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Abstract

Background—When exposure is infrequent, propensity score matching results in reduced 

precision because it discards a large proportion of unexposed patients. To our knowledge, the 

relative performance of propensity score stratification in these circumstances has not been 

examined.

Methods—Using an empirical example of the association of first-trimester statin exposure 

(prevalence=0.04%) with risk of congenital malformations and 1,000 simulated cohorts 

(n=20,000) with eight combinations of exposure prevalence (0.5%, 1%, 5%, 10%) and outcome 

risk (3.5%, 10%), we compared four propensity score based approaches to confounding-

adjustment: 1) matching (1:1, 1:5, full), 2) stratification in 10, 50, and 100 strata by entire cohort 

propensity score distribution, 3) stratification in 10, 50, and 100 strata by exposed group 

propensity score distribution, 4) standardized mortality ratio (SMR) weighting. Weighted 

generalized linear models were used to derive effect estimates after weighting unexposed 

according to the distribution of the exposed in their stratum for the stratification approaches.

Results—In the empirical example, propensity score stratification (cohort) approaches resulted in 

greater imbalances in covariate distributions between statin-exposed and unexposed compared 
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with propensity score stratification (exposed) and matching. In simulations, propensity score 

stratification (exposed) resulted in smaller relative bias than the cohort approach with 10 and 50 

strata, and greater precision than matching and SMR weighting at 0.5% and 1% exposure 

prevalence; but similar performance at 5% and 10%.

Conclusion—For exposures with prevalence under 5%, propensity score stratification with fine 

strata, based on the exposed-group propensity score distribution, produced the best results. For 

more common exposures, all approaches were equivalent.
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Introduction

Propensity scores, which are balancing scores defined as the predicted probability of 

receiving a particular exposure given covariate realizations of a study subject,1 are 

commonly used to account for a large number of confounders efficiently in 

pharmacoepidemiology studies, especially when the outcome is infrequent and adjusting for 

a large number of confounders in conventional multivariable models may result in 

overfitting and biased estimates.2 Two of the most widely used propensity score-based 

approaches to control confounding are matching a comparison group to the exposed group 

by propensity score and stratifying subjects by a function of the score.3 Propensity score 

matching has previously been shown to be superior with respect to bias reduction to 

stratification using five strata.4,5 Matching, however, reduces precision because, along with 

exposed patients for whom no reference patient with comparable propensity is found, it also 

omits those comparison patients who would be matchable but who are not selected because a 

pre-specified number of matches were already selected for each exposed patient.4,5 This loss 

of subjects is especially relevant when exposure is rare, in which case propensity-score 

matching excludes a large proportion of comparison subjects and results in considerable loss 

of information. In contrast, all these potential comparison subjects would be retained in an 

analysis that stratifies or weights by a function of the propensity score.

It has long been thought that creating five strata based on a continuous variable, such as 

quintiles of the propensity score, with the stratum boundaries determined by its distribution 

in the exposed and the comparison group combined, eliminates approximately 90% of 

measured confounding.6,7 When exposure is infrequent, however, determining the stratum 

boundaries by the propensity score values for the combined groups of exposed and 

comparison patients may result in all the exposed patients being aggregated in one or more 

extreme strata. This approach is therefore prone to considerable residual confounding. This 

aggregation of exposed subjects in the extreme strata can be mitigated by increasing the 

number of strata, or by forming the stratum boundaries based on the values of the PS for the 

exposed group alone. While both these approaches have been discussed in the literature,8,9 

they have not been compared with other standard confounding control approaches in settings 

with infrequent exposure, where the aggregation of exposed at one end of the PS distribution 

is most severe. Therefore, using both a simulation study and a previously published 

empirical example of the fetal safety of first-trimester statin use during pregnancy,10 we 
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assessed confounding control and precision for various PS stratification approaches and for 

PS matching and weighting.

Methods

Empirical example

For our empirical evaluation, we assessed the prevalence of congenital malformations 

among live-born infants after first-trimester statin exposure, compared with non-exposure. 

Statins are contraindicated during pregnancy owing to teratogenicity concerns from animal-

studies. Further, the indications for statin use are uncommon in women of reproductive age. 

Therefore, exposure to statins during pregnancy is rare. We studied a previously assembled 

cohort of Medicaid-enrolled women aged 12 to 55 years with completed pregnancies 

resulting in live-born infants, from 46 U.S. states and Washington, DC, for the period of 

2000–2007.11 The use of this de-identified database for research was approved by the 

Institutional Review Board of Brigham and Women’s Hospital. We estimated the date of last 

menstrual period (LMP) based on the delivery date combined with a validated algorithm 

based on diagnosis codes for preterm delivery.12 We required women to have Medicaid 

eligibility continuously from 3 months before the estimated LMP month through one month 

postpartum. Similarly, to have complete information on malformations during the outcome 

measurement period (first 3 months of life), linked infants were also required to have 

continuous enrollment in Medicaid for at least 3 months following birth, unless they died in 

which case a shorter eligibility period was allowed. We excluded pregnancies with exposure 

to a known teratogenic medication (i.e., lithium, antineoplastic agents, retinoids, or 

thalidomide) during the first trimester and pregnancies in which the infant was diagnosed 

with a chromosomal abnormality.

For this analysis, women who filled at least two prescriptions for statins during the first 

trimester were defined as exposed. Statins included in our study were: simvastatin, 

lovastatin, pravastatin, fluvastatin, atorvastatin, cerivastatin, and rosuvastatin. We only 

considered statin exposure in the first trimester because it is the etiologically relevant 

window of exposure for the outcome of congenital malformations. Women not meeting this 

exposure definition were classified as unexposed. The outcome of interest was any 

congenital malformation in the infant. These malformations were identified based on the 

presence of ICD-9 diagnostic codes on two or more separate days in the infant inpatient or 

outpatient records during the first 3 months of life. The potential confounders considered 

were demographic characteristics of maternal age, race and region, maternal comorbid 

conditions including diabetes, hypertension, dyslipidemia, obesity, tobacco use, chronic 

renal disease, illicit drug and alcohol abuse, maternal co-medication use including other 

suspected teratogenic medications, oral anti-diabetic medications, hypertension medications, 

and insulin, and healthcare utilization variables including the number of distinct prescription 

medications (other than statins) and physician visits. Details on the study design, variable 

measurements, and substantive results have been previously published.10
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Simulation study

To augment the findings from the empirical example, we also conducted a simulation study 

with 1,000 simulated cohorts of 20,000 women. To base our simulation parameters on 

realistic covariate distributions, we generated ten confounders (c1-c10) using confounder–

exposure associations, confounder–outcome associations and confounder prevalences 

observed in the empirical study. Additionally, we generated two hypothetical non-

confounding exposure determinants (c11, c12) and two hypothetical non-confounding 

outcome determinants (c13, c14). eTable 1 summarizes the parameters that were used to 

generate simulated data.

A binary exposure variable was generated indicating first-trimester statin use versus non-use. 

A logistic regression model was used to predict the probability of the exposure using ten 

confounders and two exposure-determinants (c1-c12). A binary outcome variable was 

generated indicating the presence or absence of congenital malformations, also using logistic 

regression models with ten confounders (c1-c10) and two outcome-determinants (c13, c14). 

A true null exposure effect of statins on the risk of congenital malformations was generated 

by not including the simulated exposure variable in the logistic regression model predicting 

the outcome. We used logistic regression models to generate the binary outcome variable 

and retrieve the true effect estimates as odds ratios (ORs) in our simulations as these models 

are theoretically more robust to non-convergence compared with log-binomial models13–15 

and when the treatment effect is null, ORs and risk ratios (RRs) coincide.

We generated eight simulation scenarios by varying the exposure prevalence and outcome 

risks. We varied simulated exposure prevalence (0.5%, 1%, 5%, and 10%) by changing the 

intercept term in the logistic regression models used to generate the exposure variable, while 

keeping other coefficients constant. Two outcome risk scenarios were generated for each 

exposure scenario; the first was based on the risk observed in the empirical example (3.5%) 

and the second was chosen to represent more common outcomes (10%). The null exposure 

effect was held constant across the simulation scenarios.

Statistical analysis

We implemented propensity score-based methods in both the empirical example and the 

simulation studies to account for measured confounders. The propensity score was estimated 

as the predicted probability of statin exposure during the first trimester using logistic 

regression models. In the empirical study, all the confounders described above (under 

Empirical example) were included in the propensity-score model, while in the simulation 

studies the ten confounders, c1-c10, were included in the propensity-score models. After 

propensity-score estimation, the following three approaches were used to derive adjusted 

associations between statin exposure and congenital malformations.

1. Propensity score stratification: Two approaches were used to conduct 

stratification: 1) creating equally-sized propensity score strata, numbering 10, 50, 

or 100, after ranking the entire-cohort based on the propensity score (hereafter 

referred to as the propensity-score strata cohort approach); and 2) creating 

unequally sized propensity-score strata, numbering 10, 50, or 100, after ranking 

only the exposed patients based on the propensity score and assigning unexposed 
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patients to these strata based on their PS (hereafter referred to as the propensity-

score strata exposed approach).

Weighted regression models were used to derive an adjusted exposure effect after 

stratification, in which each exposed patient received a weight of 1 and 

unexposed patients were weighted in proportion to the distribution of the 

exposed in the stratum into which they fell. The unexposed group weights were 

scaled to sum to the number of unique unexposed individuals included in the 

analysis ( ). Effectively, this 

weighting creates a pseudo-population in which confounder distribution 

concordance is achieved between the exposed and unexposed groups, to the 

extent that it is achieved within each stratum. The exposure effect estimate can 

then obtained by computing the marginal effect estimates in this weighted 

population using generalized linear models, with exposure term as the only 

independent variable. Since the weighting in this approach aims to make the 

confounder distribution among the unexposed akin to their distribution in the 

exposed, the marginal estimates computed in the weighted population 

consistently estimate the average treatment effect among the exposed (also 

referred to as the average treatment effect among the treated).3,16 SAS macros 

used for the propensity score stratification approaches can be downloaded from 

our website (http://www.drugepi.org/dope-downloads/).

2. Propensity score matching: We used three propensity score-matching 

approaches. The first two approaches matched unexposed women to each statin-

exposed woman using a nearest neighbor approach with a caliper of 0.01 in 

ratios of 1:1 and 1:5. For 1:5 matching, we employed a variable-ratio matching 

strategy, allowing for fewer than the target number of matches as long as at least 

one match is found, as this strategy has been recommended over fixed-ratio 

matching as the preferred method for achieving greater confounding control.17,18 

The third propensity score-matching approach consisted of a recently proposed 

full matching strategy, in which exposed and unexposed individuals were 

matched on the propensity score to form matched sets that contained at least one 

exposed and at least one unexposed individual using an optimal matching 

algorithm seeking to minimize the mean within matched-set differences in the 

propensity score between the exposed and unexposed individuals.19 Unlike 

traditional propensity score-matching approaches, full matching seeks to utilize 

information on the majority of the original patient population by including all 

matchable exposed and unexposed individuals in matched sets. Full propensity-

score matching was implemented using the R package MatchIt (R Version 

3.2.3).16 After matching, generalized linear models were used to derive average 

treatment effect estimates among the exposed for all three approaches. For 1:5 

and full matching, weights induced by matching were incorporated in the 

regression models. These weights were created in a manner similar to the 

stratification weights, where unexposed individuals were weighted according to 

the distribution of the exposed in each matched set. To account for the clustering 
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of subjects within matched sets, we used a robust variance estimator to compute 

95% confidence intervals (CI) for propensity score-matching methods.19

3. SMR weighting: We also used the SMR weighting approach based on the 

propensity score to derive exposure effect estimates. In this approach, the 

unexposed patients within our cohort received weights equal to the ratio of 

(PS/(1 - PS)), while the exposed patients received weights of 1.20 Marginal effect 

estimates and 95% CI for exposure effects were computed using weighted 

generalized linear models and robust variance estimators. Since this approach 

reweights the unexposed population to be similar to the exposed population with 

respect to confounder distribution, it also results in estimation of the average 

treatment effect among the exposed.21

We excluded the observations from the non-overlapping regions of the propensity-score 

distributions among exposed and unexposed populations before conducting propensity-score 

full-matching, stratification and SMR weighting. This step, also referred to as ‘trimming’, 

ensures exclusion of patients who will always or never receive therapy because of 

indications or contraindications and focuses the estimation of treatment effects in a 

population with clinical equipoise.22 The ability of propensity score-based approaches to 

allow researchers to measure treatment effects in a population with clinical equipoise 

through trimming is one of its great strengths over traditional multivariable outcome 

regression models.

Evaluation of performance

In the simulation study, we compared performance across 1000 simulations of each method 

on the following metrics: 1) confidence limit ratios (CLR),23 which were computed on the 

OR scale as the average of ratios of upper to lower 95% confidence limit for the exposure 

effect estimates, as indicators of precision; 2) relative (%) bias estimates as indicators for the 

extent of confounding control, which were calculated on the OR scale as ; 

where β̄ is the exponentiated average of the estimated co-efficients and βTrue is 

exponentiated true exposure co-efficient, 3) mean squared errors (MSE), which were 

computed on the log OR scale as the average of the squared differences between estimated 

and true exposure coefficients, as indicators for the overall accuracy.24

In the empirical study, baseline characteristics of the full cohort were reported by statin 

exposure status. The differences in the baseline characteristics between the exposed and the 

unexposed women were summarized using absolute standardized differences.25 For 1:5 and 

full PS-matching, all stratification approaches, and the SMR weighting approach, absolute 

standardized differences were computed after weighting the unexposed observations 

according to the weight calculations described above. We further computed risk differences 

(RDs) and RRs along with their 95% confidence interval for each of the method using 

weighted generalized linear models with identity and log links, respectively in the SAS 

GENMOD procedure (SAS version 9.3, SAS institute, Cary, NC). Since the truth is 

unknown in the empirical study, we did not compute other measures of performance (relative 

bias estimates and MSEs).
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Results

Empirical study

The full cohort comprised 886,996 pregnancies. Of these, 335 (0.04%) were classified as 

exposed to statins during the first trimester. Important baseline differences between statin 

exposed and unexposed women were observed in the full cohort (Table). Statin-exposed 

women were older, had a higher prevalence of all of the comorbid conditions considered, 

and higher use of antihypertensive medications, insulin, and oral diabetes medications. 1:1 

and 1:5 PS-matching, SMR weighting as well as propensity score stratification (exposed) 

approaches resulted in excellent covariate balance between exposed and unexposed groups, 

as demonstrated by low values of absolute standardized differences (Table 1). Notably, 

propensity score stratification (cohort) approaches demonstrated remaining imbalances in 

numerous important baseline characteristics, including diabetes and hypertension diagnosis 

as well as medication use for these conditions (absolute standardized difference>0.1). Full 

propensity-score matching also resulted in imbalances in a number of characteristics 

including race and age categories between exposed and unexposed groups.

In the unadjusted analysis, statin exposure was associated with increased risk of 

malformations compared with non-exposure (RD 0.048, 95% CI 0.019–0.078 and RR 2.4, 

95% CI 1.6–3.4) (Figure 1). After 1:1 matching on the propensity score, this large increase 

in risk associated with statin exposure was greatly diminished (RR: 1.2, 95% CI: 0.69–2.0). 

1:5 and full propensity-score matching resulted in similar attenuation of the RR estimates 

(RR 1.3, 95% CI 0.86–2.0 and RR 1.2, 95% CI 0.76–1.9, respectively). Trimming non-

overlapping regions of the propensity-score distribution resulted in exclusion of 315,908 

unexposed patients (35.8%) and none of the exposed patients. In the propensity score 

stratification (cohort) approach, the RR (95% CI) was estimated at 1.7 (1.2–2.4) with 10 

strata. This value was reduced to 1.4 (0.97–2.0) with 50 and 1.3 (0.91–1.8) with 100 strata. 

In the propensity score stratification (exposed) approach, the RR (95% CI) was estimated at 

1.2 (0.86–1.7) with 10 strata, 1.2 (0.85–1.7) with 50 strata, and 1.3 (0.88–1.8) with 100 

strata. The SMR weighting approach resulted in an RR (95% CI) of 1.1 (0.79–1.6). The 

patterns in RDs with each method mirrored the patterns observed in RRs (Figure 1).

Simulation study

For almost all of the simulation scenarios, relative bias was higher with the propensity score 

stratification (cohort) approach using 10 and 50 strata compared with the propensity score 

stratification (exposed) approach using the same number of strata (Figure 2). Relative bias 

with the cohort approach decreased substantially with increasing number of strata as well as 

increasing exposure prevalence or outcome risk. For all propensity score-matching 

approaches, exposed approaches, and the SMR weighting approach, relative bias was close 

to zero regardless of the exposure prevalence and outcome risk.

In terms of precision, propensity score-matching approaches resulted in greater confidence 

limit ratios (lower precision) compared with all the stratification approaches under all 

exposure–outcome combinations studied (Figure 3). The SMR weighting approach also 

resulted in lower precision compared with the stratification approaches. Propensity score 

Desai et al. Page 7

Epidemiology. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



stratification cohort and exposed approaches were equivalent in terms of their precision 

across all the scenarios tested.

Overall, all stratification approaches as well as the SMR weighting approach resulted in 

lower MSEs compared with propensity score-matching approaches at 0.5% and 1% 

exposure prevalences (Figure 4). At the lowest exposure prevalence and outcome risk 

combination (0.5% exposure-3.5% outcome), increasing the number of strata in the 

stratification approaches appeared to increase the MSEs. At 5% and 10% exposure 

prevalences, all approaches resulted in MSEs close to zero, indicating equivalent 

performance of these methods.

Discussion

At very low exposure prevalences (0.5% and 1%), propensity-score stratification approaches 

with strata formed based on the exposed group distribution resulted in greater confounding 

control as compared with stratification approaches based on the whole cohort. Propensity-

score stratification based on the exposed group also provided greater precision compared 

with propensity-score matching and SMR weighting approaches. Regardless of the ranking 

method used, creating finer strata by increasing the number of strata resulted in greater 

confounding control without any meaningful loss in precision. At higher exposure 

prevalences (5% and 10%), very little difference in the performance of these methods was 

noted.

Our finding of improved precision with propensity-score stratification approaches compared 

with propensity-score matching is in keeping with theoretical expectations and previous 

reports.3,4 In general, propensity-score stratification could be expected to produce estimates 

with greater precision compared with propensity-score matching approaches that discard 

unmatched unexposed or exposed patients from the analysis. The higher precision of 

stratification compared with the SMR weighting approach implies that conducting a 

weighted analysis based on strata-specific weighting of unexposed may be less prone to the 

influence of extreme weights than SMR weighting. Full matching also resulted in lower 

precision compared with stratification approaches despite using a nearly equivalent amount 

of information. However, the confidence intervals for full propensity-score matching were 

computed based on robust variance estimators, while confidence intervals for stratification 

were not. One could argue that propensity-score stratification approaches may also result in 

formation of clustered samples of individuals in each stratum similar to the clustering 

observed in propensity-score-matching approaches, and therefore stratification approaches 

should use robust variance estimators. However, since the number of strata in the 

stratification approach is typically much smaller than the number of matched-sets in full 

propensity-matching in practice, computation of robust variance estimators for estimates 

from stratification approaches is challenging.26

The gain in precision with propensity-score stratification approaches can be substantial in 

circumstances with low exposure prevalence. Exposure prevalence may be low in various 

settings. In our empirical example, the exposure was a treatment used despite 

contraindications. Other settings where exposure prevalence might be expected to be low are 
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safety evaluations of newly marketed drugs, and safety evaluations of infrequently used 

drugs in other vulnerable populations such as elderly or children. At higher exposure 

prevalences, the gain in precision offered by propensity-score stratification may be modest 

compared with propensity-score matching.

Our simulations demonstrate the possibility of substantial residual confounding in coarse 

stratification approaches with ranking based on the whole cohort (the propensity score 

stratification cohort approach). This problem can be remedied by finer stratification, but the 

approach of forming strata based on the exposed only (the propensity score stratification 

exposed approach) was highly effective. In essence, both these solutions address the problem 

of residual confounding by defining propensity-score strata narrowly so that they resemble 

propensity score-matched sets in which multiple exposed individuals are matched to 

multiple unexposed individuals based on their propensity score. Each narrow stratum 

contains approximately exchangeable exposed and unexposed individuals. Therefore, an 

analysis accounting for the narrow-stratum membership of each individual results in 

excellent confounding control. The problem of residual confounding with coarse 

stratification in the propensity score stratification cohort approach is especially severe when 

the exposure is infrequent, as stratum boundaries are almost entirely driven by the 

propensity score distribution in the unexposed. Consequently, the exposed patients cluster in 

just a few strata at the extreme, leaving the potential for substantial confounding within 

strata. Such clustering of exposed patients is avoided in the propensity score stratification 

exposed approach, because the strata are determined by the propensity score distribution in 

the exposed (See eTable 2a and 2b). In situations with low exposure prevalence, the 

propensity score stratification exposed approach is a method that is both efficient and 

effective in controlling confounding.

An alternative way to create fine strata would be to use fixed stratum boundaries defined on 

the probability scale. With 10 equally wide strata, this approach would place all the subjects 

with propensity score values between 0 and 0.1 into the first stratum, and similarly for the 

other nine strata. The results from this approach applied to our empirical example, using 100 

strata, were similar to stratification approaches that use distributions of the propensity scores 

either in the whole cohort or the exposed group (100 strata with the fixed-width approach 

[OR 1.34, 95% CI 0.91–1.97], compared with the stratification cohort approach [OR 1.33, 

95% CI 0.90–1.95] and stratification-exposed approach [OR 1.27 95% CI, 0.86–1.87]).

Our findings also underscore that it may be difficult to make general recommendations about 

the optimum number of strata that should be used in propensity-score stratification in 

situations with low exposure prevalence. Full propensity-score matching is another 

promising method that uses the majority of the individuals in the cohort and selects the 

number of strata automatically. However, this method produced disappointing results with 

low exposure prevalence. In our simulations with 0.5% and 1% exposure prevalence, full 

propensity-score matching resulted in higher MSEs compared with a majority of other 

approaches. In a previous simulation study, Austin and Stuart have also reported high MSEs 

with full propensity-score matching when not using any caliper restrictions compared with 

nearest-neighbor propensity-score-matching.19 Introducing a caliper restriction to full 

propensity-score matching may lead to improved performance.
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Traditionally, either Mantel-Haenszel pooling or computing a weighted average of subclass 

specific estimates have been used to derive adjusted exposure effects after propensity-score 

stratification. We used weighted regression models after stratification, over these 

traditionally used approaches, because this approach does not rely on the homogeneity 

assumption (as opposed to Mantel-Haenszel pooling) and provides stable estimates under 

circumstances of a large number of strata or sparsely populated strata (as opposed to the 

weighted average method). In a separate set of simulations, we have found the performance 

of the Mantel-Haenszel pooling approach to be robust with propensity-score stratification.27 

If researchers can reasonably assume homogeneity of the exposure effect across strata, 

Mantel-Haenszel pooling is a good, simple alternative to the weighting approach used in this 

study. The precision of the summary exposure effect estimate using the Mantel-Haenszel 

estimator is optimal as the strata are pooled using inverse-variance weighting.

In conclusion, our findings indicate that performance of propensity score-based fine 

stratification in confounding control is equivalent to propensity-score matching at higher 

exposure prevalence and better than propensity-score matching at low exposure prevalence. 

Therefore, propensity score-based fine stratification should be considered as a strategy for 

confounding control in routine pharmacoepidemiology practice. Creation of strata should be 

based on the propensity-score distribution of the exposed group when evaluating outcomes 

of an infrequent exposure.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Measures of association between congenital malformation and first trimester statin exposure 

versus non-exposure using different analytic approaches, Medicaid Data 2000–2007

Abbreviations: CI- Confidence interval, LCL- Lower confidence limit, PS- Propensity 

scores, PSSExposed- Propensity score stratification, strata created by ranking only the 

exposed group, PSSCohort- Propensity score stratification, strata created by ranking the entire 

cohort, RD- Risk difference, RR- Risk ratio, SMRW- Standardized mortality ratio 

weighting, UCL- Upper confidence limit.
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Figure 2. 
Relative bias for different analytic approaches over 1,000 simulations

Abbreviations: PS- Propensity scores, PSSExposed- Propensity score stratification, strata 

created by ranking only the exposed group, PSSCohort- Propensity score stratification, strata 

created by ranking the entire cohort, SMRW- Standardized mortality ratio weighting

* The dashed line indicates unbiased estimates (% bias of 0)
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Figure 3. 
Confidence limit ratios for different analytic approaches over 1,000 simulations

Abbreviations: CLR- Confidence limit ratio, PS- Propensity scores, PSSExposed- Propensity 

score stratification, strata created by ranking only the exposed group, PSSCohort- Propensity 

score stratification, strata created by ranking the entire cohort, SMRW- Standardized 

mortality ratio weighting

* The dotted line indicates precision (as measured by the CLR) of the crude estimate at 3.5% 

outcome risk; the dot-dashed line indicates precision (as measured by the CLR) of the crude 

estimate at 10% outcome risk.
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Figure 4. 
Mean squared errors for different analytic approaches over 1,000 simulations

Abbreviations: MSE- Mean squared error, PS- Propensity scores, PSSExposed- Propensity 

score stratification, strata created by ranking only the exposed group, PSSCohort- Propensity 

score stratification, strata created by ranking the entire cohort, SMRW- Standardized 

mortality ratio weighting
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