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Abstract

A chiral NHC/Brønsted acid cooperative catalysis system has been developed for asymmetric 

annulation of functionalized benzaldehydes and activated ketones through dearomative generation 

of dienolate.
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N-Heterocyclic Carbene (NHC) catalysis has been the focus of asymmetric organocatalysis 

for decades, featuring in umpolung transformations of aldehydes and effective activation of 

other carbonyls.1 One of the significant advantages of carbene catalysis is its incredible 

compatibility2 with other organocatalysts3–7 as well as metal catalysts.8–9 We have 

previously disclosed a productive carbene/Brønsted acid cooperative catalysis for highly 

enantioselective synthesis of trans-γ-lactams from α, β-unsaturated aldehydes and 

unactivated imines,5 a concept that has proven to be broad.6

Recently, a dienolate intermediate generated through NHC catalysis, either from linear α, β-

unsaturated carbonyls with installed leaving groups (Scheme 1a, path I) or from aldehydes 

under oxidative conditions (Scheme 1a, path II), has been comprehensively studied by Ye,10 

Chi11 and others.12 In 2013, Chi13 and coworkers reported a NHC-catalyzed oxidative 

formal [4+2] cycloaddition of heteroaryl aldehydes and activated ketones. The benzaldehyde 

analogue was nonproductive in Chi’s reaction. We hypothesized that a leaving group at the 
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benzylic position would facilitate this process in a redox fashion (Scheme 1b).14 Herein, we 

report a highly enantioselective [4+2] annulation of 2-(bromomethyl)benzaldehydes and 

fluorinated ketones by the action of NHC/phosphoric acid cooperative catalysis.

Starting with 2-(bromomethyl)benzaldehyde 1a and trifluoroacetophenone 2a as the 

substrates, use of achiral triazolium salt 4 gave desired product 3a in 57% yield (Table 1, 

entry 1). We then evaluated chiral carbene precursors (entries 2–4) and found that our 

aminoindanol-derived triazolium salt 5a with N-pentafluorophenyl group provided the best 

reactivity (entry 2). Further screening of solvents and bases disclosed that reaction with 5a 
and KOAc in cyclohexane was more efficient (61% yield and 76% ee, entry 6). Reaction of 

2- (chloromethyl)benzaldehyde 1b and 2a led to the same product, but yield and 

enantioselectivity were both lower (entry 7).

Various additives were then investigated under otherwise identical conditions (Table 2). 

Molecular sieves with different pore diameters generally lower the yields albeit with slightly 

higher ee (entries 1–3). Lewis acids compatible with chiral NHCs, such as LiCl and 

Sc(OTf)3, did not improve the reaction (entries 4–5). Speculating that the slightly improved 

selectivities observed with acetate as base were due to a potential role of the conjugate acid 

in the stereoselectivity determining event, we investigated the impact of BINOL-derived 

chiral phosphoric acid15 as co-catalyst. We were pleased to find that application of 6a (20 

mol%) delivered 82% ee (entry 6). Steric and electronic variation of 3,3′-aryl substituents of 

chiral phosphoric acid continued to improve the enantioselectivity (entries 6–9) with 6d16 

providing an optimized 95% ee (entry 9). Lower catalyst loading of 6d increased efficiency 

without erosion of enantioselectivity (entry 10). A combination of ent-5a with 6d was found 

to be less effective, indicating a match/mismatch situation between these two chiral catalysts 

(entry 11).

With optimal conditions in hand, we firstly explored the ketone scope (Scheme 2, part I). 

Electron-withdrawing substituents on the aryl ring of trifluoroacetophenones generally 

decrease the enantioselectivities. For example, reactions of para-fluoro, para-chloro and 

meta-fluoro analogs with 1a afford 5b, 5c and 5d in moderate yields and good selectivities. 

Electron rich trifluoroacetophenones and alkyl trifluoromethyl ketones fail to give any 

products presumably due to their lower reactivity. Annulations with ketones bearing longer-

chain perfluoroalkyl units provide lactones 3e and 3f in good yields and enantioselectivities. 

Ethyl phenylgloxylate, on the other hand, does not participate in this reaction.

We next evaluated bromomethyl aryl aldehyde scope (Scheme 2, part II). Reaction of para-

chlorosubstituted system with 2a provides 3j in 57% yield, with 90% ee. A phenyl 

substituent surprisingly had a huge impact on the reactivity. For example, 4-

phenylbenzaldehyde delivers product in 66% yield and 77% ee (3j) while a 5-phenyl group 

gives much higher yield and enantioselectivity (3m). The use of para-fluorinated analog of 

2a would offset the negative effect brought by 4-phenyl substituent on benzaldehyde, 

delivering 71% yield and 93% ee (3l).

We propose a catalytic cycle as shown in Scheme 3. There is an equilibrium between 

triazolium salt 5a and free carbene 5a′ in the presence of acetate.17 Activation of 1a by 5a′ 
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generates a possible zwitterionic intermediate I, which undergoes proton transfer to form the 

Breslow intermediate II. Extrusion of the bromide within II gives dienolate intermediate III, 

which reacts with the carbonyl via a transition state analogous to IV. Formation of an ion 

pair between triazolium and chiral phosphate counterion would increase its solubility in 

cyclohexane, implying that the phosphoric acid catalyst may be acting as a chiral counterion 

although other mechanisms cannot be discounted. As mentioned above, a matched situation 

between the NHC and phosphoric acid backbone chirality is required for excellent 

stereocontrol. After C-C bond-forming, a new C-O bond forms through intermediate V and 

releases final product 3a, and free carbene 5a′ for the new catalytic circle.18

In conclusion, we have developed NHC/chiral phosphoric acid cooperative catalysis, 

enabling a highly enantioselective [4+2] annulation reaction of 2-

(bromomethyl)benzaldehydes and fluorinated ketones. The phosphoric acid catalyst may be 

acting as a chiral Brønsted acid, a chiral counterion or phase transfer agent for the NHC 

catalyst. Cooperative activation between the NHC catalyst and phosphoric acid would 

provide new opportunities in asymmetric NHC catalysis and extension of the concept to 

other annulation modes may be possible.19

1H, 13C and 19F NMR spectra were recorded on a Bruker spectrometer (500 MHz, 125 MHz 

and 471 MHz for 1H, 13C and 19F NMR, respectively) at ambient temperature. High 

resolution mass spectra (HRMS) were obtained from Columbia University Mass 

Spectrometry Facility on a JOEL JMSHX110HF mass spectrometer using FAB+ ionization 

model. Infrared spectra were recorded on a Perkin Elmer Paragon 1000 FI-IR spectrometer. 

HPLC spectra were obtained on an Agilent 1100 series system. Optical rotation was 

obtained with an Autopol-III automatic polarimeter.

(S)-3-phenyl-3-(trifluoromethyl)isochroman-1-one (3a): Typical Procedure

To an oven-dried 5 mL vial with a magnetic stir bar, aldehyde 1a (0.10 mmol), ketone 2a 
(0.20 mmol), triazolium salt 5a (9.3 mg, 0.020 mmol), chiral phosphoric acid 6d (6.8 mg, 

0.010 mmol), KOAc (19.6 mg, 0.40 mmol) were added before being transferred to an argon-

filled glovebox. 1.0 mL of dry cyclohexane was added. The vial was tightly capped and 

removed from the glovebox. The reaction was vigorously stirred at room temperature. After 

12h, the mixture was concentrated and the residue was subjected to flash silica gel 

chromatography (hexane: ether = 20:1) to yield lactone 3a (19.9 mg, 68% yield, 95% ee).

[α]20
D = +87.8° (c = 0.014 g/ml, CHCl3);

1H NMR (500 MHz, CDCl3) δ 7.98 (dd, J = 7.8, 1.3 Hz, 1H), 7.56 – 7.42 (m, 3H), 7.35 – 

7.25 (m, 5H), 3.83 (d, J = 16.3 Hz, 1H), 3.69 (d, J = 16.3 Hz, 1H). Data matches literature 

report.14

(S)-3-(4-fluorophenyl)-3-(trifluoromethyl)isochroman-1-one (3b)

21.4 mg, 69% yield, 91% ee;

[α]20
D = +90.9° (c = 0.017 g/ml, CHCl3);
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1H NMR (500 MHz, CDCl3) δ 7.97 (dd, J = 7.8, 1.3 Hz, 1H), 7.56 – 7.45 (m, 3H), 7.35 – 

7.25 (m, 2H), 7.06 – 6.93 (m, 2H), 3.84 (d, J = 16.3 Hz, 1H), 3.64 (d, J = 16.4 Hz, 1H). Data 

matches literature report.14

(S)-3-(4-chlorophenyl)-3-(trifluoromethyl)isochroman-1-one (3c)

18.1 mg, 55% yield; 83% ee;

[α]20
D = +75.6° (c = 0.016 g/ml, CHCl3);

1H NMR (500 MHz, CDCl3): δ 7.26 (dd, J = 5.8, 2.9 Hz, 1H), 7.22–7.11 (m, 5H), 6.75–

6.72 (m, 3H), 5.07 (s, 1H), 3.80 (dt, J = 11.2, 4.9 Hz, 1H), 3.34 (ddd, J = 11.1, 10.0, 4.1 Hz, 

1H), 3.08 (ddd, J = 15.5, 10.1, 5.2 Hz, 1H), 2.91 (dt, J = 15.6, 4.3 Hz, 1H), 2.53–2.31 (m, 

2H), 0.83 (t, J = 7.2 Hz, 3H). Data matches literature report.14

(S)-3-(3-fluorophenyl)-3-(trifluoromethyl)isochroman-1-one (3d)

21.1 mg, 68% yield; 87% ee;

[α]20
D = +72.0° (c = 0.014 g/ml, CHCl3);

1H NMR (500 MHz, CDCl3) δ 7.98 (dd, J = 7.9, 1.3 Hz, 1H), 7.52 (td, J = 7.6, 1.3 Hz, 1H), 

7.35 – 7.22 (m, 5H), 7.01 (m, 1H), 3.84 (d, J = 16.3 Hz, 1H), 3.63 (d, J = 16.4 Hz, 1H);

13C NMR (125 MHz, CDCl3): δ 162.7 (d, J = 246 Hz), 161.9, 136.1 (d, J = 7.1 Hz), 134.9, 

134.8, 130.5, 130.4 (d, J = 8.1 Hz), 128.3, 127.9, 124.2, 123.0 (q, J = 282 Hz), 122.8 (d, J = 

2.6 Hz), 116.7 (d, J = 20.9 Hz), 114.6 (d, J = 23.8 Hz) 82.7 (q, J = 30.7 Hz), 31.1 (d, J = 1.5 

Hz);

19F NMR (471 HZ, CDCl3) δ −78.6 (s), −110.3 (m);

IR (neat) 1742, 1594, 1445, 1280, 1185, 1115, 1073, 749, 729, 708 cm−1;

HRMS (ESI+) calcd for C16H11O2F4 as [M+H]+, 311.0695. Found 311.0696.

(S)-3-(perfluoroethyl)-3-phenylisochroman-1-one (3e)

21.6 mg, 63% yield; 87% ee;

[α]20
D = +75.1° (c = 0.011 g/ml, CHCl3);

1H NMR (500 MHz, CDCl3) δ 7.95 (dd, J = 7.8, 1.2 Hz, 1H), 7.50 – 7.44 (m, 3H), 7.33–

7.24 (m, 4H), 7.22 (d, J = 7.6 Hz, 1H), 3.93 (d, J = 16.2 Hz, 1H), 3.66 (d, J = 16.2 Hz, 1H);

13C NMR (125 MHz, CDCl3): δ 162.1, 135.3, 134.6, 133.5, 130.2, 129.5, 128.7, 128.1, 

127.9, 126.9, 124.4, 118.8 (qt, J = 287, 35.8 Hz), 111.3 (tq, J = 264, 35.6 Hz), 83.8 (t, J = 

24.9 Hz), 31.4;

19F NMR (471 MHZ, CDCl3) δ −76.8 (s), −120.1, 121.5 (ABq, JAB = 280.0 Hz);
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IR (neat) 1740, 1451, 1219, 1190, 1151, 1116, 1076, 745, 731, 716 cm−1;

HRMS (ESI+) calcd for C17H12O2F5 as [M+H]+, 343. 0575. Found 343. 0761.

(S)-3-(perfluoropropyl)-3-phenylisochroman-1-one (3f)

30.2 mg, 77% yield; 90% ee;

[α]20
D = +107.3° (c = 0.015 g/ml, CHCl3);

1H NMR (500 MHz, CDCl3) δ 7.96 (dd, J = 7.8, 1.3 Hz, 1H), 7.51 – 7.44 (m, 3H), 7.33 – 

7.25 (m, 5H), 7.21 (d, J = 7.6 Hz, 1H), 3.95 (d, J = 16.2 Hz, 1H), 3.67 (d, J = 16.2 Hz, 1H);

13C NMR (125 MHz, CDCl3): δ 162.0, 135.2, 134.6, 133.5, 130.2, 129.4, 128.6, 128.1, 

127.9, 127.1, 124.4, 118.8 (m), 116.3 (m), 113.9 (m), 111.9 (m), 109.9 (m), 107.8 (m), 84.7 

(t, J = 25.3 Hz), 31.7;

19F NMR (471 MHz, CDCl3) δ −79.9 (t, J = 11.3 Hz, 3F), −116.1 – −118.4 (m, 2F), −120.5 

(ddd, J = 289.6, 12.5, 4.7 Hz, 1F), −122.9 (ddd, J = 289.2, 12.5, 3.0 Hz, 1F);

IR (neat) 1741, 1461, 1450, 1340, 1226, 1125, 1074, 745, 730, 716, cm−1;

HRMS (ESI+) calcd for C18H12O2F7 as [M+H]+, 393. 0726. Found 393. 0718.

(S)-6-chloro-3-phenyl-3-(trifluoromethyl)isochroman-1-one (3j)

18.6 mg, 57% yield; 90% ee;

[α]20
D = +112.9° (c = 0.018 g/ml, CHCl3);

1H NMR (500 MHz, CDCl3) δ 7.93 (d, J = 8.8 Hz, 1H), 7.54 – 7.50 (m, 3H), 7.40–7.33 (m, 

3H), 7.32 – 7.29 (m, 2H), 3.83 (d, J = 16.4, 1H), 3.68 (d, J = 16.4 Hz, 1H);

13C NMR (125 MHz, CDCl3) δ 161.5, 141.1, 137.0, 133.1, 131.9, 129.7, 128.9, 128.7, 

127.9, 126.9, 122.8, 123.1 (d, J = 282 Hz), 83.2 (d, J = 30.6 Hz), 31.0;

19F NMR (471 MHz, Chloroform-d) δ −78.7 (s);

IR (neat) 1736, 1600, 1270, 1185, 1168, 1095, 1074, 765, 720, 683 cm−1;

HRMS (ESI+) calcd for C16H11O2F3Cl as [M+H]+, 327. 0400. Found 327.0397.

(S)-3,6-diphenyl-3-(trifluoromethyl)isochroman-1-one(3k)

24.3 mg, 66% yield; 77% ee;

[α]20
D = +93.1° (c = 0.019 g/ml, CHCl3);
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1H NMR (500 MHz, CDCl3) δ 8.03 (d, J = 8.0 Hz, 1H), 7.58 – 7.50 (m, 4H), 7.48 – 7.40 

(m, 4H), 7.36 – 7.28 (d, J = 7.4 Hz, 3H), 3.89 (d, J = 16.2 Hz, 1H), 3.75 (d, J = 16.3 Hz, 

1H);

13C NMR (125 MHz, CDCl3): 162.3, 147.4, 139.1, 135.8, 133.5, 130.9, 129.6, 129.1, 128.8, 

128.7, 127.2, 127.0, 126.9, 126.3, 123.3 (d, J = 282 Hz), 123.0, 83.2 (d, J = 30.4 Hz), 31.3;

19F NMR (471 MHz, CDCl3) δ −78.7 (s);

IR (neat) 2923, 1737, 1611, 1450, 1271, 1238, 1169, 1130, 1073, 758, 740, 721, 695 cm−1;

HRMS (ESI+) calcd for C22H16O2F3 as [M+H]+, 369.1102. Found 369.1100.

(S)-3-(4-fluorophenyl)-6-phenyl-3-(trifluoromethyl)isochroman-1-one (3l)

27.5 mg, 71% yield; 93% ee;

[α]20
D = +103.5° (c = 0.014 g/ml, CHCl3);

1H NMR (500 MHz, CDCl3) δ 8.03 (d, J = 8.1 Hz, 1H), 7.58 – 7.51 (m, 5H), 7.49 – 7.39 

(m, 4H), 7.02 (t, J = 8.6 Hz, 2H), 3.89 (d, J = 16.3 Hz, 1H), 3.70 (d, J = 16.3 Hz, 1H);

13C NMR (125 MHz, CDCl3): δ 163.2 (d, J = 249 Hz), 162.1, 147.6, 139.0, 135.6, 131.0, 

129.4 (d, J = 3.3 Hz), 129.2 (d, J = 8.7 Hz), 129.1, 128.8, 127.3, 127.0, 126.3, 123.1 (d, J = 

282 Hz), 122.8, 116.0 (d, J = 21.7 Hz), 82.8 (d, J = 30.5 Hz), 31.3;

19F NMR (471 MHz, CDCl3) δ −78.9 (s), −110.5 (tt, J = 8.4, 5.0 Hz);

IR (neat) 1739, 1611, 1512, 1239, 1171, 1073, 988, 836, 745, 697 cm−1;

HRMS (ESI+) calcd for C22H15O2F4 as [M+H]+, 387.1008. Found 387.1002.

(S)-3,7-diphenyl-3-(trifluoromethyl)isochroman-1-one (3m)

29.8 mg, 81% yield; 86% ee;

[α]20
D = +118.0° (c = 0.028 g/ml, CHCl3);

1H NMR (500 MHz, CDCl3) δ 8.21 (d, J = 1.9 Hz, 1H), 7.72 (dd, J = 7.9, 2.0 Hz, 1H), 7.58 

– 7.48 (m, 4H), 7.41 (t, J = 7.5 Hz, 2H), 7.38 – 7.28 (m, 5H), 3.86 (d, J = 16.3 Hz, 1H), 3.73 

(d, J = 16.3 Hz, 1H);

13C NMR (125 MHz, CDCl3) δ 162.4, 141.3, 138.9, 134.0, 133.5, 133.1, 129.6, 129.0, 

128.8, 128.7, 128.4, 128.1, 127.1, 126.9, 124.7, 123.3 (d, J = 282 Hz), 83.0 (d, J = 30.4 Hz), 

30.8;

19F NMR (471 MHz, CDCl3) δ −78.8 (s);

IR (neat) 2924, 1742, 1451, 1306, 1221, 1169, 1073, 760, 745, 702 cm−1;
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HRMS (ESI+) calcd for C22H16O2F3 as [M+H]+, 369.1102. Found 369.1100.
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Scheme 1. 
Pathways to dienolate intermediate through NHC catalysis
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Scheme 2. 
Substrate Scope
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Scheme 3. 
Proposed catalytic cycle
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Table 2

Additive Effect

entry additive yield (%)a ee (%)b

1 3Å MS 42 78

2 4Å MS 58 77

3 5Å MS 53 77

4 LiCl (1.0 eq) 52 77

5 Sc(OTf)3 (10 mol%) 55 71

6 6a (20 mol%) 66 82

7 6b (20 mol%) 63 84

8 6c (20 mol%) 56 74

9 6d (20 mol%) 51 95

10 6d (10 mol%) 68 95

11c 6d (20 mol%) 64 −84

Conditions: 1a (0.10 mmol), 2a (0.20 mmol), 5a (20 mol%, 0.020 mmol) and KOAc (0.20 mmol) in 1.0 mL of anhydrous cyclohexane, under 
argon, 23° C, for 12h.

a–b
See Table 1.

c
ent- 5a was used instead of 5a.
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