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Abstract

Stress is commonly regarded as an important trigger for relapse and a significant factor that 

promotes increased motivation to drink in some individuals. However, the relationship between 

stress and alcohol is complex, likely changing in form during the transition from early moderated 

alcohol use to more heavy uncontrolled alcohol intake. A growing body of evidence indicates that 

prolonged excessive alcohol consumption serves as a potent stressor, producing persistent 

dysregulation of brain reward and stress systems beyond normal homeostatic limits. This 

progressive dysfunctional (allostatic) state is characterized by changes in neuroendocrine and brain 

stress pathways that underlie expression of withdrawal symptoms that reflect a negative affective 

state (dysphoria, anxiety), as well as increased motivation to self-administer alcohol. This review 

highlights literature supportive of this theoretical framework for alcohol addiction. In particular, 

evidence for stress-related neural, physiological, and behavioral changes associated with chronic 

alcohol exposure and withdrawal experience is presented. Additionally, this review focuses on the 

effects of chronic alcohol-induced changes in several pro-stress neuropeptides (corticotropin-

releasing factor, dynorphin) and anti-stress neuropeptide systems (nocicepton, neuropeptide Y, 

oxytocin) in contributing to the stress, negative emotional, and motivational consequences of 

chronic alcohol exposure. Studies involving use of animal models have significantly increased our 

understanding of the dynamic stress-related physiological mechanisms and psychological 

underpinnings of alcohol addiction. This, in turn, is crucial for developing new and more effective 

therapeutics for treating excessive, harmful drinking, particularly stress-enhanced alcohol 

consumption.
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1. Introduction

It is generally acknowledged that stress is an important factor in alcohol abuse and alcohol 

use disorders. However, the influence of stress on alcohol drinking is complex and not fully 

understood. On the one hand, alcohol has anti-anxiety properties, serving as an effective 

anxiety-reducing (anxiolytic) agent. Hence, motivation for drinking may be driven, at least 

in part, by its ability to alleviate stress, including stress associated with periods of abstinence 

following bouts of heavy drinking (Cappell and Greeley, 1987; Sayette, 1999). This has been 

the cornerstone of the tension-reduction hypothesis of alcoholism (Conger, 1956). From a 

behavioral perspective, this defines how alcohol can serve as a negative reinforcer (i.e., 

alcohol consumption results in the removal (alleviation) of an aversive or unpleasant 

(anxiety) state).

At the same time, it is firmly established that alcohol, itself, is a stressor. Acute alcohol 

exposure activates the hypothalamic-pituitary-adrenocortical (HPA) axis, a major component 

of the neuroendocrine stress response (Smith and Vale, 2006). This effect has been shown to 

be mediated through direct stimulation of neurons in the paraventricular nucleus (PVN) of 

the hypothalamus, leading to the release of corticotropin-releasing factor (CRF) (and 

vasopressin) that induces secretion of adrenocorticotrophic hormone (ACTH) from the 

pituitary, which subsequently acts at the adrenal gland to release glucocorticoids into 

circulation (Lee et al., 2004; Rivier, 2014). It has been suggested that stress may increase 

motivation to imbibe through synergistic effects on reward circuitry in brain (e.g., 

mesolimbic dopamine transmission). That is, the activating effects of stress and alcohol on 

dopamine neurotransmission and on the HPA axis (elevated glucocorticoids) may combine 

to enhance the rewarding effects of alcohol, thereby facilitating greater propensity to drink 

(Stephens and Wand, 2012; Uhart and Wand, 2009).

Thus, the interaction between stress and alcohol is very complex. Alcohol can alleviate 

stress while at the same time provoke a stress response. The dynamic interplay between 

numerous biological and environmental variables along with experiential factors plays a 

critical role in defining subjective aspects of stress (i.e., perception and appraisal of a 

stressful event) as well as how response to stress impacts decisions about alcohol drinking 

and the manner in which alcohol consumption alters stress responsiveness. Recently, greater 

attention has focused on examining how a history of chronic alcohol exposure and 

withdrawal influences the capacity of stress to modulate alcohol consumption. Indeed, stress 

contributes to dynamic changes underlying transition to alcohol addiction and influences 

drinking at all stages of the addiction process.

Prolonged excessive alcohol consumption constitutes a potent stressor to the organism, 

setting in motion a host of neuroadaptive changes within brain reward and stress systems 

(Becker, 2012; Hansson et al., 2008; Koob, 2013; Koob and Le Moal, 2008; Vengeliene et 

al., 2008). Stress associated with chronic alcohol exposure and withdrawal experience 

continually challenges the organism through progressive dysregulation of brain reward and 

stress systems beyond normal homeostatic limits (Koob, 2003). These neuroadaptive 

changes are postulated to impact neural and physiological systems integral to the 

motivational effects of alcohol and, consequently, contribute to escalation of drinking and 
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maintenance of sustained excessive alcohol consumption associated with dependence 

(Becker, 2012, 2013; Heilig et al., 2010; Koob, 2013). In this vein, alcohol dependence may 

be viewed as a persistent dysfunctional (allostatic) state, with the organism rendered ill-

equipped to exert appropriate behavioral control over alcohol consumption, as well as 

appropriately respond to other (additional) stressful events that may provoke return to 

excessive drinking.

This article reviews literature indicating the complex reciprocal relationship between stress 

and alcohol, with particular emphasis on animal models demonstrating how stress associated 

with chronic alcohol exposure and withdrawal experience serves as a continual 

physiological, psychological, and behavioral challenge to the organism. Neuroadaptive (and 

maladaptive) mechanisms underlying a negative emotional state, altered stress 

responsiveness, and increased motivation to seek and consume alcohol are key components 

of the addiction process. The article highlights studies showing that prolonged exposure to 

alcohol produces perturbations in neuroendocrine and brain stress systems that interface 

with and influence motivational and reward circuitry in the brain, ultimately rendering 

subjects more vulnerable to relapse and driving excessive levels of alcohol consumption.

2. Stress Associated with Chronic Alcohol Exposure and Withdrawal

As previously noted, alcohol activates the HPA axis, with the magnitude and response 

profile influenced by a host of variables (Lu and Richardson, 2014; Rivier, 2000; Wand, 

2000). These include a number of alcohol-related factors (e.g., history of use, level and 

pattern of drinking, timing of accessibility of alcohol in relation to stress experience) as well 

as stress-related factors (e.g., type, chronicity, intermittency, predictability, controllability) 

that intersect with a number of biological variables (e.g., genetics, age, sex). As reported in 

clinical studies, experimental studies have documented profound disturbances in HPA axis 

function following chronic alcohol exposure and withdrawal. For example, studies in rodents 

have shown that chronic alcohol consumption results in a general elevation in blood 

corticosteroid levels, with a typical flattening of normal circadian fluctuations (Kakihana 

and Moore, 1976; Keith and Crabbe, 1992; Rasmussen et al., 2000; Tabakoff et al., 1978). 

At the same time, there is a dampened HPA response to subsequent CRF or stress challenge 

(Lee et al., 2000; Rivier et al., 1990). Additionally, the ability of alcohol to activate the HPA 

axis is blunted following chronic exposure to the drug (Richardson et al., 2008a), an effect 

thought to contribute to perpetuation of heavy drinking (Lu and Richardson, 2014).

Periods of abstinence (i.e., withdrawal) are characterized by elevated glucocorticoid levels 

that reflect increased HPA axis activity. This, along with increased activity of the 

sympathetic division of the autonomic nervous system, mediate an array of physiological 

symptoms of acute alcohol withdrawal (e.g., tachycardia, elevated blood pressure, 

diaphoresis, body temperature dysregulation) (Becker, 2000; Heilig et al., 2010). While 

heightened HPA axis activation associated with withdrawal usually resolves within a few 

days (Kakihana, 1979; Tabakoff et al., 1978), blunted HPA axis responsiveness appears to 

persist for a protracted period of time (Rasmussen et al., 2000; Zorrilla et al., 2001). In some 

cases, this may be accompanied by reduced basal levels of circulating corticosteroids 

(Rasmussen et al., 2000; Richardson et al., 2008a; Zorrilla et al., 2001). These perturbations 
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in HPA axis function align with findings reported in abstinent human alcoholics (Adinoff et 

al., 1990; Adinoff et al., 1991; Costa et al., 1996; Lovallo et al., 2000; Willenbring et al., 

1984). Dysregulation of HPA axis function that extends into protracted phases of withdrawal 

is thought to contribute to dysphoria and negative affect associated with alcohol dependence 

(Heilig et al., 2010; Koob and Kreek, 2007; Koob, 2013). Further, persistent changes in HPA 

neuroendocrine function resulting from chronic alcohol exposure and withdrawal may 

activate brain stress systems outside the HPA axis (Koob, 2013; Vendruscolo et al., 2012).

Indeed, it is well established that chronic alcohol alters CRF activity independent from the 

HPA axis. CRF is a 41 amino acid neuropeptide that is widely distributed throughout 

mammalian brain. As noted above, CRF-containing neurons are found in high 

concentrations in the PVN of the hypothalamus where they play a primary role in regulating 

HPA axis activity, which is critical for orchestrating behavioral and physiological responses 

to stress. CRF-containing neurons are also found outside the neuroendocrine (HPA) axis. 

The extra-hypothalamic distribution of CRF includes an extensive network of interconnected 

neural structures (e.g., central amygdala (CeA), bed nucleus of the stria terminalis (BNST), 

prefrontal cortex) that are intimately associated with brain reward and stress pathways. The 

actions of CRF (and related peptides urocortin I, II, and III) are modulated by CRF-binding 

protein and mediated through interaction with two excitatory G-protein-coupled receptor 

subtypes (CRF1 and CRF2) (Bale and Vale, 2004). CRF1 and CRF2 receptors are distributed 

in overlapping yet distinct patterns within these brain reward and stress circuits. This 

anatomical distribution of CRF and its associated binding sites is congruent with the 

important role of both hypothalamic and extra-hypothalamic CRF in processing and 

regulating central, autonomic, and emotional/behavioral responses to stress as well as 

rewarding stimuli/events including alcohol and other drugs of abuse (Bruijnzeel and Gold, 

2005; Ryabinin et al., 2002).

A large body of evidence has emerged indicating that CRF plays a critical role in alcohol 

(and other drug) addiction (Heilig and Koob, 2007; Koob and Zorrilla, 2010; Lowery and 

Thiele, 2010; Zorrilla et al., 2014). Aside from producing long-lasting dysregulation of HPA 

function, chronic alcohol exposure produces time-dependent changes in extracellular levels 

of extra-hypothalamic CRF during withdrawal (Merlo Pich et al., 1995; Olive et al., 2002; 

Zorrilla et al., 2001). Changes in CRF activity resulting from chronic alcohol exposure 

(increased CRF release along with an up-regulation in CRF1 receptors) within the extended 

amygdala network is thought be key to the emergence of withdrawal symptoms reflective of 

a negative emotional state associated with alcohol dependence. For example, increased 

behavioral measures of anxiety associated with alcohol withdrawal is reduced by systemic 

(Breese et al., 2005; Sommer et al., 2008) and central (Baldwin et al., 1991; Rassnick et al., 

1993; Valdez et al., 2003) administration of CRF receptor antagonists. This effect appears to 

be mediated by CRF1 receptors (Overstreet et al., 2004), although a role for CRF2 receptors 

cannot be ruled out (Valdez et al., 2004). Together, these findings indicate that chronic 

alcohol exposure and withdrawal experience can be viewed as a potent stressor that disrupts 

the functional integrity of the HPA axis while at the same time recruiting and sensitizing 

extra-hypothalamic CRF systems. The resultant allostatic state is characterized by 

progressive dysregulation of neuroendocrine and brain stress systems along with 

perturbations in brain reward pathways that contribute to dysphoric and negative affect 
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associated with alcohol dependence. Implications of these changes regarding motivation for 

alcohol self-administration as well as relapse vulnerability are discussed below.

3. Link Between Chronic Alcohol, Stress Response, and Motivation to Drink

The circumstances and manner in which stress influences alcohol drinking behavior has 

been extensively studied in humans and animal models (Brady and Sonne, 1999; Pohorecky, 

1990, 1991; Sillaber and Henniger, 2004; Sinha, 2001, 2008). Over several decades, a wide 

array of animal models and experimental procedures have been employed in addressing this 

important issue. Unfortunately, this large body of literature has yielded equivocal results, 

most likely due to differences in a number of variables including genetic and other 

biological factors, environmental conditions, and a host of experimental procedural 

differences (Becker et al., 2011; Noori et al., 2014; Spanagel et al., 2014).

Recently, greater attention has focused on how stress associated with chronic alcohol 

exposure and withdrawal experience influences motivation to self-administer alcohol. 

Studies in mice and rats have demonstrated dependence-related excessive levels of alcohol 

consumption under a number of conditions (Becker, 2013; Becker and Ron, 2014; 

Vendruscolo and Roberts, 2014). These models not only demonstrate escalation of drinking, 

but perturbations in neuroendocrine and brain stress systems induced by chronic alcohol 

exposure and withdrawal have been linked to enhanced behavioral responsiveness to stress. 

For example, rats exhibit increased stress responsiveness following withdrawal from chronic 

alcohol exposure, as measured by several experimental procedures that provoke behavioral 

measures of stress/anxiety, such as reduced social interaction in a novel environment, 

reduced exploration in threatening circumstances (e.g., open, brightly illuminated spaces), 

and greater electroshock-induced suppression of ongoing behavior (Breese et al., 2005; 

Gehlert et al., 2007; Sommer et al., 2008). In a series of studies involving a mouse model of 

alcohol dependence and relapse drinking, repeated brief exposure to forced swim stress prior 

to alcohol drinking sessions significantly increased drinking in alcohol dependent mice, but 

did not alter intake in nondependent mice (Lopez et al., 2016). Interesting, this stress 

procedure did not further increase drinking in two other drinking models that typically 

engender high levels of alcohol intake – the drinking-in-the-dark (DID) model and the 

intermittent access (‘every-other-day’) model (Anderson et al., 2016a). These results suggest 

that stress may interact with chronic alcohol exposure and withdrawal in a unique manner to 

facilitate and further augment escalated drinking in dependent subjects (Anderson et al., 

2016b). Further, behavioral sensitization to stress may be critical in rendering subjects more 

vulnerable to relapse. Indeed, experimental evidence suggests that stress can provoke 

relapse-like behavior more easily in subjects with a history of dependence (Liu and Weiss, 

2002; Sommer et al., 2008).
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4. Mechanisms Underlying Chronic Alcohol, Stress, and Drinking 

Relationship

4.1 Corticotropin-Releasing Factor (CRF)

Numerous studies involving rodent models have shown that such changes in brain CRF 

activity have important ramifications regarding alcohol self-administration behavior. For 

example, CRF infusion into the ventricles was shown to reduce voluntary alcohol intake in 

rats (Bell et al., 1998; Thorsell et al., 2005b). Likewise, transgenic CRF over-expressing 

mice exhibited reduced voluntary alcohol intake compared to non-transgenic controls 

(Palmer et al., 2004), while CRF deficient mice showed the opposite effect – increased 

alcohol drinking (Olive et al., 2003). Differences in brain CRF content have been observed 

in alcohol-naïve rats and mice known to differ in voluntary alcohol intake (Ehlers et al., 

1992; George et al., 1990), although a recent report indicated no difference in brain regional 

expression of CRF between C57BL/6J (high alcohol drinking) and DBA/2J (low alcohol 

drinking) mice (Hayes et al., 2005). Additional studies in humans, monkeys, and rats suggest 

an association between genetic variants (single nucleotide polymorphisms) of the CRF and 

CRF1 receptor genes and alcohol drinking (Barr et al., 2009; Barr et al., 2008; Blomeyer et 

al., 2008; Hansson et al., 2006; Schmid et al., 2010). Collectively, these findings indicate 

that genetic variations in the Crf and the CrfR1 genes interact with stressful life events to 

influence age of drinking onset, progression of heavy drinking in adulthood, and general 

vulnerbaility to alcohol dependence.

Given its pivotal role in mediating neuroendocrine and brain (outside the HPA axis) 

responses to stress, it is not surprising that a large number of studies have examined the 

effect of chronic alcohol on CRF activity in relation to alcohol drinking. The non-selective 

peptide CRF antagonist (D-Phe-CRF12-41) reduced excessive drinking in dependent animals 

when administered into the brain ventricles (Finn et al., 2007; Valdez et al., 2002) or into the 

CeA (Funk et al., 2006). Systemic administration of CRF1 receptor-selective antagonists 

reduced up-regulated drinking in dependent mice (Chu et al., 2007) and rats (Funk et al., 

2007; Gehlert et al., 2007; Gilpin et al., 2008b; Richardson et al., 2008b; Roberto et al., 

2010; Sabino et al., 2006; Sommer et al., 2008).

Studies using operant conditioning procedures also have demonstrated an important role for 

CRF in mediating the ability of stress to trigger relapse-like behavior. For example, CRF 

antagonists have been shown to block stress-induced reinstatement of alcohol seeking 

behavior (Gehlert et al., 2007; Le et al., 2000; Liu and Weiss, 2002; Marinelli et al., 2007). 

This effect appears to be mediated by extra-hypothalamic CRF activity, since adrenalectomy 

(with or without corticosterone supplementation) did not affect reinstatement of alcohol 

responding induced by foot-shock stress (Le et al., 2000). In fact, direct infusion of a CRF 

antagonist into the median raphe nucleus blocked stress-induced alcohol seeking behavior 

(Funk et al., 2003; Le et al., 2002; Le et al., 2013). CRF1 receptor antagonists injected into 

the ventral tegmental area reduced alcohol intake in high-drinking models, including stress-

enhanced drinking (Hwa et al., 2016; Rinker et al., 2016). Overall, while a role for CRF2 

receptors cannot be ruled out (Funk and Koob, 2007; Valdez et al., 2004), the large 

preponderance of evidence suggests that CRF1 receptors play an important role in regulating 
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alcohol consumption, especially excessive levels of drinking associated with dependence. 

Taken together, there is a large body of evidence indicating that chronic alcohol-induced 

changes in CRF function within brain/neuroendocrine systems may directly, and/or through 

mediating withdrawal-related anxiety and stress/dysphoria, promote excessive levels of 

drinking as well as influence relapse vulnerability (Heilig and Koob, 2007; Koob and 

Zorrilla, 2010; Lowery and Thiele, 2010; Zorrilla et al., 2014).

4.2 Dynorphin

Because both stress and chronic alcohol engage the DYN/KOR system, the role of this 

neuropeptide system in alcohol dependence-related stress/dysphoria and elevated drinking 

has gained increasing attention (Kissler et al., 2014; Wee and Koob, 2010). Dynorphins 

(DYN) are peptides derived from the precursor prodynorphin (Pdyn) that preferentially bind 

to kappa opioid receptors (KOR), producing physiological and behavioral effects via 

inhibitory G-protein (Gi) coupling and other signaling cascades (Bruchas and Chavkin, 

2010; Bruchas et al., 2010; Crowley and Kash, 2015; Wee and Koob, 2010). KOR activation 

has been shown to produce aversive/dysphoric effects as indicated by measures of 

conditioned avoidance, anxiety-like, and depression-like behavior (Knoll and Carlezon, 

2010; Van't Veer and Carlezon, 2013). Stress exposure activates the DYN/KOR system, 

eliciting dysphoria-like responses, increasing anxietylike behaviors (Land et al., 2008) and 

resulting in elevated DYN immunoreactivity in brain regions that are integral to reward and 

stress circuitries involved in alcohol/drug addiction (Shirayama et al., 2004). Further, 

pharmacological manipulation of KOR activity alters behavioral responses to stress and 

motivational effects of alcohol. For example, KOR agonists have been shown to produce a 

state of stress/dysphoria, mimicking effects of stress on alcohol drinking and conditioned 

reward (Anderson et al., 2016b; Sperling et al., 2010). Conversely, KOR antagonists 

attenuate stress-induced potentiation of conditioned alcohol reward (Sperling et al., 2010), 

yohimbine-induced reinstatement of alcohol seeking behavior (Funk et al., 2014), 

withdrawal-related negative affect and anxiety (Berger et al., 2013; Gillett et al., 2013; Rose 

et al., 2015; Schank et al., 2012; Valdez and Harshberger, 2012), and enhanced alcohol self-

administration after exposure to a cue associated with a KOR agonist (Berger et al., 2013).

Structures within the extended amygdala circuitry that are intimately involved in mediating 

negative emotional and motivational states associated with stress and chronic alcohol 

exposure/withdrawal (e.g., CeA, BNST) are rich in DYN and KORs (Mansour et al., 1994; 

Marchant et al., 2007; Poulin et al., 2009). There is evidence that stress and chronic alcohol 

exposure increase DYN/KOR function in the CeA and BNST (Chung et al., 2014; Kissler et 

al., 2014). A number of studies have shown that this upregulation in DYN/KOR signaling 

contributes to escalated alcohol intake associated with dependence. For example, systemic 

administration of the KOR antagonist nor-binaltorphimine reduced escalated drinking in 

dependent rats while not altering more modest intake in nondependent rats (Kissler et al., 

2014; Walker and Koob, 2008; Walker et al., 2011). Similar results were reported in mice 

(Rose et al., 2015). Pharmacological blockade of KORs by direct injection of a KOR 

antagonist into the CeA (Kissler et al., 2014) or into the nucleus accumbens (Nealey et al., 

2011) also was shown to attenuate elevated alcohol consumption in dependent rats. 

Additionally, systemic administration of the novel short-acting KOR antagonist, 
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LY2444296, abolished the ability of stress (forced swim) to enhance drinking in dependent 

mice (Anderson et al., 2016b).

There is also evidence for interaction between the DYN/KOR system and CRF within 

extended amygdala circuitry that have implications for stress and chronic alcohol 

consequences. For example, these neuropeptides have been shown to be involved in chronic 

alcohol-induced alterations in synaptic plasticity in the CeA (Kang-Park et al., 2013, 2015; 

Roberto et al., 2010). Specifically, KORs were shown to modulate GABAergic transmission 

in a CRF1 receptor-dependent manner (Kang-Park et al., 2015). Interestingly, CRF infusion 

into the CeA was reported to increase DYN release in a CRF2 receptor-dependent manner 

(Lam and Gianoulakis, 2011). The aversive/anxiety-like behavioral effects of central CRF 

administration are attenuated by pretreatment with a KOR antagonist (Bruchas and Chavkin, 

2010; Bruchas et al., 2010; Land et al., 2008). Conversely, a CRF1 receptor antagonist 

blocked KOR agonist-induced reinstatement of alcohol seeking (Funk et al., 2014). Thus, 

while the precise nature of DYN/KOR-CRF interactions is not completely understood, 

behavioral and physiological evidence suggests that an interaction between these two stress-

related neuropeptide systems within extended amygdala circuitry plays a significant role in 

mediating stress and motivational effects of chronic alcohol exposure.

4.3 Other Stress-Related Neuropeptides

Aside from CRF and DYN, several other neuropeptide systems in brain are involved in stress 

response as well as motivational effects of alcohol (Ciccocioppo et al., 2009; Martin-Fardon 

et al., 2010; Roberto et al., 2012). In some cases, these neuropeptide systems serve to 

dampen stress effects associated with chronic alcohol exposure, thereby modulating alcohol 

consumption in the context of dependence. Here we review three anti-stress neuropeptide 

systems (nociceptin, neuropeptide Y, and oxytocin) that are influenced by chronic alcohol 

exposure and contribute to withdrawal-related behavioral measures of dysphoria as well as 

motivation to self-administer alcohol. Of note, recent studies have pointed to several other 

neuropeptide systems that contribute to emotional and behavioral sequela that reflect the 

intersection of stress and chronic alcohol exposure/withdrawal, including orexin/hypocretin, 

neurokinins, and neuropeptide S (Schank et al., 2012).

4.3.1 Nociceptin—Nociceptin/orphanin FQ is a 17-amino acid peptide classified as being 

a member of the opioid family, but binds with high affinity to the nociception receptor 

(NOP; also referred to as the opioid receptor-like 1 - ORL1) rather than mu, delta, or kappa 

opioid receptors (Meunier et al., 1995; Reinscheid et al., 1995). Dense expression of the 

peptide and its receptor within cortical and limbic regions suggest its role in emotional and 

motivational behaviors, particularly those related to stress, chronic alcohol exposure/

withdrawal, and drinking. Increased expression of nociception and NOP mRNA in the CeA 

of rats selectively bred for high alcohol preference is suggested to relate to the high-anxiety 

and stress responsiveness in these animals (Ciccocioppo et al., 2007; Economidou et al., 

2008). Pharmacological studies have demonstrated a role for the nociceptin/NOP system in 

regulation of alcohol self-administration, as well as withdrawal-related anxiety and drinking. 

For example, infusion of nociceptin into brain ventricles reduced alcohol conditioned reward 

as well as relapse-like behavior provoked by either stress or alcohol-related cues 
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(Ciccocioppo et al., 2004; Martin-Fardon et al., 2000). Likewise, systemic administration of 

brain-penetrant nociception analogues reduced alcohol self-administration (Aziz et al., 2016; 

Ciccocioppo et al., 2014; Kuzmin et al., 2007). Direct injection of nociceptin into the CeA 

also was reported to reduce alcohol consumption (Economidou et al., 2008). This effect may 

be mediated by nociception interacting with alcohol-induced modulation of GABA and 

glutamate transmission in the CeA (Kallupi et al., 2014a; Kallupi et al., 2014b). 

Additionally, chronic alcohol exposure appears to enhance sensitivity to NOP activation, as 

nociceptin (or its analogues) were shown to be more effective as anxiolytics and reducing 

elevated drinking associated with dependence (Aujla et al., 2013; Aziz et al., 2016; de 

Guglielmo et al., 2015; Economidou et al., 2011; Martin-Fardon et al., 2010).

Contrary to these findings, recent reports suggest that blocking, rather than activating, NOP 

receptors may be effective in reducing alcohol self-administration. Genetic deletion of the 

nociception receptor in rats resulted in lower alcohol consumption compared to wildtype 

controls, while saccharin intake was unaltered (Kallupi et al., 2017). Further, systemic 

administration of NOP antagonists reduced alcohol self-administration in wildtype rats but 

was without effect in NOP-deficient rats (Kallupi et al., 2017). These results align with 

another report showing that oral administration of a NOP antagonist reduced alcohol 

consumption, motivation to work for alcohol, and stress (yohimbine)-induced reinstatement 

of alcohol-seeking behavior in rats (Rorick-Kehn et al., 2016). These effects produced by the 

nociceptin receptor antagonist were attributed to the drug blocking alcohol-induced 

dopamine release in the nucleus accumbens. Several explanations have been postulated to 

address these apparent contradictory results (NOP agonists and antagonists reduce alcohol 

consumption), including receptor translocation, ligand-biased receptor signaling, and brain 

regional differences in receptor variants (Rorick-Kehn et al., 2016). Future studies will need 

to resolve this issue as well as address the therapeutic potential of this target for treating 

alcohol use disorders and stress-related drinking in particular.

4.3.2 Neuropeptide Y—Neuropeptide Y (NPY) is known to mediate anti-stress effects, 

typically opposing behavioral actions of CRF (Sajdyk et al., 2006). NPY, a 36-amino acid 

peptide, produces these effects primarily through actions at Y1 and Y2 receptors in brain. 

NPY exerts anxiolytic effects in a number of behavioral tasks, an effect thought to be 

mediated by interaction with Y1 receptors in the amygdala (Heilig et al., 1993; Thorsell, 

2008). There is evidence indicating a relationship between NPY activity (primarily in the 

CeA) and alcohol consumption. For example, rats selectively bred for high alcohol 

preference exhibit low NPY mRNA and peptide levels in the CeA, an effect that was 

reversed when the rats were given the opportunity to consume alcohol (Pandey et al., 2005). 

Viral mediated overexpression of NPY in the amygdala was shown to reduce alcohol 

drinking in rats identified as being highly anxious (Primeaux et al., 2006) or following 

periods of forced abstinence (Thorsell et al., 2007). Also, infusion of NPY in brain 

ventricles (icv.) reduced stress-induced relapse-like behavior in rats (Cippitelli et al., 2010).

Pharmacological studies also support a role for NPY in the regulation of alcohol 

consumption, although there is some contradictory evidence regarding the role of Y1 and Y2 

receptor subtypes. For example, systemic (ip.) and central (icv.) administration of a Y1R 

antagonist reduced alcohol intake in C57BL/6J mice (Sparta et al., 2004). In contrast, 
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another study showed that central injection (icv.) of a Y1R agonist reduced binge-like 

alcohol intake in mice in a dose-related manner (Sparrow et al., 2012). Further, a Y1R 

antagonist (icv.) increased alcohol consumption (Sparrow et al., 2012), supporting an earlier 

report indicating that Y1R knockout mice exhibited increased alcohol intake (Thiele et al., 

2002). A Y2 antagonist given directly into brain (icv.) reduced ethanol intake in rats 

(Thorsell et al., 2002), and sensitivity to this effect was greater is dependent rats (Rimondini 

et al., 2005). A similar finding was reported in mice (Sparrow et al., 2012), corroborating 

results from a study showing reduced ethanol intake in Y2R knockout mice (Thiele et al., 

2002). However, in another study systemic (sc.) or central (icv.) administration of a brain-

penetrant Y2 antagonist did not alter operant responding for alcohol or stress (foot-shock)-

induced reinstatement of alcohol responding in rats, although the drug was effective 

reducing withdrawal-related anxiety (Cippitelli et al., 2011).

Studies have shown that chronic alcohol exposure alters NPY function and this may 

contribute to increased stress/anxiety associated with dependence as well as increased 

propensity to drink. Early studies indicated that NPY administration reduced elevated 

drinking in dependent animals (Thorsell et al., 2005a, c). More recent work has focused on 

NPY actions in the CeA in the context of dependence (Gilpin et al., 2015). For example, 

increased anxiety during withdrawal from chronic alcohol exposure was associated with 

decreased NPY expression in CeA (Roy and Pandey, 2002). Further, direct injection of NPY 

into the CeA reduced excessive alcohol consumption in dependent rats (Gilpin et al., 2008a), 

an effect possibly related to modulation of GABA transmission in the CeA (Gilpin et al., 

2011). Recent work also points to interactions between NPY and CRF within the BNST as a 

site important for mediating stress influences on alcohol drinking (Pleil et al., 2015).

4.3.3 Oxytocin—A growing body of literature suggests that oxytocin plays a significsant 

role in alcohol (and othe drug) addiction, as well as neuropsychiatric disorders that involve 

deficits in social behaviors (Baskerville and Douglas, 2010; Lee and Weerts, 2016). 

Oxytocin, a nonapeptide, is an endogenous neurohormone synthesized in the paraventricular 

and supraoptic nuclei of the hypothalamus and released by the posterior pituitary into 

peripheral circulation. In addition, oxytocin is released by neurons in the hypothalamus that 

project to numerous extra-hypothalamic regions in the brain (e.g., cortical, limbic, basal 

ganglia structures) where it mediates an array of behavioral effects via interaction with G(q)-

coupled oxytocin receptors (Lee et al., 2016). Aside from its known hormonal role in 

parturition and maternal behaviors, oxytocin also regulates a number of behaviors that 

involve social interactions (e.g., pair-bonding, social reward processing, aggression) and 

nonsocial behaviors, including anxiety and stress responses (Baskerville and Douglas, 2010; 

Bowen et al., 2011; Neumann and Landgraf, 2012).

Preclinical evidence indicates that oxytocin influences a number of behavioral and 

physiological effects of alcohol, including tolerance, withdrawal, and motivational effects 

(Lee and Weerts, 2016). For example, systemic administration of oxytocin reduces alcohol 

preference and intake in a variety of drinking models in rats (Bowen et al., 2011; 

MacFadyen et al., 2016; McGregor and Bowen, 2012) and mice (King et al., 2017; Peters et 

al., 2013). Direct injection of oxytocin into brain ventricles reduced alcohol consumption 

and alcohol-induced dopamine efflux in the nucleus accumbens in rats (Peters et al., 2016). 
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Few studies have examined the role of oxytocin receptors in mediating the neuropeptide's 

effects on motivational actions of alcohol. Recent studies involving viral-mediated 

overexpression of oxytocin receptors in the nucleus accumbens core have implicated a role 

for these receptors in alcohol drinking and conditioned reward (Bahi, 2015; Bahi et al., 

2016). However, it is noteworthy that oxytocin was shown to block alcohol-induced ataxic 

and sedative/hypnotic effects via an apparent direct interaction with delta-subunit containing 

GABA-A receptors (Bowen et al., 2015). Thus, there remains some abiguity as to the role of 

oxytocin receptors in mediating the neuropeptide's effects on physiological effects of alcohol 

and, in particular, alcohol-related reward and self-administration behavior.

Oxytocin is known to exert stress-bufferring effects, and this may be of relevance to its role 

in influencing stress-alcohol interactions. For example, oxytocin decreases stress-induced 

HPA axis activation and behavioral (anxiety) responses (Neumann et al., 2000; Windle et al., 

1997). Systemic oxytocin treatment was also shown to temper stress-related increases in 

alcohol consumption (Peters et al., 2013). Finally, in a recent clinical study, Pedersen and 

colleagues demonstrated that intranasal oxytocin treatment attenuated alcohol withdrawal 

symptoms in treatment-seeking human subjects compared to placebo (Pedersen et al., 2013). 

Taken together, there is emerging evidence that oxytocin may hold promise as a therapeutic 

for treating alcohol use disorders and, in particular for mitigating stress effects on alcohol 

drinking and relapse.

4.4 Glucocorticoids

Alcohol-induced activation of the HPA axis results in elevated circulating glucocorticoids 

and it has been suggested that this may contribute to amplified motivation to drink through 

an interaction with brain reward circuitry (Piazza and Le Moal, 1997; Uhart and Wand, 

2009). Central and systemic administration of corticosterone has been shown to increase 

alcohol consumption, whereas adrenalectomy or administration of a corticosteroid synthesis 

inhibitor (i.e., metyrapone) decreased alcohol intake in rodents (Fahlke et al., 1995; Fahlke 

et al., 1996). Likewise, a glucocorticoid receptor antagonist (i.e., mifepristone) reduced 

alcohol self-administration behavior in rats (Koenig and Olive, 2004). Furthermore, 

mifepristone administered systemically or into the central nucleus (but not the basolateral 

nucleus) of the amygdala attenuated stress-induced reinstatement of alcohol seeking 

behavior (Simms et al., 2012).

Stress associated with chronic alcohol exposure and withdrawal results in a dysregulated 

HPA axis. Resultant elevated glucocorticoids dampen HPA activity through negative 

feedback, but there is evidence that glucocorticoids induce CRF activity in extra-

hypothalamic sites such as the amygdala (Sawchenko, 1987). Thus, chronic alcohol 

exposure may ultimately dampen HPA axis while accentuating extra-hypothalamic CRF 

activity. This, in turn, may contribute to chronic alcohol-induced negative affect and 

increased motivation to drink (Koob, 2013; Lu and Richardson, 2014).

There is also evidence that chronic alcohol exposure alters corticosteroid levels and 

glucocorticoid receptors in brain. Recent studies have shown that glucocorticoid receptor 

expression (mRNA levels) and phosphorylation were elevated in the central (but not 

basolateral) amygdala in dependent compared to nondependent rats (Vendruscolo et al., 
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2012; Vendruscolo et al., 2015). Further, systemic and direct (central amygdala) injection of 

mifepristone was shown to reduce alcohol self-administration in dependent but not 

nondependent rats (Vendruscolo et al., 2015). Mifepristone treatment was also reported to 

reduce alcohol craving and consumption in a double-blind clinical laboratory-based study of 

alcohol dependent human subjects (Vendruscolo et al., 2015). Finally, studies in mice and 

rats have shown that withdrawal following prolonged alcohol consumption produced 

elevated corticosterone levels in certain brain regions (i.e., the prefrontal cortex and 

hippocampus) that persisted long after plasma corticosterone levels returned to baseline 

levels (Little et al., 2008). Elevations in brain glucocorticoid concentrations following 

chronic alcohol exposure and withdrawal not only may have significant implications for 

motivation to drink, but also may contribute to the cognitive deficits and neurotoxic damage 

that is commonly associated with alcohol dependence (Rose et al., 2010).

4.5 Autonomic Nervous System

An important component of stress associated chronic alcohol exposure and withdrawal is 

activation of the autonomic nervous system. In particular, increased noradrenergic output 

from locus coeruleus activation plays an important role in mediating both somatic and 

affective aspects of alcohol withdrawal (Heilig et al., 2010). Beyond withdrawal symptoms, 

changes in central noradrenergic activity also has been implicated in stress-related 

psychiatric illnesses as well as alcohol use disorders. For example, the noradrenergic alpha-1 

receptor antagonist prazosin has been shown to be efficacious in treating various PTSD-

related symptoms (Germain et al., 2012; Raskind et al., 2007; Raskind et al., 2013). Another 

noradrenergic alpha-1 receptor antagonist with a more favorable pharmacokinetic profile, 

doxazosin, was shown to reduce symptoms of PTSD as well (De Jong et al., 2010).

Drugs targeting the noradrenergic system also has been reported to reduce alcohol 

consumption in a number of preclinical studies. Prazosin reduced alcohol drinking in rats 

selectively bred for high alcohol preference (Froehlich et al., 2013a; Rasmussen et al., 

2009). The drug also was effective in reducing intake in relapse models involving repeated 

alcohol deprivation periods (Froehlich et al., 2015) and stress-induced reinstatement of 

alcohol seeking behavior (Le et al., 2011). Prazosin treatment prior to stress (restraint) 

exposure during repeated deprivation periods prevented increased anxiety-like behaviors 

during a subsequent deprivation period (Rasmussen et al., 2017). Additionally, several 

studies found prazosin in combination with naltrexone to be more effective in reducing 

drinking than either drug given alone (Froehlich et al., 2013b; Rasmussen et al., 2015; 

Verplaetse and Czachowski, 2015). Studies also have shown prazosin reduces alcohol self-

administration in dependent rats (Walker et al., 2008), and a similar effect was obtained with 

the beta-adrenergic antagonist propranolol (Gilpin and Koob, 2010). Given this preclinical 

and clinical evidence, there is active interest in the potential for drugs targeting central 

adrenergic receptors in the treatment of alcohol use disorders and the high prevalence of its 

comorbidity with stress-related illnesses such as PTSD (Kenna et al., 2016; Simpson et al., 

2015).
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5. Summary

The relationship between stress and alcohol is complex, with a wide array of factors 

(genetic, biological, and environmental) playing a role in contributing to the outcome of 

stress-alcohol interactions. While stress may interact with alcohol during the initial stages of 

drinking to enhance its rewarding effects, persistent excessive alcohol consumption serves as 

a potent stressor itself, continually challenging and ultimately compromising the 

physiological integrity of the subject. Prolonged alcohol exposure leads to fundamental 

changes in brain reward and neuroendocrine/stress systems beyond normal homeostatic 

limits (i.e., a state of allostasis), which, in turn, impacts physiological and brain motivational 

systems that are integral to control and regulation of ethanol consumption. As reviewed in 

this article, substantial evidence has accrued demonstrating that chronic alcohol exposure 

produces profound dysregulation in the neuroendocrine (HPA axis) stress system while at 

the same time recruiting and sensitizing extra-hypothalamic stress circuitry in the brain. Use 

of animal (primarily rodent) models has been critical to advancing our understanding about 

how chronic alcohol-induced changes in neuroendocrine and brain stress systems, 

particularly those intertwined with reward circuitry, underlie expression of withdrawal 

symptoms reflective of a negative affective state (i.e., dysphoria, anxiety), along with 

increased motivation to self-administer alcohol (Figure 1). As highlighted in this review, 

elevated glucocorticoids, along with activation of several pro-stress neuropeptides (CRF, 

DYN) and anti-stress neuropeptide systems (nociceptin, NPY, oxytocin) have been shown to 

play a significant role in these dynamic aspects of the addiction process. Heightened 

autonomic (sympathomimetic) effects also contribute to the stress, negative emotional, and 

motivational consequences of chronic alcohol exposure. Future studies aimed at elucidating 

mechanisms of engagement and timing of these (and other) stress-related systems will be 

critical in providing a more comprehensive understanding of the dynamic physiological and 

psychological underpinnings of alcohol addiction. Use of animal models also will be key to 

identifying new targets and evaluating potential therapeutics for treating problem drinking, 

particularly stress-related excessive alcohol consumption. This research also has important 

implications for developing more effective treatments for those individuals presenting with 

comorbidity of alcohol use disorder and a stress-related illness, such as PTSD.
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Abbreviations

HPA hypothalamic-pituitary-adrenocortical

CRF corticotropin-releasing factor

DYN dynorphin

KOR kappa opioid receptor

CeA central nucleus of the amygdale

BNST bed nucleus of the stria terminalis

Becker Page 25

Neuropharmacology. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• Stress alters drinking and progression of addiction in a complex manner

• Prolonged excessive alcohol consumption is a potent stressor

• Chronic alcohol produces persistent dysregulation of brain reward and stress 

systems

• Chronic alcohol engages stress and anti-stress neuropeptide systems

• chronic alcohol adaptations underlie stress, negative affect, and motivational 

behaviors
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Figure 1. 
Stress Influences on the Progression of Alcohol Addiction.

When drinking is first initiated and regulated, alcohol and stress interact in a complex 

manner. Stress may promote alcohol consumption via glucocorticoid interactions with brain 

reward systems and, for some individuals, the anxiolytic (stress-alleviating) effect alcohol 

may influence motivation to drink. Continued heavy drinking results in fundamental changes 

in brain function. Under assault from continued alcohol exposure, the brain engages a host 

of adaptations in brain reward and stress systems that contribute to the perpetuation of 

excessive levels of drinking. Stress associated with heavy bouts of drinking and repeated 

failed attempts at abstinence fuel progressive dysregulation of these brain systems beyond 

normal homeostatic limits, setting the stage for a persistent dysfunctional (allostatic) state. 

This is characterized by exaggerated neuroadaptations that manifest as reduced reward 

processing, a blunted neuroendocrine stress response, engagement of extra-hypothalamic 

stress (e.g., CRF, dynorphin) and anti-stress (e.g., nociceptin, NPY, oxytocin) systems, and 

heightened autonomic nervous system (sympathomimetic) function. Collectively, these 

changes contribute to a persistent negative emotional (affective) state along with 

compromised executive function that renders individuals ill-equipped to exert appropriate 

behavioral control over alcohol consumption, as well as appropriately respond to stressful 

events that may provoke return to excessive drinking.
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