonomic dysfunction and surrogate markers of 

macrovascular disease have been studied in only small numbers of patients. Alpha-lipoic 

acid treatment for four months slightly improves measures of heart rate variability, a 

measure of autonomic dysfunction, but does not change symptoms of autonomic dysfunction 

(73). Four weeks of therapy with oral alpha-lipoic acid improves endothelium-dependent 

vasorelaxation of the brachial artery by 44% compared to the placebo group and was 

accompanied by reductions in markers of endothelial activation, plasma interleukin-6 and 

plasminogen activator-1 (74). Thus, the impact of lipoic acid on clinical cardiovascular end-

points is still unknown. Given this, and the increased risk of serious adverse events with long 

term use, the use of alpha-lipoic acid supplements cannot be recommended for patients with 

diabetes.

6.4. Statins

Statins inhibit the enzyme hydroxymethylglutaryl coenzyme A reductase (HMG CoA 

reductase) thereby improving serum lipid profile and lowering cardiovascular morbidity and 

mortality (75). These agents were initially thought to exert their beneficial effects on 

endothelial function secondary to their lipid lowering capacity. However, it appears that 

improvements in vascular function are only partly mediated by this mechanism (76). Statins 

also improve endothelial function by decreasing oxidative stress, inflammation and the 

thrombogenic response (77).

Statins achieve this enhanced vascular function by decreasing NADPH activity, reducing 

formation of reactive oxygen species and downregulating the renin angiotensin system. 

Statins reduce activity of the NADPH oxidase in endothelial cells, thus reducing the 

formation of ROS as well as oxidation of LDL (78–85). In addition, statins decrease uptake 

of oxidized LDL by monocytes that develop into foam cells in atherosclerotic lesions (86, 

87). Atorvastatin is unique in that its hydroxymetabolites are present at usual doses and 

demonstrate free radical scavenging abilities (88). Statins downregulate AT1 receptor at the 
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transcriptional level further improving measures of oxidative stress and vascular function 

(81).

All of the above mechanisms upregulate eNOS activity, which plays a central role in 

mediating the beneficial effects of statins in endothelial cells. Transcription of eNOS is 

reduced by the presence of oxidized LDL, but not native LDL. Statins prevent this inhibition 

of eNOS at the transcriptional level (89). This increased expression of eNOS is associated 

with an improvement in vascular function in animal models of type II diabetes and 

hypercholesteremia (90, 91). Statin mediated increases in eNOS function appear critical in 

vascular regeneration and restored myocardial vasorelaxation after experimentally induced 

myocardial infarction in the mouse model, as these benefits were not observed in eNOS −/− 

mice after statin treatment (92).

Statins unequivocally reduce the risk of major vascular events such as stroke, myocardial 

infarction, and coronary revascularization in patients with diabetes (93, 94). However, 

surrogate markers of such macrovascular events, endothelial dependent vasorelaxation, are 

not clearly improved with statins. In particular, vasoreactivity does not improve after statin 

treatment in patients with poorly controlled diabetes (95). Endothelial dependent 

vasodilation does improve independently of lipid lowering in patients with better glycemic 
and lipid control in both type 1 & type 2 diabetes (96–101). Statin use was also reported to 

ameliorate postprandial hypertriglyceridemic-and hyperglycemia-induced endothelial 

dysfunction and reduced serum nitrotyrosine levels in type II diabetes suggesting that its 

short term, lipid-independent vascular benefits are secondary to decreased oxidative and 

nitrosative stress (102).

Thus, statins improve endothelial function prior to reductions in LDL unless there is 

overwhelming oxidative stress related to factors such as hyperglycemia and 

hypercholesteremia in type 2 diabetes. A lack of response to statins may be related to 

elevated asymmetric dimethylarginine (ADMA) levels, a competitive inhibitor of eNOS. 

ADMA is elevated in by many cardiovascular risk factors and patients with elevated ADMA 

levels are less likely to have an improvement in vasoreactivity with statin use after 3 weeks 

(103).

6.5. ACE-inhibitors and Angiotensin II receptor blockers

Both ACE inhibitors and ARBs exert their clinical effects by decreasing the binding of 

angiotensin II to the AT1 receptor, by decreasing levels of angiotensin II and by inhibiting 

the interaction of angiotensin II to the AT1 receptor, respectively. It should be noted that 

ACE inhibitors reduce formation of angiotensin II by inhibiting ACE1, but have no effect on 

ACE2 or other angiotensin II forming enzymes. Angiotensin II opposes many of the actions 

of NO; it causes vasoconstriction, altered vascular smooth muscle function, increased 

inflammation via NF-kB and hypercoagulability by increased formation of PAI-1. In 

addition, inflammation itself may sustain endothelial dysfunction by activating the renin-

angiotensin system, and subsequently increasing ROS formation and decreasing endothelial 

dependent vasoreactivity (104). Angiotensin II also induces vascular superoxide production 

by uncoupling eNOS upon loss of dihydrofolate reductase (DHFR), a BH4 salvage enzyme 
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(105). Thus, ARBs and ACE inhibitors improve endothelium-dependent vasorelaxation by 

decreasing superoxide production, and increases NO bioavailability (105–108).

ACE inhibitors and ARBs improve vascular function and cardiovascular outcomes in type 2 

diabetes. Both agents unequivocally improve endothelial function in patients with type 2 

diabetes (109–112). Valsartan therapy improved resting forearm skin blood flow and resting 

brachial artery diameter after 12 weeks in patients with type 2 diabetes. However, their 

impact on endothelial function in patients with type 1 diabetes is less clear (113–116). ACE 

inhibitors and ARBs improve cardiovascular and all-cause mortality outcomes in patients 

with diabetes, in fact, to a greater degree than in non-diabetics as noted in subgroup analysis 

of the HOPE and LIFE studies (approx 38% and 19%, respectively, of subjects had diabetes) 

(117, 118). In addition, both of these agents appear to reduce the onset of type 2 diabetes in 

susceptible populations. Thus, it appears that ACE inhibitors and ARBs improve vascular 

outcomes in patients with diabetes.

As briefly mentioned earlier, LDL and the renin-angiotensin system modulate one another. 

The presence of native LDL increases AT1 receptor expression at least two fold in a 

sustained manner for 24 hours by stabilization of post-transcriptional mRNA (119). 

Increased AT1 receptor expression and activity is associated with increased production of 

superoxide and decreased endothelial-dependent vasodilatation (120). However, statins 

reduce the half life of AT1 receptor mRNA and thereby reduce angiotensin II induced 

production of reactive oxygen species (121). Native LDL, not oxidized LDL, increases 

angiotensin II-AT1 receptor induced vasoconstriction (122–124).

Conversely, angiotensin II binding of the AT1 receptor upregulates endothelial oxidized 

LDL receptor (LOX-1) in endothelial cells. This upregulation of LOX-1 receptor is 

prevented by ARBs and ACE inhibitors, thus limiting the potential diffusion of oxidized 

LDL from the blood into the vessel wall where it can result in plaque formation (125). Thus, 

co-administration of ACE-inhibitors/ARBs with a statin may decrease oxidative stress, 

vasoconstriction, decrease uptake of oxidized LDL and improve endothelial function.

6.6. Thiazolinediones

Thiazolinedones, also known as PPAR gamma agonists, include pioglitazone (Actos), 

rosiglitazone (Avandia), and troglitazone (Rezulin). These agonists bind nuclear PPAR-

gamma receptors in adipocytes that function as transcription factors for genes important in 

adipocyte differentiation, lipid metabolism and insulin sensitivity. In addition, PPAR-gamma 

receptors are expressed in cells integral to the development of atherosclerosis: endothelial 

cells, vascular smooth muscle cells, monocytes/macrophages and T cells. Thus, one would 

expect all thiazolinedones to improve vascular function in a similar manner, just as they all 

improve insulin sensitivity. Indeed, all thiazolinediones have been demonstrated to enhance 

glycemic control, and improve surrogate measures of vascular disease. Thiazolinediones 

improve endothelial dependent vasoreactivity and measurements of carotid IMT in patients 

with diabetes (126–130). In addition, both rosiglitazone and pioglitazone have been reported 

to increase the regenerative capacity of endothelial progenitor cells in individuals with 

diabetes (131, 132). This improvement in vascular function is associated with reduced 
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NADPH oxidase activity, decreased LDL oxidation and reduction in vascular inflammation 

(130, 133).

Despite these improvements in oxidative stress and vascular function, individual 

thiazolinediones appear to worsen clinical cardiovascular outcomes. Cardiovascular outcome 

data on troglitazone is limited because it was withdrawn from the market shortly after 

reports of severe, idiosyncratic, often fatal hepatic failure (134). However, rosiglitazone and 

pioglitazone have been reported to differentially affect the risk of myocardial infarction and 

both appear to increase the risk of heart failure.

Rosiglitazone was reported to elevate the risk of myocardial infarction and congestive heart 

failure. A meta-analysis by Nissen and Wolski reported a 43% increased risk of myocardial 

infarction (MI) and increased risk of death from cardiovascular causes (by 64%) with 

rosiglitazone therapy (135). These results were also supported by a meta-analysis of data 

from the manufacturer, GlaxoSmithKine, which reported a 31% increased risk of MI (136). 

In response to this data, the RECORD trial (which was sponsored by the manufacturer) 

performed an unplanned interim analysis which revealed no increased risk of MI or death 

from cardiovascular causes with rosiglitazone treatment in patients with type 2 diabetes 

(137). However, at the time of the interim analysis, the study lacked power to substantiate 

this negative finding. Recently, another new meta-analysis of long term (>12 months), 

randomized controlled trials in subjects that had impaired glucose tolerance or diabetes was 

performed because the Nissen and Wolski meta-analyiss included many small studies of 

short duration with heterogenous populations. This report again confirmed a similar 

increased risk of myocardial infarction (42% increase), but without the increase in 

cardiovascular mortality (138). Thus, the current consensus is that rosiglitazone may have 

detrimental effects in patients with previous heart disease and diabetes, and its use cannot be 

recommended in these patients.

Rosiglitazone has also been associated with an increased risk of congestive heart failure. In 

particular, rosiglitazone treatment was associated with an increased risk of heart failure 

(hazard ratio 2.15) in the interim analysis of the RECORD trial as well as in the most recent 

meta-analysis by Singh et. al (RR 2.09) (137, 138). It appears that this increased risk of heart 

failure can be mitigated by close attention to fluid status. Thus, rates of heart failure or 

worsening heart failure were not elevated in a group of patients with diabetes and mild heart 

failure (139). However, the rosiglitazone treated group suffered from significantly more 

cases of worsening edema (25.5% vs. 8.8%, P = 0.005), an increase in heart failure 

medication (33% vs. 18%), as well as, small, statistically significant, increases in brain 

natriutetic peptide levels. Despite the increased edema formation associated with 

rosiglitazone treatment, it was not reported to cause structural changes in left ventricular size 

or function in patients without a prior history of heart failure (140). Thus, rosiglitazone 

appears to worsen heart failure and its use cannot be recommended in patients with heart 

failure or those at risk of heart failure.

Unlike the first two thiazolinediones, larger clinical trials of pioglitzone in high-risk patients 

with type 2 diabetes and prior MI demonstrate an improvement in rates of myocardial 

infarction, but increased edema formation and heart failure remain concerns. After a median 
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follow up of almost 3 years, pioglitazone was reported to reduce the risk of MI by 28%, 

acute coronary syndromes (ACS) by 37%, and the composite end point of nonfatal MI, 

coronary revascularization, ACS, and cardiac death by 19% (141). In addition, pioglitazone 

therapy has been reported to improve nocturnal blood pressure (142). The above findings 

were confirmed by a recent meta-analysis by Nissen et al which reported a slight decrease in 

the composite end point of death, myocardial infarctio, or stroke (hazard ration 0.82) and a 

slight increase in the risk of serious heart failure (hazard ratio 1.41) after approximately a 

year of pioglitazone therapy (143). Much of the differential benefit of pioglitazone is likely 

due to its favorable lipid profile. It improves total cholesterol, LDL, HDL and triglycerides, 

whereas rosiglitazone therapy increases in total cholesterol, LDL, and triglycerides (144).

7. SUMMARY

In summary, diabetes is a state associated with increased oxidative stress secondary to 

hyperglycemia and increased free fatty acid production. Agents such as vitamin E, C, and 

alpha lipoic acid that mitigate this oxidative stress by quenching already formed reactive 

oxygen species have had limited success in improving vascular function. Drugs which limit 

the production of superoxide and other reactive oxygen species such as statins, ACE 

inhibitors, ARBs and thiazolinediones are more successful in improving vascular outcomes 

in patients with diabetes. Their success is based on limiting the cascade of antioxidant 

production and subsequent vascular inflammation. In particular, the coadministration of 

statins and ACE inhibitors/ARBs will may lead to synergistic reductions in oxidant burden 

and vascular disease. Additionally, outcome studies are needed to confirm vascular benefits, 

as measurements of surrogate markers often do not predict longterm clinical outcomes.
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TCA cycle tricarboxylic acid cycle

NO nitric oxide

eNOS endothelial NO synthase

BH4 (6R)-5,6,7,8-tetrahydro-L-biopterin

PARP poly(ADP-ribose) polymerase

PKC protein kinase C

AGE advanced glycation end products

RAGE receptor for advanced glycation end products

FMD flow-mediated dilation
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IMT intima-media thickness

ACE inhibitors angiotensin converting enzyme inhibitors

ARBs angiotensin II receptor blockers

LDL low density lipoprotein

HDL high density lipoprotein

ROS reactive oxygen species

AT1 receptor angiotensin II type 1 receptor

MI myocardial infarction

ACS acute coronary syndromes
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Figure 1. 
Hyperglycemia induced endothelial dysfunction. Superoxide produced secondary to 

hyperglycemia combines with NO to form peroxynitrite. This reduces the bioavailability of 

NO and induces nitrosative stress by multiple mechanisms including modifications of 

macromolecules and PARP induction.
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Figure 2. 
Coupled and uncoupled eNOS. (a) Coupled eNOS utilizes O2, L-Arginine and NADPH to 

produce NO and L-Citrulline (b) eNOS can be uncoupled by BH4 deficiency to produce 

superoxide rather than NO, which may further reduce available NO by combining with it to 

form peroxynitrite.
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Figure 3. 
The role of peroxynitrite and PARP. Peroxynitrite induced PARP activation depletes 

intracellular NAD, NADPH and ATP pools leading to endothelial dysfunction.
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Figure 4. 
Hyperglycemia induced cellular pathways. Hyperglycemia-induced mitochondrial 

superoxide overproduction activates the polyol, hexosamine, protein kinase C and AGE 

pathways. Additionally, excess superoxide production inhibits GAPDH, thus diverting 

upstream metabolites from glycolysis to the above mentioned pathways. Figure adapted with 

permission from the publisher (15).

Rahangdale et al. Page 27

Front Biosci (Landmark Ed). Author manuscript; available in PMC 2017 July 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Assessment of FMD in the brachial artery. A 7.0-MHz or greater liner array transducer is 

used to image the brachial artery above the antecubital fossa in the longitudinal plane. A 

blood pressure cuff is employed to occlude the arterial blood flow and can be placed either 

at the forearm (a) or the upper arm level (b). Two-dimensional grayscale scans are taken, one 

at rest at rest, before the cuff inflation (c) and 1 minute after the cuff deflation that leads to 

arterial dilation (d). The percentage of the postocclusive artery diameter increase over the 

baseline represents the FMD. Figure adapted with permission from A. Veves (145).
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Figure 6. 
Measurement of skin microcirculation. (a) A small quantity of (<1ml) of 1% Ach chloride 

solution or 1% sodium nitroprusside solution is placed in the iontophoresis chamber. A 

constant current of 200 mA is applied for 60 seconds achieving a dose of 6 mC/cm2 between 

the iontophoresis chamber and a second nonactive electrode placed 10 to 15 cm proximal to 

the chamber (black strap around the wrist). This current causes a movement of solution to be 

delivered toward the skin. (b) Laser Doppler flowmetry: A helium-neon laser beam is 

emitted from the laser source to sequentially scan the circular hyperemic area produced by 

the iontophoresed vasoactive substance to a small area on the volar surface of the forearm. 

Figure adapted with permission from A. Veves (145).
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