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Detecting the Orbital Angular 
Momentum of Electro-Magnetic 
Waves Using Virtual Rotational 
Antenna
Chao ZHANG & Lu MA

Orbital Angular Momentum (OAM) is a typical spatial mode of an Electro-Magnetic (EM) wave. Correctly 
detecting the OAM mode is fundamental and of foremost importance when applying the phenomenon 
to wireless transmission in free space. It is found that when rotating an OAM wave, a rotational Doppler 
shift that is proportional to the rotation speed and the OAM mode number can be observed. This 
property can be used for OAM detection, i.e., different OAM modes are identified by measuring the 
corresponding rotational Doppler frequency shifts. In previous work, this method was implemented 
by mechanically rotating the OAM wave, resulting in a small frequency shift. Since the high-speed 
mechanical rotation is hard to manufacture in a real system, it brings limitations to the bandwidth for 
each OAM wave. In this paper, we report on an OAM mode detection method based on digitally rotating 
a virtual antenna. The transmitter and receiver are physically fixed, but the Virtual Rotational Antenna 
(VRA) is obtained by interpolating the signals received from transverse-mounted receiving antennas. 
A large rotational Doppler shift occurs as a consequence of using digital processing, resulting in more 
capability for wideband wireless data transmission with the larger shifted frequency.

As first revealed by Allen in an optical vortex (i.e., a light beam that has an azimuthally dependent phase)1, Orbital 
Angular Momentum (OAM) has since been widely studied in optics2–5. OAM was always considered a spatial 
mode basis in Space Division Multiplexing (SDM)6 in optics in addition to many other bases7, 8. The concept of 
OAM was then extended to radio frequencies by Thidé9 and subsequently studied by other researchers10–13. It is 
of fundamental importance to correctly detect the OAM mode of an Electro-Magnetic (EM) wave when applying 
it to wireless transmission in free space. The Poynting vector of an OAM wave traces a helical phase along the 
propagation axis, and there is also an angle between the incident beam and the receiver. When mechanically 
rotating the OAM wave, a frequency shift proportional to the speed of rotation and the OAM mode number can 
be observed. This is the so-called rotational Doppler Effect as revealed in optics14–17 and millimetre wave experi-
ments18. It is a different phenomenon than polarization rotation as revealed by Li17. In fact, this rotational Doppler 
Effect is just one example of Doppler velocimetry where the angle between the incident beam and the detector is 
a skew angle. This angle increases proportionally with the OAM mode. This effect can be used to detect the OAM 
mode of EM waves, i.e., different OAM modes are identified by measuring the corresponding rotational Doppler 
frequency shifts.

In previous work, the method used was to mechanically rotating the OAM mode at the transmitting side by, 
for example, rotating a Spiral Phase Plate (SPP) used to generate that OAM mode19. This mechanical rotation of 
the transmitter resulted in the expected rotational frequency shift upon OAM detection. However, the rotation 
speed is limited mechanically and it is hard to manufacture and implement with high speeds, so the rotational 
Doppler shift is not large, e.g., usually less than several hundred Hz. This limitation becomes notable, especially 
in the case of wireless data transmission in free space. As described in previous work18, the frequency shift can be 
considered as the carrier bandwidth of each OAM wave. A small frequency shift, therefore, leads to a small carrier 
bandwidth which limits the data transmission rate (see Fig. S3 in Supplementary Information). Moreover, from 
the perspective of OAM measurements, higher frequency shifts result in higher resolution frequency detection, 
which implies accurate OAM mode detection.
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Note that the frequency shift is caused by the rotation of the OAM wave relative to the detection point. It 
will also work when rotating the detecting antenna azimuthally with respect to the beam axis of the OAM wave 
while keeping the OAM wave stationary. In this case, the rotational Doppler frequency shift can also be meas-
ured. However, due to the divergence of the doughnut-shaped beam, the rotating radius required at the receiving 
antenna (or antenna array) will increase with the distance. For instance, for a 10 GHz radio wave with an OAM 
mode l = 1, a half beam divergence angle of 0.1 rad will lead to a doughnut-shaped beam with a radius of 1 km at a 
distance of 10 km. The divergence of the doughnut-shaped beam implies that it is impractical to physically rotate 
the receiving antenna azimuthally using mechanical means.

Here, we demonstrate an equivalent rotation method implemented digitally at the receiving side using a 
Virtual Rotational Antenna (VRA). This is done by interpolating the signals received from transverse-deployed 
receiving antennas. Specifically taking two receiving antennas as an example, the OAM wave is first sampled by 
these two antennas which have been transversely deployed across the doughnut-shaped beam. The measured 
signals are then digitally processed using an interpolation algorithm based on the channel correlation between 
the antennas to generate the computed signal of a VRA moving between the two real fixed antennas. According 
to the rotational Doppler Effect, if the VRA rotates with a certain rotational speed, a frequency shift in the inter-
polated signal occurs and the corresponding OAM mode can be detected and identified. A similar concept of 
interpolation using an antenna array was first introduced to eliminate the Doppler Effects in wireless digital 
TV broadcasting19 and then extended to Air-to-Ground (A/G) MIMO communications20. Because of this, we 
built a novel interpolation scheme to realize the VRA. Although this OAM detection method is verified using 
a sinusoidal signal without modulated symbols, it can also detect the data encoded on the OAM by restraining 
the rotation period of the virtual antenna within the symbol period (see Fig. S4 in Supplementary Information). 
Moreover, it should be emphasized that, in this paper, only the OAM detection method for single mode is studied 
and highlighted, leaving the simultaneous detection of multiple OAM modes in multiplexing for future research.

Results
Method for generating the VRA.  An illustration of the VRA is shown in Fig. 1. In our previous work 
(Fig. 1a), the method for detecting the OAM mode was implemented by rotating the SPP at the transmitter and 
detecting the frequency shift at the receiver. A frequency shift of lΩ will be detected when rotating the SPP of 
mode l with rotational speed Ω. As discussed in the introduction, this frequency shift is caused by the relative 
rotation between the OAM wave and the detector. A frequency shift can also be generated by rotating the receiv-
ing antenna while keeping the SPP stationary at the transmitter. Here, the receiving antenna is rotated digitally 
(i.e., subjected to virtual rotation) instead of being mechanically rotated. This is done by interpolating the signals 
received from two fixed transverse-deployed antennas (Fig. 1b). In the interpolation, the two received signals are 
weighted and added. By setting the weighting coefficients to vary with time, the phase of the interpolated signal 
can be set to vary gradually between the signal of one antenna and the signal of the other antenna. This performs 
as though an antenna exists between the two antennas and moves from one antenna to the other (Fig. 1c). Due 
to the rotational Doppler Effect, a frequency shift can be detected in the interpolated signal. This frequency shift 
will be different when transmitting different OAM modes and is proportional to the rotational speed Ω and the 
OAM mode number l, which is expressed as lΩ. In this case, the OAM mode can be detected by measuring the 
frequency shift of the interpolated signal. Since the virtual antenna is generated digitally using Digital Signal 
Processing (DSP) methods, its rotational speed Ω can be increased significantly compared to the mechanical 
rotation. Larger frequency shifts can thus be obtained which will benefit the OAM mode detection accuracy and 
bandwidth requirements of wireless transmission. Note that since the frequency detected at any reception point 
is the same as that of the transmitter, there are no new frequencies introduced in the transmission. The resultant 
frequency shift is just a result of interpolation and signal processing.

Mathematical model of the interpolation.  The mathematical model of the interpolation between two 
antennas is shown in Fig. 2a. Consider the case of two receiving antennas. The vector based on the antenna signals 
at time t can be expressed as

=t r t r tr( ) [ ( ), ( )] (1)1 2
T

where r1(t) is the signal received from antenna 1 (Ant. 1), and r2(t) is the signal received from antenna 2 (Ant. 2).
Denoting the normalized expectation of a random variable x by E[x], the autocorrelation of the received signal 

can be derived based on Eq. (1) as
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where J0(x) denotes the zero-order Bessel function of x. For the case of a rotating receiving antenna, the interpo-
lated point should rotate azimuthally between the receiving antennas, i.e., the position of the interpolated point 
should rotate from Ant. 1 with the rotation angle of φ1 to Ant. 2 with the rotation angle of φ2 periodically (Fig. 2b). 
Denoting the rotational speed of the interpolated point by Ω, the rotation angle of the interpolated point P can 
be expressed as

φ πΩ φ φ= ∈t2 [ , ] (3)1 2

Thus, the cross-correlation matrix between the interpolated signal at the point P (denoted by r(Ω, t)) and the 
received signals can be derived as
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where “*” denotes conjugate. By interpolating to satisfy the Minimum Mean Square Error (MMSE)19, 20, the 
weighting coefficient w for the received vector can be expressed as

Ω Ω= −t t tw R P( , ) ( ) ( , ) (5)1

Therefore, the optimal estimate of the interpolated signal can be expressed as

Ω Ω Ω= = −r t t t t t tw r P R r( , ) ( , ) ( ) ( , ) ( ) ( ) (6)VRA
T T T

Due to the rotational Doppler Effect, the frequency shift can be detected from the interpolated signal rVRA(Ω, 
t). Although two receiving antennas are used here, the concept can be extended to an antenna array with more 
elements19, 20 (see Fig. S5 in Supplementary Information).

Experiment using VRA for OAM detection.  The design of an experiment using the VRA to detect the 
OAM mode is shown in Fig. 3a and its implementation is shown in Fig. 3b. As shown in Fig. 3a, a sinusoidal sig-
nal generated by a signal generator is fed to the transmitting antenna. The radiated beam passes through the SPP 
with a specific OAM mode. At the receiving side, the signals are received by two transverse-deployed antennas 
and collected by a data collecting device. The sampled data are input into a computer for signal processing. In the 
computer, a VRA with a specific speed of rotation is generated by the interpolation algorithm and used to con-
vert signals with different OAM modes into signals with different frequencies. By calculating the frequency shift 

Figure 1.  Doppler Effect caused by the VRA. (a) Detecting the OAM mode by rotating the SPP at the 
transmitter. Rotating the SPP of mode l with speed Ω, a frequency shift lΩ can be detected by a fixed receiving 
antenna. (b) Receiving OAM wave using two fixed antennas. Two transverse-deployed antennas are used to 
receive the OAM wave generated by a fixed SPP. The frequency detected by each antenna is the same as that of 
the transmitter. No frequency shift arises. (c) Receiving OAM wave using the VRA. By weighting and adding the 
two received signals, an interpolated signal is generated. The phase of the interpolated signal gradually varies 
between one antenna and the other. This performs similarly to a virtual antenna, rotating from one antenna to 
the other. Due to the rotational Doppler Effect, a frequency shift can be detected in the interpolated signal.
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of the interpolated signal, the OAM mode can be detected and identified. Based on this design, the experiment 
conducted is shown in Fig. 3b.

In the experiment, a 10 GHz sinusoidal signal was generated by an Agilent E8257C signal generator. The OAM 
antenna is a horn antenna with 25 dB gain and an SPP with a specific OAM mode (e.g., OAM mode number l = 4, 
the height difference is ∆h = lλ/(n − 1) = 57.7 mm, where l is the OAM mode, λ is the wavelength, and n is the 
index of refraction of the SPP). Since the novelty of this paper is to demonstrate an OAM detection method, only 
one OAM mode is required to be generated for each SPP, despite the fact that an SPP can generate not only one 
OAM mode but also a superposition of OAM modes.

At the receiving side, two waveguide antennas are deployed transversely across the doughnut-shaped beam 
to receive the signals. These signals are sampled and recorded by a Tektronix oscilloscope MSO/DPO70000 with 
16 GHz bandwidth and 100 GS/s sampling rate (see Fig. 4a for the sampled waveforms). For the signal received 
from each antenna, the spectrum is observed in Fig. 4b. A Dell Precision T7610 computer is used for interpolation 
processing. In the computer, a rotation method referred to as VRA is digitally performed with a speed Ω = 106 r/s 
to convert signals with different OAM modes into signals with different frequencies. The weighting coefficients 
used for the interpolation in the experiment are shown in Fig. 4c. The weighting coefficient for the signal from 
Ant. 1 decreases linearly with time, whereas the weighting coefficient for the signal from Ant. 2 increases linearly. 
In this case, the location of the interpolated point will rotate from Ant. 1 to Ant. 2. When transmitting an OAM 
wave with mode l = 4 and setting the speed of rotation of the interpolated point to be Ω = 106 r/s, a frequency 
shift of 4 MHz is detected in the interpolated signal (Fig. 4d). During the experiment, the SPP is stationary. 
However, for validation, the SPP was rotated mechanically with a speed of n = 2.5 r/s to verify that the expected 
OAM mode was generated at the transmitter. According to our previous work conducted with millimetre-waves18 
and Courtial, J. with an optical beam15, 16, only when a frequency shift of Δf = ln (Hz) is observed, is the expected 
OAM mode generated at the transmitting side (see Fig. S6 in Supplementary Information).

Based on this experiment, the frequency shifts introduced by the VRA with different rotation speeds were 
computed and plotted. A positive frequency shift arises when the VRA rotates (or moves) along the positive direc-
tion of the OAM mode (Fig. 5a), while a negative frequency shift arises when the VRA rotates (or moves) along 
the negative direction of the OAM mode (Fig. 5b). Here, the positive direction of OAM mode is defined by the 
direction where the phase surface of the OAM beam varies from 0 to 2π azimuthally, and the negative direction of 
OAM mode is defined by the direction where the phase surface of the OAM beam varies from 2π to 0 azimuthally.

As with the method of detecting the OAM mode by rotating the SPP mechanically at the transmitter18, fre-
quency shifts can be detected by rotating the receiving antenna digitally using the VRA method, making it pos-
sible to detect the OAM mode using fixed receiving antennas or an antenna array. Compared with the OAM 
detection method where the SPP is mechanically rotated in front of the transmitter, the rotation speed Ω of the 
interpolated antenna can have a much larger value using the VRA method. However, there is still a limitation. The 
frequency shift must be greater than the frequency resolution21 and smaller than the Nyquist sampling rate22. For 
this, the upper limit of the rotation speed of the VRA is restricted by the sampling rate fs and the antenna interval 

Figure 2.  Interpolation of the antenna array signals. (a) Schematic of the interpolation algorithm. The OAM 
wave is detected using two antennas deployed transversely across the doughnut-shaped beam. These two 
antenna signals are multiplied by weighting coefficients and added together. This interpolated signal has the 
characteristics of a signal that would be received by an antenna positioned at a point between the two antennas. 
By varying the weighting coefficients with time, the location of the interpolated point can be made to move 
from one antenna to the other. (b) The rotation angle of the interpolated point P which rotates between Ant. 1 
and Ant. 2 with speed Ω.
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d, i.e., Ω ≤ (d/2πr)fs. Here, r is the distance from the receiving antenna to the propagation axis of the beam as 
shown in Fig. 2(a), and d is the azimuthal distance between the antennas. The lower limit of the rotation speed is 
restricted by the frequency resolution fr, i.e., Ω ≥ fr. Therefore, the limits of the rotation speed are

Ω
π

≤ ≤f d
r

f
2 (7)r s

Substituting our experimental parameters into Equation (7), the rotation speed Ω varies from 1 r/s to approx-
imately 109r/s. By rotating the receiving antenna digitally using VRA, the frequency shift Δf caused by the rota-
tional Doppler Effect is derived to be Δf = lΩ.

In summary, an OAM mode detection method implemented by digitally rotating a receiving antenna 
with VRA has been proposed. As long as the frequency shift of the rotational Doppler Effect is detected, the OAM 
mode can be detected and identified. Compared with our previous work based on detecting the OAM mode by 
mechanically rotating the SPP at the transmitter, a larger frequency shift can be detected using fixed antennas and 
is more easily implemented for wideband wireless data transmission in free space.

Discussion
As in previous work18, by transforming signals with different OAM modes into signals with different frequency 
shifts based on the rotational Doppler Effect, OAM detection can be performed in the frequency domain rather 
than the space domain. Receiving only part of the beam using an antenna array is sufficient for OAM detection, 
and the antennas can be closely spaced. There is no need to receive all the energy in the doughnut-shaped field in 
the surrounding space. This makes it convenient to measure the OAM mode for free space transmission. The only 
limitation that may restrict the transmission distance is the power loss caused by beam divergence. This can be 
partly addressed using a reflector11, 23 or lens18.

The parameter used for OAM detection in this paper is the rate of variation of the phase gradient, i.e., the 
frequency shift. This is not the phase gradient referred to by Mohammadi24. The phase gradient between the 
receiving antennas can be very small (unless the interval between the receiving antennas is drastically increased), 
but the phase variation rate can be very high. Although the single point receiving method can also be used for 

Figure 3.  Structure of the experimental system. (a) Transceiver structure for detecting the OAM mode 
using the VRA method. An EM beam is generated by a horn antenna and then passes through the SPP, which 
produces an OAM wave with mode number l. At the receiving side, the OAM wave is received by two antennas, 
which are deployed transversely across the doughnut-shaped beam, and then digitally sampled. The sampled 
data are input to a computer where the interpolation is performed using MATLAB. Afterwards, the interpolated 
data are output to a spectrum analyser (Agilent E4446A) for observation. (b) OAM mode detection experiment 
conducted in the laboratory. (c) Transmitting antenna fabricated by placing the SPP in front of a horn antenna. 
(d) Waveguide antennas used to receive the signals.
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Figure 4.  Signals and spectrum observed for OAM mode detection using the VRA. (a) Signals received from 
two antennas. (b) Observed spectrum of the signal received from one antenna. (c) Weighting coefficients used 
for interpolation in the experiment. (d) Frequency shift detection of the interpolated signal. (e) Observed 
spectrum of the interpolated signal exported from the computer. The interpolated signals were down-converted 
to zero intermediate frequency by mixing with a carrier signal of 10 GHz frequency and digitally filtered using 
a low-pass filter. The down-converted signals were then exported from the computer to a signal processing 
board for data playback. A spectrum analyser was used to observe the spectrum (see Fig. S8 in Supplementary 
Information).
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OAM detection24, it is a far-field approximation method and only works well when the beam divergence is small. 
The transverse component of the electric field must also be well aligned and match the polarization of the field.

In the traditional co-axial receiving scheme similar to the optical transmission, different OAM waves are 
received in the doughnut-shaped ring perpendicular to the propagation direction. Then, the signals with different 
OAM modes are orthogonal to each other in the space domain. However, in this paper, the signal of only a quite 
small portion of the ring is received, which results in the non-orthogonal of the signals in the space domain. In 
order to maintain the orthogonal of signals with different OAM waves, it is necessary to transform signals to other 
domain that is easy for detection and identification. The idea of this paper is to transform signals with different 
OAM modes to the signals in the frequency domain to maintain the orthogonal, i.e., with different frequency 
shifts. Our proposed scheme has already been verified with the experiment of single mode detection. However, 
it does not mean that the frequency domain is optimal for simultaneous detection of multiple OAM modes in 
multiplexing. In this case, new transform domain and method are required to transform signals and maintain 
the orthogonal. Due to the additive property of the EM waves, the recorded experiment data for single mode 
detection can also be utilized for further analysis of the simultaneous detection and new transform domain iden-
tification in future research.

The last but not the least, the transmitter and receiver do not physically rotate in our proposed scheme. The 
OAM detection with VRA is expected to be carried out only in the direct-path transmission channel. Multipath 
will introduce intra-channel and inter-channel crosstalk for signals25. This crosstalk can be considered as the 
interference which will affect the phases and amplitudes of the received signals, and then affect the detection 
accuracy. However, it does not absolutely hold in all OAM detection schemes. In previous work with physically 
rotational SPP in the transmiter18, the frequency shifts of the multipath signals can also be detected for any fixed 
receiving point in the space. Thus, in this case, rather than interference, the multipath signals can benefit the 
transmission performance by employing the processing methods in the wireless transmission such as RAKE 
receivers26, 27.

Methods
In our experiments, we used SPPs with three OAM modes, i.e., l = 1, l = 2 and l = 4, to generate the OAM waves, 
and a standard horn antenna with 25 dB gain and a centre frequency of 10 GHz. Two waveguide antennas 
deployed transversely were used to receive the OAM waves, and a high-speed sampling oscilloscope (Tektronix 
MSO/DPO70000) was used to collect the data. To verify whether the rotational Doppler Effect can be detected by 
a VRA, the sampled data were then exported to a computer to perform the interpolation. The frequency detected 
in the interpolated signals is composed of the carrier frequency and the Doppler frequency shift. By filtering out 
the carrier frequency, the frequency shift was detected. The down-converted signal was exported to a develop-
ment board for data playback, and a spectrum analyser was used to observe the spectrum. Meanwhile, in order 
to guarantee the two receiving antennas were positioned within the doughnut-shaped beam to detect maximal 
energy, a two-dimensional (2D) adjustable support was used to adjust the positions of the antennas.
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