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Abstract The present study illustrates the optimization

and characterization of b-glucosidase from a bacterial

isolate, strain SG9. Sixty-eight different variables were first

screened by one factor at a time method. The screened

variable optimization was then performed by Plackett–

Burman design followed by Box–Behnken response sur-

face methodology. Thirty-one variables were screened, of

which five variables were found to be significant. Box–

Behnken design was then performed using the most sig-

nificant variables, viz., esculin, K2HPO4 and MgSO4. The

maximum enzyme activity was observed with an optimal

medium composition of esculin (1.9 g/L), K2HPO4 (0. 5 g/

L) and MgSO4 (0.3 g/L) with a predicted value of

3392.01 IU. The maximum b-glucosidase production

achieved was 3340 IU. The bacterial strain was identified

by 16S rRNA gene sequence and biochemical characteri-

zation. The strain was identified as Bacillus stratosphericus

and is a first report of its kind.

Keywords b-Glucosidase � Optimization � Bacillus
stratosphericus � Plackett–Burman design � Box–Behnken
design

Introduction

b-Glucosidases are industrially important enzymes and are

useful in various biotechnological processes (Veena et al.

2011). The ubiquitous nature of b-glucosidase in the entire

living kingdom is due to their occurrence in diverse bac-

teria, plants, yeast, fungi and animals. It is primarily a

component of cellulase enzyme system in bacteria and

fungi that results in cellobiose and short chain oligosac-

charides which on hydrolysis produces glucose, a rate-

limiting step. As the chain length of glucose increases, the

enzyme activity reduces (Bhatia et al. 2002). b-Glucosi-
dase activity in yeast, for example, Debaryomyces hansenii

is responsible for producing different flavouring com-

pounds such as terpenols, phenylethyl and benzyl alcohols

(Bhatia et al. 2002). In insects, this enzyme is involved in

the defence mechanism by facilitating the release of cya-

nides from cyano-glucoside precursors (Bhatia et al. 2002).

b-Glucosidase in humans has therapeutic importance in

Gaucher’s disease. Patients with this disorder are given

intravenous injection of the purified enzyme sourced from

human placenta. This is because the b-glucosidase deficient
cells are incapable of glycosylceramides hydrolyzation;

accumulation in the reticuloendothelial cells lysosomes is

responsible for enlargement of spleen, lymph nodes and

liver (Bhatia et al. 2002).

Diverse plant species like sorghum, rice and maize have

been reported to exhibit b-glucosidase activity (Verdoucq

et al. 2003). The utilization of this enzyme is found mostly

in conversion of cellulose. In addition, this enzyme is
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involved in a wide range of applications; phytohormone

activation, seed development and plants pathogen defence,

bitter compounds hydrolysis during juice extraction and

aroma release from wine grapes, oncogenesis and cellular

signaling and even in detergent, pharmaceutical and cos-

metic industries (Bai et al. 2013). b-Glucosidase can be

utilized as markers for enzyme specificity evolution studies

and metabolism of carbohydrates. This enzyme is also

responsible for aromatic compounds release from fruits as

well as printing ink deinking from waste paper (Dhake and

Patil 2005). Moreover, bioconversion of Panax ginseng

major ginsenoside Rb1 to minor ginsenosides possessing

therapeutic importance was exhibited by ginseng field soil

microbes producing b-glucosidase (Veena et al. 2011). b-
Glucosidase also exhibited transglucosidase property

because they may be involved in glucoconjugate synthesis

in plants. Each plant was found to possess several putative

isozymes of this enzyme after the revelation of genomic

sequence (Ketudat et al. 2015).

b-Glucosidase activity containing bacteria are signif-

icant for improved absorption and higher estrogenecity

as microflora of intestine produces aglycones from glu-

coside isoflavones hydrolysis, thus, leading to their

hydrolysis (Hu et al. 2007). This enzyme is found in a

wide range of bacteria, for instance, Penicillium pur-

purogenum (Dhake and Patil 2005), Ceriporiopsis sub-

vermispora (Magalhaes et al. 2006), Flavobacterium

johnsonae (Okamota et al. 2000), Trichoderma harzia-

num type C-4 (Yun et al. 2001), Lactobacillus plantarum

(Spano et al. 2005) and Dyella koreensis spp. (An et al.

2005). The enzyme is also involved in phenolic anti-

oxidants bioconversion obtained from soybean powder

and soymilk fermentation, since it enhances isoflavone

aglycone levels (Otieno and Shah 2007). b-Glucosidases
in bacteria are detected by chromogenic substrates since

a century, most commonly of which is esculin, a natural

glucoside. Quinoline-b-D-glucoside was found to be

equivalent to esculin for Gram-negative bacteria detec-

tion. Apart from these alizarin-b-D-glucoside, 3,4-dihy-
droxyflavone-b-D-glucoside, 30,40-dihydroxyflavone-b-D-
glucoside, 30,40-dihydroxyflavone-b-D-glucoside and

ginsenosides are also utilized for this enzyme assay

(Veena et al. 2011).

The present study was carried out to screen b-glucosi-
dase producing bacteria isolated from different ecological

niches of India and maintained in the in-house culture

repository of the institute. Bacillus stratosphericus strain

SG9 was identified as a potential b-glucosidase producer

and the cultural conditions and the nutritional requirements

for this strain have been optimized using Plackett–Burman

design followed by Box–Behnken response surface

methodology.

Materials and methods

Chemicals

The chemicals were procured from Sigma Chemicals,

USA, Sisco Research Laboratories (SRL), Mumbai, India

and Himedia Laboratories, Mumbai, India unless otherwise

stated. The chemicals used were of analytical grade and

were used as such without any further purification.

Screening microbes with b-glucosidase activity

The primary screening of the 3400 bacterial strains avail-

able in the in-house culture repository was carried out on

plate screening method. The microorganisms were cultured

on nutrient agar plates supplemented with esculin (0.5 g/L)

and ferric ammonium citrate (0.2 g/L). The plates were

incubated at 37 �C for about 24 h and the colonies forming

brown or black coloration around them were considered as

esculin hydrolyzing bacteria.

Organism identification

The promising strain short-listed based on enzyme activity

was subjected to identification by genomic DNA isolation

followed by 16S rRNA gene sequencing. The microbial

culture was grown for 24 h and then centrifuged at

12,0009g for 2 min, after which the culture pellet was

collected for genomic DNA isolation using Bacterial

Genomic DNA isolation kit (Sigma Aldrich, USA). 16S

rRNA gene was amplified from chromosomal DNA using

universal primer set 1492R (50 TACGGYTACCTTGTTA
CGACTT 30) and 27F (50 AGAGTTTGATCMTGGCTC

AG 30), after which the PCR products were sequenced by

Eurofins Genomics India Pvt. Ltd (Bengaluru, India). The

gene sequences were then compiled using Chromas

(Technelysium Pty Ltd, Australia). The 16S rDNA

sequence of strain SG9 was submitted to GenBank bearing

accession number KY078548. The sequence homology was

analyzed by BLAST program offered by NCBI (http://

www.ncbi.nlm.nih.gov/). Construction of phylogenetic tree

was done by neighbor-joining method (Saitou and Nei

1987) using MEGA6 program (Tamura et al. 2013) along

with bootstrap analysis based on 1000 replications.

Morphological and biochemical characteristics

The promising isolate was subjected to various morpho-

logical, biochemical and physiological characteristic stud-

ies using the methods listed in Bergey’s Manual of

Determinative Bacteriology (Holt et al. 1994). The mor-

phological studies were carried out using on the Olympus
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BX51 fluorescent microscope with an oil immersion

objective (1009). The sensitivity of the strain was tested

on different antibiotics using antibiotics discs (Himedia,

India).

Selection of appropriate nutrient solution for growth

The growth of the bacterial strains was tested in five dif-

ferent media, viz., Luria–Bertani medium, Nutrient broth,

tryptophan soya broth (TSB), de Mann, Rogosa and Sharpe

(MRS) medium and 2XYT (1% yeast extract, 1.6% pep-

tone and 0.5% NaCl). These media were tested at both half

and full concentrations with and without addition of esculin

(0.1%) substrate. Samples were collected at regular inter-

vals of 12 h for 72 h and centrifuged at 6000 rpm for

15 min. The supernatants were assayed for enzyme activ-

ity. The media without organism inoculation served as

blanks. The above experiments with all the different media

were repeated thrice.

Secondary screening of the enzyme

The positive strains obtained from the primary screening

were then subjected to secondary screening in TSB. The

media were supplemented with esculin (0.1%) as substrate.

The samples were collected at regular interval of 12 h for

72 h. The supernatant was examined for enzyme activity

and the microorganism showing promising activity was

selected for further studies.

b-Glucosidase assay

The assay for evaluating the enzymatic activity of b-glu-
cosidase was carried out using the following method:

0.4 ml of 50 mM citrate buffer (pH 4.5) was added to

0.5 ml of 5 mM p-nitrophenyl pyranoglucoside (pNPG)

and incubated at 50 �C for 10 min. 0.1 ml of the enzyme

solution was then added to it and incubated at 50 �C for

30 min. 1 ml of 1 M Na2CO3 was then added to stop the

reaction. The contents were cooled at room temperature

after which the color developed was measured at 400 nm

on a UV–Visible spectrophotometer (Lambda 35, Perkin-

Elmer). One unit of b-glucosidase is the amount of enzyme

required to liberate 1 lmol of p-nitrophenol per min under

the assay conditions (Ghose and Bisaria 1987). The stan-

dard curve was prepared using para-nitrophenol (PNP) at a

concentration of 1 mM.

Appropriate medium for enzyme production

The medium used for the optimal enzyme production had

the following composition (g/L): dextrose 2.5, yeast extract

2.5, peptone 7.5, (NH4)2SO4 1.5, KH2PO4 2, K2HPO4 2,

MgSO4�7H2O 0.3, CaCl2 0.3, FeSO4�7H2O 0.01, and KCl

0.05. The optimization studies were carried out using this

medium by varying the respective components.

Measurement of enzyme production as a function

of time

The optimal enzyme production time with respect to cell

growth was measured by recording the cell growth absor-

bance at 600 nm and calculating the corresponding enzyme

activity at various time intervals.

Optimization studies

Effect of temperature and pH

Effect of temperature on b-glucosidase production and cell

growth was attained by maintaining the culture medium at

various temperatures of 25, 37, 40, 45, 50, 55 and 60 �C.
The effect of pH on b-glucosidase production and cell

growth was performed by incubating at various pH ranges

(pH 1–10) using different buffers. The pH 1–6 was

adjusted with 1 N HCl and pH 7–10 with 1 M NaOH. The

experiments were carried out in triplicates.

Effect of nutritional parameters

Different carbon sources (concentration of 2.5 g/L) such

as dextrose, lactose, fructose, sucrose, cellulose, mannitol

and mannose were examined for their effect on enzyme

production and cell growth. The effect of nitrogen sources

(concentration of 2.5 g/L) on the enzyme production was

studied by evaluating a diverse range of nitrogen sources,

viz., yeast extract, peptone, urea (NH4)2SO4, NaNO3,

KNO3, NH4NO3, soymeal extract, beef extract and skim

milk. Various phosphate sources (concentration of 2 g/L)

such as K2HPO4, KH2PO4, Na2HPO4 and NaH2PO4 were

used to examine their effect on enzyme production and

cell growth. The effect of metal ions on the enzyme

production and cell growth was done by utilizing wide

range of metal ions such as CaCl2, MgSO4, FeSO4,

MnSO4, ZnSO4, CuSO4, mercuric chloride, KCl, EDTA

and barium chloride. The metal ions were used at a con-

centration of 0.264 g/L. All the surfactants (concentration

of 2 g/L) such as polyethylene glycol (PEG) 20,000,

Triton X-100, Tween 20, Tween 40, Tween 60, Tween 80

and sodium dodecyl sulfate (SDS) were examined for

their effect on enzyme production. The effect of different

substrates (concentration of 1 g/L) such as salicin, car-

boxy methyl cellulose (CMC), gentiobiose, esculin and

cellobiose was examined on enzyme production. The

effect of esculin concentration was also examined on

enzyme production and cell growth. The different
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substrate concentrations studied were 0.05, 0.1, 0.15, 0.2,

0.3, 0.5, 1.0 and 1.5%. All the optimization experiments

were carried out in triplicates.

Independent variables screening with Plackett–

Burman Design

An array of medium components was selected from high to

low concentrations to perform the Plackett–Burman (PB)

(Plackett and Burman 1946) experimental design using

Design-Expert version 10 software (State-Ease Inc., USA).

The experimental design was adopted to screen the variables

that considerably influenced b-glucosidase production. The

design is based on the process that screens ‘N’ variables by

conducting ‘N ? 1’ experiments. Thirty-one independent

variables listed in Table 1 were taken into consideration for

screening in 36 runs that included 4 central points. Each

variable was taken in three levels, low level (-1), median

level (0) and high level (?1). The median level was taken for

the central point experiments. The experiments were done in

duplicates and the average was considered as the response.

The PB experimental design is based on the first-order model:

Y ¼ b0 þ R biXi ð1Þ

where Y is the response variable (b-glucosidase activity),

b0 is the model intercept, bi is the linear coefficient and Xi

is the level of the independent variable.

The experiment was further analyzed by ANOVA on the

basis of enzyme activity. Variables showing significance

(P\ 0.1) as a result of regression analysis were further

thought to have greater influence on enzyme activity and,

thereby, considered for optimization by Box–Behnken

design.

Optimization by Box–Behnken Design (BBD)

The significant variables identified after Plackett–Burman

design were further optimized using Box–Behnken response

surface design (Box and Behnken 1960). These design tech-

niques based on statistical experiments lead to the optimal

yield. BBD is a rotatable, independent quadratic design hav-

ing the absence of fractional factorial or embedded factorial

points, with the combination of variables at the centre and at

midpoints of edges of the variable space (Shanmugaprakash

et al. 2014). It is helpful in setting up second-order surface

models since it standardizes concentration at only three levels,

viz, -1, 0, and ?1. The experiments were performed in

duplicates with the average being considered as the response.

The polynomial equation for this model is

Y ¼ boþ
X

i

biXi þ
X

ii

biiX
2
i þ

X

ij

bijXiXj ð2Þ

where Y is the predicted response, b0 is the regression

coefficients, bi is the linear coefficient, bii is the quadratic

coefficients, bij is the interaction coefficients and Xi is the

coded levels of independent variables.

In the present study, the independent variables are coded

as X1, X2 and X3 till X31 for which the second-order poly-

nomial equation is

Y ¼ b0 þ b1x1 þ b2x2 þ b3x3 þ b12x1x2 þ b13x1x3
þ b23x2x3 þ b11x12 þ b22x

2
2 þ b33x

2
3: ð3Þ

Table 1 Independent variables for screening using Plackett–Burman

design

Nutrient

code

Components

(g/L)

Levels

Low level (-) Level 0 High level (?)

X1 Dextrose 1.5 2.5 3.5

X2 Lactose 1.5 2.5 3.5

X3 Fructose 1.5 2.5 3.5

X4 Sucrose 1.5 2.5 3.5

X5 Mannitol 1.5 2.5 3.5

X6 Mannose 1.5 2.5 3.5

X7 Temperature 25 �C 35 �C 45 �C
X8 Yeast

extract

1.5 2.5 3.5

X9 Peptone 6.5 7.5 8.5

X10 Urea 1.5 2.5 3.5

X11 (NH4)2SO4 0.5 1.5 2.5

X12 NaNO3 0.5 1.5 2.5

X13 KNO3 0.5 1.5 2.5

X14 Beef extract 0.5 1.5 2.5

X15 NH4NO3 0.5 1.5 2.5

X16 K2HPO4 1 2 3

X17 KH2PO4 1 2 3

X18 Na2HPO4 1 2 3

X19 NaH2PO4 1 2 3

X20 Esculin 0. 5 1 1.5

X21 CaCl2 0.15 0.3 1.5

X22 MnSO4 0.005 0.01 0.02

X23 FeSO4 0.005 0.01 0.02

X24 MgSO4 0.15 0.3 1.5

X25 ZnSO4 0.005 0.01 0.02

X26 CuSO4 0.005 0.01 0.02

X27 KCl 0.025 0.05 0.075

X28 EDTA 0.005 0.01 0.02

X29 SDS (%) 0.1 0.2 0.3

X30 PEG (%) 0.1 0.2 0.3

X31 pH 3.5 4.5 5.5
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Results and discussion

Screening of microbes with b-glucosidase activity

and media selection

A total of 3400 bacterial cultures were subjected to primary

screening of the b-glucosidase enzyme. A total of 664

cultures were found to show less than 20 mm diameter area

(double positives) and 77 bacterial cultures showed

20–30 mm diameter area (triple positives) on nutrient agar

plates supplemented with esculin (Supplementary Fig. S1

and Table S1). The triple positive bacterial strains were

further subjected to secondary screening based on enzyme

activity estimation. Based on the results obtained, a strain

designated as SG9 was selected for further studies. TSB

medium supplemented with esculin proved to a good

medium for optimization studies since it supported good

growth and enzyme activity after 24 h. The enzyme

activity as a function of time indicated that the maximum

enzymatic activity (3001.4 IU) was observed after 24 h

with an optical density of 1.202, with the onset of sta-

tionary growth phase followed by gradual reduction in the

enzyme activity (Fig. 1). These results corroborate with the

earlier study (Sepahy and Jabalameli 2011). However, the

enzyme activity decreased after 24 h which may be due to

the fact that the depletion of nutrients and by-products

formation takes place during the stationary phase of growth

(Parry et al. 2001).

Phylogenetic analysis

A 16S rRNA gene sequence (1498 bp) of the strain SG9

was used for homology analysis by BLAST. The traditional

(Fig. 2) view of the phylogenetic tree has been presented.

The 16S rRNA-based phylogenetic analysis of the strain

SG9 indicates that it belongs to the genus Bacillus and is

closely related by 99% to Bacillus stratosphericus strain

A7 (Accession no. KX262677) and Bacillus stratospheri-

cus strain IHB B 6832 (Accession no. KF668462) and 96%

to Bacillus altitudinis strain IHB B 1045 (Accession no.

KF475828). Moreover, its a universal accord that a 70%

relatedness level of DNA–DNA is considered for defining

species (Wayne et al. 1987). The phylogenetic properties of

the strain SG9 are consistent with that of the genus Bacillus

along with relative gene sequence similarities with 99%

homology with different strains of Bacillus stratosphericus

and, hence, the name Bacillus stratosphericus strain SG9

was proposed. The comparative details on the polyphasic

assessment of the strain SG9 with other three type strains

such as Bacillus xiamenensis MCCC 1A00008 (Lai et al.

2014), Bacillus aerophilus strain 28 K and Bacillus

stratosphericus MTCC 7305 (Shivaji et al. 2006) were

based on the literature data which have been included in

the Supplementary Table S2.

Optimization studies

One factor at a time method

Effect of carbon source Different carbon sources such as

dextrose, lactose, fructose, sucrose, cellulose, mannitol and

mannose were evaluated for their effect on cell growth and

enzyme production. The highest enzyme activity

(2929.16 IU) was observed after 24 h of growth with

mannitol (2.5 g/L) as the carbon source, followed by

dextrose (2775 IU) and lactose (2150 IU). The data in this

regard are shown in Fig. 3a. Further, mannitol was

observed to be an optimal carbon source for bacterial cel-

lulose production (Ramana et al. 2000; Yodsuwan et al.

2012) and cellulose production (Jonas and Farah 1998;

Panesar et al. 2009).

Effect of nitrogen source The effect of various nitrogen

sources (both organic and inorganic nitrogen sources)

Fig. 1 Growth kinetics profile of strain SG9 with reference to

enzymatic activity

Fig. 2 Phylogenetic tree based on 16S rRNA gene sequences of

strain SG9 with different species of genus Bacillus. Bootstrap analysis

was performed with 1000 replications. The bar scale shows 5

nucleotide exchanges per 100 nucleotide
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examined at a concentration of 1.5 g/L showed that

(NH4)2SO4 supported maximum enzyme activity of

3097.2 IU, followed by yeast extract (2651.5 IU) and

peptone (2518.0 IU). The data in this regard are shown in

Fig. 3b. These results corroborate with the earlier studies

on Bacillus species (Samiullah et al. 2009) and Ccllu-

lomonas sp. (Rodriguez et al. 1996). Other studies also

support that ammonium sulfate supplementation favored

maximum cellulase production by Ruminococcus albus

strain SY3 (Wood et al. 1982), Bacillus pumilus strain

BPCRI6 (Kotchoni et al. 2003), Bacillus subtilis strain

BL62 (Heck et al. 2002) and Streptomyces sp. strain BRC2

(Chellapandi and Himanshu 2008).

Effect of phosphate source Different phosphate salts were

evaluated for their effect on enzyme activity at a concen-

tration of 2 g/L. The maximum enzyme activity

(3198.6 IU) was observed with K2HPO4, followed by

KH2PO4 (2850 IU) and Na2HPO4 (2501.4 IU) (Fig. 3c).

These results are in agreement with earlier studies on b
glucosidase production by Aspergillus terreus (El-Naggar

et al. 2015), lipase production from R. oligosporus (Ali

et al. 2012) and uricase production (Atalla et al. 2009).

Effect of metal ions source An array of metal ions such as

CaCl2, MgSO4, FeSO4, MnSO4, ZnSO4, CuSO4, HgCl2,

KCl and BaCl2 was added individually in the basal medium

at a concentration of 0.02%. The maximum enzyme

activity was observed with MgSO4 (2922.2 IU) followed

by FeSO4 (2651.4 IU) and CuSO4 (2179.2 IU) (Fig. 3d).

These results were supported by the earlier studies on

cellulase production by B. altitudinis (Sreeja et al. 2013),

lipase production by P. pseudoalcaligenes F-111 (Lin et al.

1995) and P. pseudoalcaligenes KKA-5 (Sharon et al.

1998).

Effect of surfactants Different surfactants at a concen-

tration of 2 g/L were examined for their effect on cell

growth and enzyme production. SDS showed maximum

enzymatic activity (1998.61 IU), whereas Tween 40

(546.23 IU) showed the least effect. The remaining sur-

factants showed considerable activity, viz., Triton X-100

(945.06 IU), PEG (1722.22 IU), Tween 60 (1001.12 IU),

Tween 20 (836.11 IU) and Tween 80 (759.01 IU)

(Fig. 4e). Hence, some of the surfactants supported partial

inhibitory effect. The reason may be due to the solubi-

lization of proteins present in the membrane which causes

an increase in the membrane permeability, thus enhancing

the secretion of biomolecules (Rao and Satyanarayana

2003). These results support the earlier studies for protease

production from marine Sacccharopolyspora species (Raut

et al. 2013), amylase from Bacillus tequilensis RG-01
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(Tiwari et al. 2014) and extracellular phytase by Pseu-

domonas aeruginosa p6 (Sasirekha et al. 2012).

Effect of substrates Five different types of substrates

were examined for their effect on the enzyme production

and cell growth. Esculin (2799.72 IU) showed promising

enzyme activity among them. Cellobiose gave considerable

activity (2180.56 IU), whereas salicin (1998.61 IU) and

CMC (1722.22 IU) gave moderate activity. Therefore,

esculin was selected as a substrate for further studies

(Fig. 4f). The present study was supported by the earlier

observation (Wright et al. 1992).

Effect of substrate concentration Esculin was tested at

different concentrations to study its effect on cell growth

and enzyme production. The maximum enzyme activity

was observed at 0.1% (2817.4 IU) followed by 0.15%

(2508.7 IU) and 0.05% (2305.8 IU) (Fig. 4g).

Effect of temperature and pH The enzyme production

alongwith cell growthwas tested at different temperatures in

the range of 25 to 60 �C with an interval of 5 �C. Optimal

enzyme activity (2717.4 IU) was observed at 37 �C for 24 h

which corroborates with the results of Samiullah et al. (2009)

for Bacillus sp. (Fig. 4h). The influence of various pH (pH

1–10) was examined by adjusting the pH with NaOH and

HCl. The optimal enzyme activity was observed at pH 4

(2898.6 IU) followed by pH 3 (2775 IU). Acidic pH was

observed to support good cell growth and enzyme activity

and, hence, was selected for further studies (Fig. 4i). Singh
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and Kumar (1998) earlier reported an optimum pH of 5.5 for

cellulase production from Bacillus brevis.

Plackett–Burman design

The prime objective for performing the design of experi-

ments is to maximize the enzyme yield by optimization of

the production condition. The conventional optimization

method is unable to scrutinize all the possible combination

of independent variables at a time. Sixty-eight different

variables were screened individually using one factor at a

time method and 31 medium components were selected for

the experiments which included 36 runs in total including 4

central points. The results (Supplementary Tables S3 and

S4) displayed broad range of the b-glucosidase activity.

The maximum enzyme activity observed was 3397.2 IU

and the minimum activity observed was 1086.1 IU.

The results showed that esculin, K2HPO4, Na2HPO4,

MgSO4 and mannitol were the most significant nutrient

components that influenced b-glucosidase activity. The

order of significance as displayed in the Pareto

chart showed the effect of different variables (Fig. 5).

Among the 31 variables studied in the model, the highest

effect was exhibited by esculin with the t value effect of

86.36, whereas the least was shown by PEG with a t value

effect less than the t value limit (3.18).

The statistical analysis of Plackett–Burman design is

shown in Table 2. The determination coefficient showed

that a value (R2 = 0.9872) indicating 98.72% of the dis-

crepancy in the response was because of the independent

variables used and only 1.28% of the total variability

could not be described by independent variables. More-

over, the high value of adjusted determination coefficient

(Adj R2 = 0.8885) showed that the model is of high

significance. The model F value of 10.00 implies that the

model is significant. There is only a 1.83% chance that an

F value this large could occur due to noise. Values of

‘‘Probability[ F’’ less than 0.0500 indicated that the

model terms were significant. The value of significance

p was 0.0183 for the present model. In the experiment,

the different substrates (mannitol, yeast extract, ammo-

nium sulfate, K2HPO4, Na2HPO4, esculin, FeSO4 and

MgSO4) which exhibited p values\0.05 were considered

the most significant factors affecting the b-glucosidase
production. Based on these results, esculin, K2HPO4 and

MgSO4 were selected for further Box–Behnken statistical

design.

The ‘‘Lack of Fit F-value’’ of 304.97 implies that the

Lack of Fit was significant. There is only a 0.04% chance

that a ‘‘Lack of Fit F-value’’ this large could occur due to

noise. A negative ‘‘Pred R-Squared’’ (-115.241148)

implies that the overall mean may be a better predictor of

your response than the current model. ‘‘Adeq Precision’’

measures the signal to noise ratio. A ratio greater than 4 is

desirable and, therefore, the ratio value of 8.994 obtained

indicates an adequate signal. As a result, the present model

can be used to navigate the design space.

The first-order polynomial was obtained that showed the

enzyme production as a function of independent variables:

R (b-glucosidase activity) = 2328.66 - 68.32 (X1) - 56.77

(X2) - 7.38 (X3) ? 14.58 (X4) - 140.36 (X5) ? 25.78

(X6) ? 93.66 (X7) - 145.14 (X8) ? 50.09 (X9) - 25.78

Fig. 5 Pareto chart illustrating the order of significance of different 31 variables showing b-glucosidase production by strain SG9
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(X10) - 145.83 (X11) ? 90.97 (X12) ? 34.03 (X13) - 70.57

(X14) ? 21.96 (X15) - 157.55 (X16) ? 88.11(X17) -

164.32 (X18) ? 20.31 (X19) ? 694.44 (X20) - 17.79

(X21) ? 43.49 (X22) ? 162.15 (X23) - 150.09

(X24) ? 73.61 (X25) ? 111.11 (X26) ? 18.66 (X27) ? 2.43

(X28) - 98.79 (X29) - 1.21 (X30) - 30.73 (X31).

Box–Behnken design for b-glucosidase production

Box–Behnken response surface design was performed

using three factors which were examined based on the

results obtained from Plackett–Burman design, viz., escu-

lin, KH2PO4 and MgSO4 to maximize the enzyme activity.

Table 2 Statistical analysis of Plackett–Burman design showing coefficient values, f value and p values for each variable affecting enzyme

activity

Variables Coefficients Sum of squares df Mean square p value

Prob[F

f value Remarks

Model 2296.69 23,033,689 31 743,022.23 0.018 10.002 Significant

Dextrose -68.31 149,349.6 1 149,349.63 0.229 2.01

Lactose -56.77 103,134.5 1 103,134.45 0.303 1.38

Fructose -7.37 1741.90 1 1741.90 0.885 0.02

Sucrose 14.58 6805.55 1 6805.55 0.777 0.09

Mannitol -140.36 630,467.2 1 630,467.20 0.043 8.48

Mannose 25.78 21,268.84 1 21,268.83 0.620 0.28

Temperature 93.66 280,733.6 1 280,733.59 0.123 3.77

Yeast extract -145.13 674,092.1 1 674,092.11 0.039 9.07

Peptone 50.08 80,280.9 1 80,280.90 0.357 1.08

Urea -25.78 21,270.33 1 21,270.32 0.620 0.28

(NH4)2SO4 -145.83 680,558.1 1 680,558.11 0.038 9.16

NaNO3 90.97 264,825.4 1 264,825.41 0.132 3.563

KNO3 34.02 37,052.31 1 37,052.31 0.518 0.49

Beef extract -70.57 159,377.2 1 159,377.18 0.216 2.14

(NH4)2NO3 21.96 15,435.53 1 15,435.53 0.672 0.21

K2HPO4 -157.55 794,327.2 1 794,327.22 0.030 10.69

KH2PO4 88.10 248,411.4 1 248,411.44 0.141 3.34

Na2HPO4 -164.32 864,065.4 1 864,065.36 0.027 11.63

NaH2PO4 20.31 13,204.12 1 13,204.12 0.694 0.17

Esculin 694.44 15,432,077 1 15,432,077.01 0.00,013 207.74

CaCl2 -17.79 10,132.95 1 10,132.95 0.730 0.13

MnSO4 43.48 60,521.08 1 60,521.08 0.417 0.81

FeSO4 162.15 841,392 1 841,391.99 0.035 11.32

MgSO4 -150.08 720,838.9 1 720,838.87 0.028 9.70

ZnSO4 73.61 173,393.4 1 173,393.44 0.201 2.33

CuSO4 111.11 395,059.7 1 395,059.72 0.082 5.31

KCl 18.66 11,145.42 1 11,145.41 0.718 0.15

EDTA 2.43 188.9789 1 188.97 0.962 0.002

SDS -98.78 312,274.3 1 312,274.29 0.109 4.20

PEG -1.21 47.22,813 1 47.23 0.981 0.0006

pH -30.72 30,217.02 1 30,217.02 0.558 0.41

Residual 297,135.2 4 74,283.78

Lack of Fit 294,240.7 1 294,240.67 0.0004 304.961 Significant

Pure Error 2894.47 3 964.82

Cor Total 23,330,824 35

Experiments are performed at 95% LOS (level of significance). R squared 0.9872; adjusted R squared 0.8885. F value 10.0; significance

F (p value) 0.0183

df degree of freedom
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All the independent variables chosen were tested at three

different levels (-1, 0, 1) (Supplementary Table S5).

Overall, 17 experimental runs were performed with 5

central points (runs 4, 7, 9, 16 and 17). The parameters

utilized in the test were taken at high and low on the basis

of the Plackett–Burman design results. The minimum

enzyme activity was 2545.83 IU observed in 5th run under

the conditions of 0.1 g/L esculin, 2 g/L KH2PO4 and 0.1 g/

L MgSO4. The maximum activity was observed in 11th run

showing an enzyme activity of 3397.22 IU with the com-

position of 1.9 g/L esculin, 0.5 g/L K2HPO4 and 0.3 g/L

MgSO4. The experimental value results and that predicted

by the model have also been compared (Table 3). The

comparison demonstrated minor differences between the

experimental and the predicted results.

There is a 97.39% chance that a ‘‘Lack of Fit F-value’’

this large could occur due to noise. Non-significant lack of

fit is good since we want the model to fit. The R2 value of

the model is 0.9551 which illustrates a correlation between

the predicted and the experimental values by 95.51%. The

‘‘Pred R-Squared’’ of 0.8766 is in reasonable agreement

with the ‘‘Adj R-Squared’’ of 0.8755. ‘‘Adeq Precision’’

measures the signal to noise ratio. A ratio greater than 4 is

desirable and, therefore, the ratio of 11.454 given by the

present model indicates an adequate signal. Hence, this

model can be utilized to navigate the design space.

The Model F value of 13.50 implies that the model is

significant. There is only a 0.12% chance that a ‘‘Model

F-Value’’ this large could occur due to noise. Values of

‘‘Prob[ F’’ less than 0.0500 indicate that the model terms

are significant. In this case, A (\0.0001) and BC (0.0142)

are significant model terms. Values greater than 0.1000

indicate that the model terms are not significant. The ‘‘Lack

of Fit F-value’’ of 0.07 implies that the Lack of Fit is not

significant relative to the pure error. There is a 97.39%

chance that a ‘‘Lack of Fit F-value’’ this large could occur

due to noise. Non-significant lack of fit is good for the

model to fit. The non-significant lack of fit and significant

F value proves that the quadratic model was highly sig-

nificant. The analysis of variance (ANOVA) is provided in

Table 4 which shows the p value less than 0.1 (0.001) at

95% confidence level illustrating the significance of the

model. Moreover, the degree of freedom is 9 which is

equivalent to the independent observation number. The

p values can be taken as factor for verifying significance of

each coefficient that explained each parameter’s interaction

strength and also the mutual interaction pattern between

variables.

The analysis for sequential model fitting is given in

Table 5. The linear and interactive models (2FI) showed

lesser values of R2, predicted R2, and adjusted R2 than that

of quadratic and cubic model. The interactive models (2FI)

showed higher p values as compared with the quadratic

model. The adjusted R2 (0.875) and predicted R2 (0.872)

were found to be maximum in the quadratic model.

Therefore, quadratic model including the interactive, linear

and quadratic effects was utilized for explaining variables

effects used in the process on the b-glucosidase activity.

Table 3 Results for Box–Behnken experimental design with their corresponding b-glucosidase activity (IU)

STD Esculin (A) KH2PO4 (B) MgSO4 (C) b-glucosidase activity (IU) Predicted value Residual

1 -1 -1 0 2615.27 2629.85 -14.58

2 1 -1 0 3397.22 3392.01 5.21

3 -1 1 0 2602.77 2607.98 -5.21

4 1 1 0 3244.44 3229.85 14.58

5 -1 0 -1 2545.83 2518.57 27.25

6 1 0 -1 3265.27 3257.80 7.46

7 -1 0 1 2573.61 2581.07 -7.46

8 1 0 1 3198.61 3225.87 -27.25

9 0 -1 -1 3138.88 3151.55 -12.67

10 0 1 -1 2715.27 2737.31 -22.04

11 0 -1 1 2866.66 2844.61 22.04

12 0 1 1 3087.5 3074.82 12.67

13 0 0 0 3190.55 3081.21 109.33

14 0 0 0 3008.61 3081.21 -72.61

15 0 0 0 3093.05 3081.21 11.83

16 0 0 0 3034.72 3081.21 -46.49

17 0 0 0 3079.16 3081.21 -2.05

Experiments are performed at 95% LOS (level of significance). R squared 0.955; adjusted R squared 0.875
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Table 5 further demonstrates the lack of fit test, model

summary statistics and sequential model sum of squares.

The determination of maximum enzyme production with

optimal levels of esculin (A), K2HPO4 (B) and MgSO4

(C) and to evaluate the relationship between dependent and

independent variables, a second-order polynomial model

was inferred. Thus, the experimental data were tested with

multiple regression analysis to get second-order polyno-

mial equation that uses independent variables for defining

the predicted response:

Table 4 ANOVA of the response surface model for the b-glucosidase activity

Variables Coefficients Sum of squares df Mean square F value p value Prob[F Remarks

Model 3109.21 1200889.90 9 133432.21 13.49 0.001 Significant

A-Esculin 346.01 957770.21 1 957770.21 96.89 \0.0001

B-KH2PO4 -46.01 16932.60 1 16932.60 1.71 0.23

C-MgSO4 7.6413 467.12 1 467.12 0.05 0.83

AB -35.07 4919.61 1 4919.61 0.49 0.503

AC -23.61 2229.68 1 2229.68 0.221 0.64

BC 161.11 103828.95 1 103828.95 10.50 0.01

A2 -100.27 42333.12 1 42333.12 4.28 0.07

B2 -44.02 8160.09 1 8160.09 0.82 0.39

C2 -113.11 53876.29 1 53876.29 5.45 0.05

Residual 69195.08 7 9885.01

Lack of Fit 3370.62 3 1123.54 0.06 0.97 Not significant

Pure Error 65824.46 4 16456.11

Cor Total 1270084.99 0.99

F Fishers’s function, df degrees of freedom, p value: corresponding level of significance

Table 5 Sequential model fitting for the b-glucosidase activity

Source Sum of squares df Mean square F value p value Prob[F Remarks

Sequential model sum of squares (Type I)

Mean 151786946 1 151786946

Linear 975169.93 3 325056.64 14.32 0.0002 Suggested

2FI 110978.25 3 36992.75 2.01 0.17

Quadratic 114741.71 3 38247.23 3.86 0.06 Suggested

Cubic 3370.62 3 1123.54 0.07 0.97 Aliased

Residual 65824.46 4 16456.11

Total 153057031 17 9003354.76

Lack of fit tests

Linear 229090.59 9 25454.51 1.54 0.35 Suggested

2FI 118112.34 6 19685.38 1.19 0.45

Quadratic 3370.62 3 1123.54 0.06 0.97 Suggested

Cubic 0 0 Aliased

Pure error 65824.46 4 16456.11

Source Std. Dev. R2 Adjusted R2 Predicted R2 PRESS Remarks

Model summary statistics

Linear 150.61 0.76 0.714 0.62 483102.40 Suggested

2FI 135.62 0.86 0.768 0.692 387022.11

Quadratic 99.42 0.95 0.875 0.872 156780.65 Suggested

Cubic 128.28 0.93 0.792 ? Aliased
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Rðb�glucosidaseactivityÞ ¼ 3109:2182þ 346:007625 Að Þ
� 46:00625 Bð Þ þ 7:641375 Cð Þ
� 35:07 Að Þ Bð Þ � 23:60975 Að Þ Cð Þ
þ 161:1125 Bð Þ Cð Þ
� 100:270225 A2

� �

� 44:022975 B2
� �

� 113:117725 C2
� �

where R is the predicted response, A is the esculin; B is

KH2PO4 and C is MgSO4.

Model adequacy

Adequacy of the BBD model was verified to perceive the

closeness of the actual values to the derived model values

(Maran et al. 2013). Supplementary Fig. S3 interprets the

diagnostic plots for the model adequacy from the results of

the residual and experimental data. The goodness fit for the

model was analyzed using the graph of internally studentized

residual (Supplementary Fig. S3A) showing all the data

values lyingwithin the limits. Themodel predicted valuewas

reasonably close to the experimental values so that the value

of the experimental and predicted values lies in and very near

to the straight line (Supplementary Fig. S3B). Hence, the

results indicated a successful prediction of the correlation

among the process variables on response by the derived

model. The graph for normal % probability of residuals for

the response was also found to be normally distributed, since

the values lie close to the straight line showing no variance

deviation (Supplementary Fig. S3C). The graph in Supple-

mentary Fig. S3D illustrates the absence of unexpected

errors in themodel on the basis of the fact of lesser lower than

1 values of all the leverages. The graph representing the beta

values illustrated no unnecessary influence on any regression

coefficients by any observations (Supplementary Fig. S3E).

The externally studentized residual showed an accept-

able range (Supplementary Fig. S3F), indicating the absence

of influential observations in experimental data. Therefore,

the above results indicated that the model can be utilized for

the optimum conditions prediction for b-glucosidase pro-

duction. On the basis of optimal values, a desirability ramp

was developed using numerical optimization techniques

(Supplementary Fig. S4)

Effect of esculin, K2HPO4 and MgSO4 concentrations on b
glucosidase enzyme production

3-D Response surface and contour plots were drawn for the

responses observed in the BB design. The plots were drawn

on the basis of model polynomial functions to evaluate the

response surface changes. The plots explained the effects

on the response of two factors at a time while maintaining

the third factor at level zero. The interaction effects of

esculin and K2HPO4 on concentration of enzyme yield with

MgSO4 at constant level are shown in Fig. 6a, b. Esculin

showed to have a significant effect on enzyme yield since

the highest b-glucosidase activity as predicted by the

model was 3397.2 IU with 1.9 g/L esculin and 0.5 g/L

K2HPO4. Increasing the concentration of either of the

factors would result in repression of enzyme activity.

Figure 6c, d exemplifies the effect of esculin and

MgSO4 interaction on the enzyme yield maintaining

K2HPO4 at a constant level. The highest yield as predicted

by the model is 3360 IU with a middle level at a concen-

tration of 1 g/L esculin and 0.3 g/L MgSO4. The enzyme

activity decreases if the concentration is increased beyond

this point for both the factors. The response result showed

the mutual-dependent influence on the enzyme activity. At

a concentration of 3.5 g/L K2HPO4 and 0.5 g/L MgSO4,

the maximum enzyme activity of 3182.5 IU was observed

(Fig. 6e, f). The esculin was maintained at constant level in

this case. Esculin is a coumarin glucoside and this substrate

stimulates the gene promoters to favor the induction of the

microbial b-glucosidase system, while potassium phos-

phate acts as a buffering agent in the medium for the

uptake of the nutrients. The addition of divalent metal ions

like magnesium is important in the fermentation medium,

since it plays a major role in cell metabolism favoring

optimal enzyme secretion.

Model verification

The verification of the model was performed both experi-

mentally and then compared with predicted value by taking

the optimal concentrations of factors resulting from the

optimization experiments. The enzyme activity found

experimentally was 3340 IU, whereas 3301 IU was the

predicted value, thereby indicating a high degree of accu-

racy (98.2%) of the model. Therefore, the conditions for

the optimum enzyme growth were esculin (1.9 g/L),

K2HPO4 (0.5 g/L) and MgSO4 (0.3 g/L).

Conclusion

An attempt was made in the present study to optimize

nutritional and environmental parameters to maximize b-
glucosidase enzyme production from a newly isolated

strain of Bacillus stratosphericus strain SG9. The opti-

mization experiments indicated esculin, KH2PO4 and

MgSO4 to be the best contributors favoring maximum

enzyme production. Based on the Box–Behnken statistical

bFig. 6 3D Response surface and contour plots showing interactions

between KH2PO4, Esculin and MgSO4 for b-glucosidase production.

R1 is response-1
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optimization, the maximum enzyme production increased

by fivefold (from 660 to 3340 IU). The 16S rRNA gene

sequence and the biochemical analysis for the identification

of the new strain have been delineated in the present study.
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