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Abstract

The actin cytoskeleton is critical for form and function of vascular cells, serving mechanical, 

organizational and signaling roles. Because many cytoskeletal proteins are sensitive to reactive 

oxygen species, redox regulation has emerged as a pivotal modulator of the actin cytoskeleton and 

its associated proteins. Here, we summarize work implicating oxidants in altering actin 

cytoskeletal proteins and focus on how these alterations affect cell migration, proliferation and 

contraction of vascular cells. Finally, we discuss the role of oxidative modification of the actin 

cytoskeleton in vivo and highlight its importance for vascular diseases.
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INTRODUCTION

The cytoskeleton serves mechanical, organizational, and signaling functions within the cell 

[1, 2]. Because of its multiple roles, perturbation of the cytoskeleton is important in vascular 

physiology and pathophysiology [3–7]. Oxidation of cytoskeletal proteins has been observed 

in various cellular processes and vascular diseases [8–11], but our understanding of the role 

of these oxidative modifications is far from complete. Determining how oxidation of these 

proteins alters their function may provide a new perspective on vascular disease progression. 

Accordingly, this review presents an overview of our current knowledge of how actin 

cytoskeleton proteins are regulated by oxidative species and the potential role of cytosketetal 

oxidation in the vascular system.
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ACTIN CYTOSKELETON STRUCTURE

Actin is a family of abundent and highly conserved cytoskeletal proteins that are expressed 

in nearly all eukaryotic cells and act as a scaffold to maintain cell shape and internal 

organization [1]. In humans, three classes of actin isoforms have been identified in different 

tissues: alpha (α)-actin (muscle variants, contractile structures), beta (β)-actin (nonmuscle 

variants, meshworks) and gamma (γ)-actin (smooth muscle and nonmuscle variants, stress 

fibers) [12, 13]. Monomeric actin has a globular shape (G-actin), which strongly binds to 

adenosine di- or tri-phosphate and divalent cations such as Mg2+ or Ca2+ (ATP/ADP-G-

actin). In vivo, Mg2+ is usually bound to actin; however, Ca2+ binding is observed frequently 

upon actin isolation [14]. ATP-G-actin with concomitant ATP hydrolysis promotes 

filamentous-actin (F-actin) assembly [15] into microfilaments in the cytoskeleton and thin 

filaments in the contractile apparatus [13]. Actin filaments are dynamic, with nucleation, 

polymerization, branching, and crosslinking highly regulated by extra- and intracellular 

signal-mediated modification of actin itself and actin binding proteins. These processes play 

a crucial role in cell shape, movement, and proliferation as well as contraction [1, 16].

THE ACTIN CYTOSKELETON AS A TARGET OF OXIDANTS

Source and types of oxidative species in vascular cells

Redox signaling regulates physiological and pathological responses at different levels 

ranging from cells to tissues to biological systems. Many reactive oxygen species (ROS), 

including superoxide (O2
•−), hydrogen peroxide (H2O2) and the hydroxyl radical (HO•), as 

well as reactive nitrogen species (RNS) such as nitric oxide (NO) and peroxynitrite 

(ONOO-), are produced in biological systems [17]. Among these, O2
•− and H2O2 are 

important signaling molecules in all kinds of vascular cells, including endothelial cells, 

smooth muscle cells, fibroblasts and perivascular adipocytes [10, 18].

Intracellular oxidative species can be formed by many different enzymes, of which 

mitochondrial respiratory enzymes and NADPH oxidases (NOXes) are major sources [19, 

20]. Almost 95% of O2
•− is generated from mitochondria by electron transport chain 

complexes [21]. This non-specific production of O2
•− is generally scavenged by superoxide 

dismutase (SOD), which converts it to H2O2, a relatively stable molecule that reacts with 

proteins [21, 22] and contributes to the constitutive intracellular redox environment. In 

contrast, NOX family proteins are transmembrane enzymes whose major function is to 

transfer electrons from NADPH to oxygen to produce O2
•− in localized intra- or 

extracellular compartments. Although O2
•− does not penetrate the plasma membrane or the 

membrane of the intracellular organelle in which it is produced, once it is converted into 

H2O2 it can cross membranes and function as a signaling molecule [19]. The NOX family 

contains five NOXes (NOX1 to NOX5) and two dual oxidases (DUOX 1 and DUOX2). 

NOX1, NOX2, NOX4 and NOX5 are expressed and active in the vascular system. NOX1, 

NOX2 and NOX4 require a second transmembrane subunit, p22phox, and DUOXes require 

DUOX activator1/2, for activity [23, 24]. In addition, cytosolic regulatory partners are 

important in NOX maturation and expression. NOX1 interacts with NOXO1 or p47phox and 

NOXA1 as well as Rac; NOX2 is regulated by p47phox and p67phox; and NOX4 is 

constitutively active but can be regulated by poldip2 [19]. NOX5 and DUOXes are 
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specifically activated by calcium [23, 25]. These regulatory mechanisms ensure tight 

temporal and spatial control of ROS release. While all NOX enzymes directly produce O2
•−, 

O2
•− is dismuated to H2O2 before release from NOX4 or by SOD in the case of the other 

NOXes. Degradation of H2O2 is controlled by peroxidases such as peroxiredoxins, catalase 

and glutathione peroxidase, an essential step in the regulation of signaling. Both O2
•− and 

H2O2 have been implicated in oxidative modification of DNA, lipids and proteins [26], thus 

altering cellular functions in both physiological and pathological conditions [11, 17, 27].

Mechanisms of protein oxidation

Proteins are the most common signaling targets of ROS/RNS due to their many redox-

sensitive sites [28, 29]. Oxidation of proteins can be classified into two types: reversible and 

irreversible [30, 31]. Cysteine (Cys) and methionine (Met) residues on proteins are typical 

targets of reversible oxidative modification because of their low pKa thiols that react with 

oxidative species [32–34]. Reversible oxidation occurs in the presence of ROS such as 

H2O2, O2
•−, and RNS like peroxynitrite [35, 36], initially producing sulfenic acid residues (-

SOH) that can then react with glutathione (GSH) or other sulfhydryl groups to form 

glutathione disulfide (GSSG), intra- or extra-molecular disulfide bonds (RS-SR′), and S-

glutathionylated proteins (R-SSG) [36–39] (Figure 1). S-nitrosylation (SNO) is another 

important reversible oxidative modification of cysteines induced by nitric oxide, nitroxyl, 

and peroxynitrite [40] (Figure 1). S-nitrosylation in particular plays a role in integrin-

dependent cell adhesion [41], cytoskeleton remodeling and cell migration [42, 43] as well as 

cardio protection [44–46]. These reversible modifications have been considered to play 

multiple beneficial roles in cellular physiological processes and may protect target proteins 

from further irreversible and perpetual damage [47–52].

However, excess production of ROS may convert -SOH to sulfinic acid (SO2H) and sulfonic 

acid (SO3H) derivatives, which are irreversible and may affect protein-protein interaction 

and function [48, 53–55] (Figure 1). Other irreversible oxidative modifications include 

carbonylation (aldehyde and ketone derivatives) and tyrosine nitration (3-nitrotyrosine) [56–

59], which result in permanent configuration changes and affect functionality of target 

proteins. Irreversible modifications are generally associated with oxidative damage of 

proteins and are considered as biomarkers of oxidative stress in pathological processes [60–

63].

A great number of signaling molecules, including receptor tyrosine kinases, phophatases, 

and transcription factors such as NF-κB (nuclear factor-κB), AP-1 (activator protein-1) and 

Hic-5 (hydrogen peroxide-inducible clone-5), have been shown to contain redox-sensitive 

cysteine residues [64–66]. Oxidative modification of these molecules alters activity, 

interaction with other proteins, and/or subcellular localization, which in turn affects 

downstream signaling. Since many cytoskeletal-associated proteins are particularly sensitive 

to redox regulation [8], in the following paragraphs we will focus on those cytoskeletal 

proteins that have been directly shown to be redox-regulated, and discuss their impact on 

basic cell behaviors such as adhesion, migration, proliferation and contraction.
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Oxidation of actin

Actin itself is susceptible to oxidation and the effects of ROS/RNS on actin function have 

been extensively studied for almost 70 years [67–70]. As recently reviewed [67], the six 

cysteines in β/γ-actin and five cysteines in α-actin can all be oxidized, with Cys374 being 

the most redox-sensitive. Details on the oxidation of each residue are given in Table 1; 

however, in general, oxidation is thought to slow polymerization/elongation of G-actin [71, 

72] and make F-actin more fragile [73]. Still, it should be noted that some of these studies 

were designed with high concentrations of oxidants (e.g., mM H2O2) instead of 

physiological levels (e.g., nM-μM H2O2 [74]). Recent work suggests that in some systems, 

low, physiologically relevant ROS production can promote actin polymerization and 

formation of stress fibers [69, 75, 76].

In addition to cysteine oxidation, actin is also directly oxidized on Met44 and Met47 [77]. 

This oxidation is mediated by a family of proteins called MICALs (Molecule Interacting 

with CasL), which include a monooxygenase domain to promote the conversion of methione 

to methionine sulfoxide [77]. Oxidation by MICAL causes decreased inter-actin contacts 

leading to F-actin disassembly. The resulting actin monomers are slower to reassemble and 

fragment more easily once reassembled. Additionally, MICAL oxidation of actin enhances 

cofilin binding to F-actin. The severing function of cofilin and modified actin interactions 

work synergistically to promote formation of monomeric actin upon MICAL-driven 

oxidation [78]. It appears that Met44 oxidation is the key residue for this actin disassembly, 

because Met44Leu actin mutants are resistant to MICAL-induced disassembly, while 

Met47Leu mutants are not [77].

Beyond the specific oxidized residues and oxidizing agents (Table 1), there are numerous 

other variables that determine how actin responds ROS/RNS and which residues are 

susceptible (Table 2). For example, although Cys17 is not very reactive, when actin is bound 

to myosin II it becomes more susceptible to oxidation [79]. Alternatively, G-actin contains 

sites of oxidation that are masked by polymerization of actin [80]. Cations (for example 

Ca2+ influx) can also determine if actin is oxidized and may modify the impact of this 

oxidation [67, 70, 81]. These complexities continue to be investigated, and suggest that the 

effect of actin oxidation is specific to the cell type, the intracellular redox environment and 

ongoing cellular processes.

The consequences of actin oxidation vary by the oxidative modification and the cell type, but 

have not been studied extensively. In cardiomyocytes, S-nitrosylation of α-actin correlates 

with enhanced relaxation and impaired contraction [82]. In endothelial cells, oxidation of 

actin appears to be essential for proper cell migration, because pharmacologic reduction of 

ROS impairs endothelial cell migration and actin polymerization [76]. β-actin S-

glutathionylation causes the disassembly of the actin-myosin complex, which is a necessary 

step for successful cell adhesion and migration [69]. Additionally, oxidation of β-actin via 

the formation of a mixed disulfide bond between Cys374 and glutathione is necessary for 

cell spreading in response to integrin engagement [69]. To our knowledge, the effect of actin 

oxidation on mitosis/cytokinesis has not been directly investigated. Depletion of MICAL in 

developing zebrafish embryos results in small heart size and cardiomyocytes with altered 

morphology and decreased expression of cardiac muscle specific genes [83]. Knockdown of 
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MICAL can also lead to decreased cell viability [84] and increased apoptosis [85], 

suggesting that Met44 oxidation may regulate these functions as well. Indeed, Met44Cys 

actin is unable to form colonies in yeast [86] and, oxidation of actin on Cys374 (and 

Cys285) promotes actin aggregation, which delays yeast cell cycle reentry [9].

Oxidation of actin binding proteins

Actin binding proteins are not only involved in regulating polymerization and 

depolymerization of actin, but also mediate its physiological functions. While there are 

many actin binding proteins, to our knowledge only two have been shown to be directly 

oxidized in the context of the cardiovascular system: myosin II and cofilin.

Myosin II oxidation—Myosin II is a motor protein that generates force by stepping along 

actin as it hydrolyzes ATP to ADP [87]. It can be divided into two classes: non-muscle (NM) 

myosin II and muscle myosin II. Non-muscle (NM) myosin II is expressed in almost all cell 

types [88] and is involved in diverse cellular process such as cell adhesion, migration, and 

division. In the context of cell division, the force generated from filaments made of NM-

myosin II multimers interacting with F-actin is required for contractile ring formation during 

cytokinesis [89, 90]. Additionally, NM-myosin II enables cell rounding at the onset of 

mitosis and correct mitotic spindle positioning [91, 92]. During migration, NM-myosin II 

helps establish cell polarity and is involved in focal adhesion maturation and disassembly 

[87]. NM-MyosinII-actin rearrangement is also associated with endothelial cell permeability 

and barrier dysfunction [93]. In muscle cells, such as striated, cardiomyocytes and vascular 

smooth muscle cells (VSMCs), both muscle- and NM-myosin II are expressed [87]. Muscle 

myosin II plays a critical role in cell contraction. In this process, muscle myosin II reversibly 

binds to actin filaments and converts chemical signals into mechanical force and movement 

[94, 95].

Both NM- and muscle- myosin II have been proposed to be redox sensors within cells, 

because both are reversibly oxidized and this oxidation inhibits their interaction with actin 

and their ATPase activity [96]. This regulatory oxidation occurs at Met394 of protist NM-

myosin II [97], which is equivalent to a cysteine that is glutathyolated in mammalian cardiac 

and skeletal muscle myosin II [96]. However, Fiaschi and colleagues [98], who examined 

myosin oxidation in the context of cell spreading, suggested that only NM-MHC is under 

redox control. Using mass spectrometry, they showed that NM-myosin II is in a reduced 

form in detached rounded cells, while cells in the process of attaching and spreading contain 

oxidized NM-myosin II, which correlates with its interaction with actin. NM-myosin II and 

actin interact strongly in rounded cells or spread cells when ROS generation is inhibited, but 

not in control spread cells [98], suggesting that oxidation of NM-myosin II could be a 

physiologically relevant method of controlling the interaction of NM-myosin II and actin. 

Further proof of the consequence of direct NM-myosin II oxidation will require creation of 

oxidation-insensitive mutants of NM-myosin II.

It should be noted that myosin II is composed of 2 heavy chain molecules (MHC), each with 

a head that binds to actin and ATP, a neck that is wrapped in myosin light chains (MLC), and 

a tail where the heavy chain molecules bind to each other. The activity of myosin II is 
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regulated by MLC and a variety of kinases and phosphatases that are also involved in cell 

division and migration; for example, Rho kinase (ROCK), citron kinase, and myosin light 

chain kinase (MLCK) phosphorylate MLC and activate myosin II, while myosin 

phosphatase dephosphorylates MLC and inactivates myosin II [91]. As discussed below, 

MLC is indirectly regulated by oxidation-sensitive signaling cascades; however, the direct 

oxidation described above only occurs on MHC.

Cofilin oxidation—Cofilin is an actin binding protein that regulates actin dynamics by 

severing F-actin filaments and promoting F-actin depolymerization [99]. This promotes actin 

rearrangement by breaking down old F-actin filaments and generating more G-actin and 

barbed ends, the ingredients necessary for polymerization of new actin filaments [100] 

during cell migration (reviewed in [101]) and contraction [102]. The reorganization of actin 

by cofilin is also important during cell proliferation, as overexpression/mutation of cofilin 

leads to accumulation of cells in the G1-phase of the cell cycle [103], incorrect mitotic 

spindle positioning [104], and cytokinesis defects [105]. As described above, actin oxidation 

by MICAL can enhance cofilin binding. However, cofilin itself can also be directly oxidized. 

Cofilin oxidation increases the F-actin:G-actin ratio in the cell by preventing cofilin from 

severing actin [106–109], but multiple mechanisms have been described for how this occurs. 

Some studies suggest that cofilin oxidation prevents cofilin binding to actin [106, 108, 109], 

while others indicate that cofilin still binds actin but does not induce depolymerization when 

oxidized [107] and can even cause formation of rod-shaped actin/cofilin aggregates [110]. 

Phosphorylation of serine 3 is known to inhibit the interaction of cofilin with actin as well 

[99], but it is currently under debate if this site is phosphorylated when cofilin is oxidized 

[108] or if oxidation promotes dephosphorylation [106, 107].

There are four cysteines (Cys39, Cys80, Cys139, Cys147) and a methionine (Met115), that 

can be oxidized in cofilin. However, there is disagreement about whether specific cysteines 

[107, 109, 110], all cysteines [108], or methione [106] residues are required for cofilin 

inhibition and if intra- [107, 108] or intermolecular [110] disulfide bonds are formed upon 

oxidation. These details likely vary based on stimulus and cellular conditions. Cofilin 

oxidation during cell division has not been studied; however, cofilin oxidation can induce 

apoptosis. Oxidized and Ser3-phosphorylated cofilin localizes to mitochondria where it 

promotes opening of the permeability transition pore to allow cytochrome C release and 

apoptosis onset [108]. It has also been proposed that ROS generated at the leading edge of a 

migrating cell cause cofilin oxidation on Cys139 and Cys147 to inhibit cofilin:actin binding 

and consequently promote actin polymerization toward the front of the cell to help it migrate 

[109].

Oxidation of proteins in signaling cascades that regulate the actin cytoskeleton

Actin cytoskeletal signaling networks are composed of a large group of proteins such as 

integrins, small GTPases, kinases, phosphatases, ion channels and transporters. These 

proteins not only directly regulate actin assembly, organization and function in response to 

different cellular stimuli, but also instigate signaling cascades and networks that influence 

cell growth, migration, contraction and survival. ROS can alter actin cytoskeletal signaling 

by directly oxidizing these regulatory proteins, by influencing upstream molecules that then 
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affect these downstream targets, or, as with integrin regulation, by modulating protein or 

mRNA expression.

Integrin oxidation—Integrins are a family of cell-cell and cell-matrix binding 

transmembrane adhesion molecules that mediate firm contacts of cells with the extracellular 

matrix (ECM) [111, 112]. They are among the most abundant cell surface receptors and are 

expressed in all types of cells [113]. In mammalian cells, the integrin receptor family 

contains 18 α and 8 β subunits that link non-covalently in at least 24 known combinations of 

αβ subunit heterodimers [114, 115]. Integrin ligation induces promigratory intracellular 

signaling cascades from the “outside in”. On the other hand, activation from “inside out” 

also occurs by virtue of soluble signals promoting protein and inositol phosphorylation 

events that regulate formation of nascent focal contacts. Integrins cluster on the cell surface 

in focal adhesion complexes containing signaling adapter molecules and cytoskeletal 

structures. Through integrating the insoluble ECM with the intracellular cytoskeleton, 

integrins transduce mechanical signals that influence gene expression.

There is convincing evidence that integrins are redox-regulated [116–120]. Conformational 

changes in the integrin structure suggest a mechanism for this redox-regulation of integrin 

activity. Cysteine residues within the genu domain and calf-2 domain of the integrin α-

subunit have been considered to be the redox-regulated sites within the integrin ectodomain 

[121]. For example, integrin α7β1 is oxidized by H2O2 derived from NOX4 at two specific 

cysteine residues [121]. The cysteine residues in each EGF-domain of the β integrin subunit, 

which stabilize the stalk domains [122–125], do not appear to be oxidized by H2O2 [121]. 

Overall, redox-dependent cleavage of the α-subunit influences the transition between a bent/

inactive and extended/active conformation of the integrin ectodomain [121]. These 

conformational transitions induce the physical separation of the two stalks and lead to 

changes within the transmembrane and cytoplasmic domains [126, 127], which transduces a 

signal to integrin-associated molecules [112, 128, 129].

In addition to direct oxidative modifications, integrins are also indirectly affected by ROS-

mediated regulation of their expression. In liver sinusoidal endothelial cells exposed to 

prolonged high glucose, integrin αvβ3 and laminin expression are upregulated, and this 

response is significantly inhibited by N-acetyl-cysteine (NAC), suggesting that the 

expression of αvβ3 is dependent on ROS levels in these cells [130]. In addition, ROS 

increase αv and decrease α5 expression in endothelial cells, affecting adhesion to 

vitronectin or fibronectin [131]. In VSMCs, downregulation of the Nox4 activator Poldip2 

increases β1 integrin expression, leading to increased collagen I expression [132].

Rho family GTPase oxidation—Rho family GTPases act as molecular switches, “on” 

while GTP-bound and “off” while GDP-bound, whose primary function within the cell is to 

regulate the actin cytoskeleton [133, 134]. Of these GTPases, RhoA, Rac1, and Cdc42 are 

the best studied, and all three are required for cell migration and proliferation (Figures 2 and 

4). During cell division, RhoA enhancement of linear actin polymerization and myosin II 

activation is essential for cell rounding and contractile ring ingression, and it is equally 

important that the opposing functions of Rac1 (actin branching and myosin II inactivation) 

are turned off during these processes (Figure 4) [92, 135]. Rho GTPases are also central 
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regulators of cell migration. Their complex role in this process has been recently reviewed 

[136], but in brief, Rac1 and Cdc42 generate cell protrusions, while RhoA generates the 

force necessary to move. This activity is tightly regulated by a number of proteins. Guanine 

nucleotide exchange factors (GEFs) activate GTPases by promoting the release of nucleotide 

from GTPases. Since GTP is ten times more abundant than GDP within the cell, nucleotide 

release promotes GTP binding and enhances downstream effector binding. GTPase 

activating proteins (GAPs) catalyze GTP hydrolysis to GDP to turn the GTPase “off.” Post-

translational modifications also regulate Rho GTPase activity. Prenylation of the C-terminus 

of the GTPase is required for membrane localization and Guanine Nucleotide Dissociation 

Inhibitors (GDIs) bind to the prenyl group to stabilize the GTPase and prevent membrane 

association. Phosphorylation can activate and inactivate specific Rho GTPases (reviewed in 

[137]). Similarly, oxidation can both enhance and inhibit Rho GTPase activity, as detailed 

below.

The Rho family of GTPases consists of 20 proteins; about half of which contain a conserved 

redox sensitive motif GXXXXGK(S/T)C, including a cysteine that is solvent-exposed and in 

contact with bound nucleotide [138]. In vitro, O2
•−, nitrogen dioxide (•NO2), or HO• 

treatment enhances GDP dissociation from RhoA, Rac1, and Cdc42 400- to 600-fold, while 

NO or H2O2 treatment enhances exchange approximately 5- and 10-fold, respectively [138]. 

Addition of radical scavengers allows re-binding of the nucleotide [138]. This nucleotide 

release is likely due to disruption of hydrogen bonds between the GTPase and nucleotide. 

Therefore, in cellulo, where the reducing potential is high and GTP is abundant, ROS/RNS 

should promote release of bound nucleotide, similar to a GEF, to activate Rho GTPases 

[139].

Such a scenario is the case for Rac1, which has been shown to be activated by ROS/RNS 

both in vitro [138, 140] and in cellulo [139–142]. Early work by Heo and colleages [138] 

showed that the dramatic increase in Rac1 nucleotide dissociation induced by O2
•− in vitro 

has no effect on a Rac1 C18S mutant, suggesting that activation of Rac1 is due to direct 

oxidation at Cys18. Upon oxidation of cysteine thiols to sulfenic acid, cysteines become 

highly reactive with glutathione and S-glutathiolation is commonly observed [143]. 

Therefore, it is not surprising that in cellulo Rac1 is glutathiolated, and that mass 

spectrometry analysis of purified Rac1 in the presence of oxidized glutathione suggests that 

this occurs at Cys18 [140]. Purified glutathiolated Rac1 has a 200-fold enhanced rate of 

nucleotide exchange compared to non-oxidized Rac1 [140].

Unlike Rac1 and Cdc42, RhoA has an additional cysteine (Cys16) in its redox sensitive 

motif, GXXXCGK(S/T)C, that complicates GTPase activation [138, 144]. Upon •NO2 

treatment (3–5 μM), oxidation of the GTPase can be observed by mass spectrometry as a 

disulfide bond formed between Cys16 and Cys20 [144]. This disulfide bond can only form 

when the GTPase is nucleotide-free; however, once the disulfide bond has formed, RhoA is 

unable to bind nucleotides or interact with the GEF, Vav2 [144]. Therefore, it has been 

proposed that at low levels of ROS, Cys20 is oxidized which promotes nucleotide exchange 

to activate RhoA; however, at higher levels of ROS disulfide bonds form between Cys16 and 

Cys20 to inactivate RhoA [144]. Consistent with the joint interaction of Cys16 and Cys20 

reducing RhoA activity, treatment of RhoA with phenylarsine oxide (PAO), which crosslinks 
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neighboring thiol groups, inactivates RhoA [145]. Further complicating the matter, NO 

treatment of recombinant RhoA has been described to cause S-nitrosylation and inactivation 

of RhoA, yet it is unclear on which cysteines this occurs [146].

Under normal cellular conditions, with a high reducing potential and abundant GTP, 

physiological levels of peroxide activate RhoA seemingly via direct oxidation [139]. 

Aghajanian and collegues [139] knocked down RhoA and then expressed wild type or 

C16/20A mutant RhoA in fibroblasts. Upon stimulation of these cells with various 

concentrations of H2O2 (0.1–10 μM), only WT RhoA was activated, suggesting that redox-

sensitive Cys16 and/or Cys20 is required for H2O2-induced activation of RhoA. Importantly, 

the C16/20A mutant was still able to be activated by GEF-mediated stimulation and 

inhibited by C3 toxin, indicating that the ROS-induced activation of RhoA was driven by 

direct oxidation of these residues [139]. Despite this observation, controversy remains within 

in cellulo literature, some of which shows that RhoA is activated by ROS/RNS [139, 147–

153] and others of which describe inhibition or reduced expression of RhoA by ROS/RNS 

[145, 146, 154, 155]. The controversy may be partially due to the fact that in addition to 

direct oxidation, ROS/RNS affect many regulators of Rho family GTPases. For example, 

p190RhoGAP is activated when low molecular weight PTP is oxidized [155], but 

p115RhoGEF is also activated indirectly by OONO- and H2O2–induced kinase activation 

[148], and ROS likely also cause release of RhoGDI from RhoA [156]; therefore, the 

outcome of redox signaling is hard to predict with respect to RhoA activity, and is likely 

specific to cellular conditions.

Although the effect of Rho family GTPase oxidation on migration and cell division has not 

been directly examined, it is clear that Rho family oxidation controls the cytoskeleton, 

because only cells expressing WT RhoA and not oxidation-resistant C16/20A RhoA showed 

increased stress fibers in response to H2O2 [139]. Similarly, expression of the oxidation-

mimetic C18D Rac1 induces significantly more lamellipodia compared to wild type Rac1 

[140]. Since ROS promote excessively high levels of Rac1 activity, one would predict that 

this should inhibit cell proliferation. RhoA oxidation is more complex, depending on the 

level of ROS and if both cysteines or just one is oxidized. Therefore, disentangling the redox 

regulation of RhoGTPases during migration and proliferation is an area ripe for 

investigation. Since RhoA activity [157], ROS production [158], and VSMC proliferation 

and migration [159] are all elevated in atherosclerotic plaques, this would be a particularly 

interesting system to use to determine the relevance of Rho GTPase oxidation.

IQGAP oxidation—IQGAP is a Rac1 and Cdc42 effector with numerous roles in actin and 

microtubule organization that is highly expressed in endothelial cells [160]. In brief, it can 

directly bind to actin to facilitate actin cross-linking and inhibit polymerization, and can also 

regulate many other cytoskeletal proteins. For example, it activates N-WASP to promote 

actin branching and binds mDia to promote actin elongation [160]. IQGAP1 localizes to the 

leading edge of migrating cells, where it enhances filopodia and lamellipodia formation and 

migration [161]. Of interest, IQGAP1/3 also appears to be required for proper localization of 

RhoA to the cleavage furrow during telophase, and its suppression leads to impaired 

cytokinesis [162].
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Several years ago, Kaplan and colleagues [163] reported IQGAP oxidation following 

vascular endothelial growth factor (VEGF) treatment and hindlimb ischemia. Additionaly, 

using DCP-Bio1 (a compound that binds to cysteine sulfenic acid) for immunofluorescence, 

they found that cysteine sulfenic acid co-localized with IQGAP, p47phox (a regulatory 

component of NOX2), and F-actin at the leading edge of migrating cells, suggesting that 

these proteins are likely oxidized at this location [163]. Previous studies showed that in 

migrating cells, IQGAP recruits NOX2 to the leading edge to stimulate ROS production 

there [160, 164]. Therefore, it seems that IQGAP both enhances ROS production and is a 

target of ROS production during cell migration. However, it remains unclear exactly how 

IQGAP oxidation regulates its many functions.

Protein tyrosine phosphatase oxidation—One important class of cytoskeleton-related 

enzymes with extremely low pKa active-site catalytic cysteine residues is protein tyrosine 

phosphatases (PTPs), which have high sensitivity to redox inactivation. PTPs regulate 

cytoskeletal signal transduction pathways and participate in cell cycle control by 

dephosphorylating proteins [155, 165, 166]. Recently, oxidation has emerged as an 

important regulatory mechanism of PTPs. The oxidation of PTPs has been demonstrated for 

PTP1B [167], Src homology phosphatase (SHP)-2 [168], PTEN [169], receptor-PTPα 
[170], and low-molecular-weight protein tyrosine phosphatase (LMW-PTP) [171, 172]. 

LMW-PTP is involved in the control of mitogenic and adhesive signals [173, 174] and its 

redox regulation shows a peculiarity above all other PTPs. Two of the eight cysteine residues 

present in LMW-PTP are modified by H2O2 treatment, namely Cys12 and Cys17 [175]. 

Normally, activation of its receptor by the pro-migratory platelet-derived growth factor 

(PDGF) is limited by the LMW-PTP, but in the presence of ROS, LMW-PTP is modified by 

direct oxidation on Cys12 and Cys17 to form an inactivating disulfide bond, thus amplifying 

PDGF signaling [171, 176]. Another study showed that S-glutathionylation of LMW-PTP 

regulates VEGF-mediated focal adhesion kinase activation [177], an important step in focal 

adhesion formation. These examples suggest that oxidative regulation of LMW-PTP is 

necessary for efficient adhesion and migration.

Src oxidation—Src family kinases are critically involved in the control of cytoskeletal 

organization and in the generation of integrin-dependent signaling responses in fibroblasts, 

inducing tyrosine phosphorylation of many signaling and cytoskeletal proteins [178]. Redox 

regulation of Src is a central feature of cell adhesion, as the elimination of ROS by 

antioxidant treatment almost completely abolishes Src activation in this situation [179]. This 

observation is further supported by the ability of antioxidants to inhibit p125FAK/Src 

association and p125FAK phosphorylation and is in agreement with data showing that ROS 

are necessary for integrin signaling during fibroblast adhesion and spreading [180, 181]. Src 

itself is redox sensitive, since each Src domain contains cysteine residues with pKa’s low 

enough to be oxidized by physiological levels of ROS [182, 183]. Direct oxidative 

modifications on Src have been reported on, for instance, Cys277 [184] in the linker resion, 

Cys245 [179], Cys122 and Cys164 [185] in the SH2 domain, and Cys487 [179] in the kinase 

domain. Oxidation of cysteine residues in the SH2 domain causes inter-molecular disulfide 

bridge formation and disruption of internal Tyr527-SH2 domain interaction; this 

conformational change promotes auto phosphorylation at Tyr416 and leads to activation of 
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Src [186]. Oxidation of Cys245 and Cys487 further activates an already active Src [179]. On 

the other hand, oxidative inhibition of the Src-specific PTP, which de-phosphorylates Tyr418 

in the activation loop [187], and oxidative regulation of C-terminal Src-Kinase (CSK), which 

phosphorylates the auto-inhibitory C-teminal Tyr527 [185], also influences Src activity. In 

cell-based studies it is often difficult to differentiate the direct effect of redox regulation on 

Src activity from the indirect effects through Src regulators. Because both activation [179] 

and inactivation [188, 189] of Src in response to oxidative stress have been reported, is not 

clear whether direct oxidation of Src or simply inactivation of the PTPs that dephosphorylate 

Src predominates.

Focal adhesion kinase activation by oxidants—Focal adhesion kinase (FAK) is a 

non-receptor protein tyrosine kinase important in integrin signaling pathways controlling 

VSMC migration and proliferation [190]. ROS induce activation of FAK and promote cell 

motility in endothelial cells in a dose- and time-dependent manner [191]. FAK consists of a 

central catalytic domain, which is flanked by large amino-and carboxy-terminal regions. The 

amino-terminal sequence binds the β1-integrin intracellular domain and the carboxy-

terminus contains two proline-rich sequences that bind to SH2 domain-containing proteins, 

such as Src, paxillin or Graf [192, 193]. Activation of FAK is associated with its 

phosphorylation on several specific tyrosine residues, Tyr397, Tyr925, and Tyr577 [194]. 

FAK is autophosphorylated on Tyr397 when bound to activated β1-integrins, which is 

crucial in cell migration and cell cycle progression [192, 195, 196]. It has been shown that 

ROS induce tyrosine phosphorylation of FAK on Tyr397, Tyr925, and Tyr577, leading to 

increased kinase activity. The phosphorylation on Tyr397 was observed in both actin-rich 

and membrane-cytosol fractions, indicating that ROS-induced FAK phosphorylation is likely 

involved in adhesion [197]. This phosphorylation by ROS was suggested to occur through 

tyrosine phosphatase inhibition rather than activation of tyrosine kinases [191, 197]; 

however, ROS-induced phosphorylation of FAK on certain tyrosine residues is partly 

sensitive to tyrosine kinase inhibitors, suggesting that alternative mechanisms may 

contribute [191], such as ROS-induced Src activation [198]. The complexity of this pathway, 

with multiple redox-sensitive kinases and phosphatases but no known direct oxidation, 

makes it imperitive to study redox activation of FAK in different cells and cellular context.

Protein kinase C oxidation—The protein kinase C (PKC) family is composed of serine/

threonine protein kinases that are involved in a variety of pathways to regulate cell growth, 

adhesion, migration, differentiation and gene transcription [199–201]. Traditionally, PKC 

isoforms are activated by Ca2+, which itself is regulated by ROS, and diacyglycerol (DAG), 

and require phosphorylation on serine/threonine for full activation [202]. In recent years, 

ROS, especially H2O2, have been proposed to be an upstream activator of PKC [203, 204]. 

For example, PKC can be activated by Ca2+ induced by ROS and mediates Rho GTPase 

activation during focal complex formation in the early stage of cell spreading [153, 201, 

205]. In bovine pulmonary artery endothelial cells, cyclic strain stimulates mitochondrial 

ROS release, which induces PKC-dependent phosphorylation of FAK [206]. Conversely, 

many studies have found that PKCs regulate NOX1-3 by phosphorylating the indispensable 

subunit p47phox [207–209]. Taken together, these studies suggest that PKCs are both 

upstream and downstream of ROS.
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Several reports indicate that PKC contains redox-sensitive cysteines [210, 211]. PKCs have 

two pairs of zinc fingers within their regulatory domains, the sites of DAG binding. Each 

zinc finger is composed of six cysteine residues and two zinc atoms, which render the 

regulatory domain susceptible to redox regulation [202, 210]. The C-terminal catalytic 

domains of PKCs also contain cysteine residues that are sensitive to oxidative modifications 

and affect kinase activity [212, 213]. For instance, thiol oxidation and release of zinc from 

zinc finger motifs are neccssary for O2
•−-mediated activation of PKC [213]. However, the 

redox regulation of PKC is complex. While ROS such as O2
•− [214, 215] and H2O2 [216] 

activate PKC, hydroxyl radical decreases PKC activity [217]. Furthermore, even when mild 

ROS activate PKC, prolonged exposure leads to further oxidation and inactivation [203]. 

Because activation of PKC is regulated at multiple levels, including phosphorylation, 

membrane insertion [218, 219], and proteolytic cleavage [220], the full range of effects of 

oxidation is unclear and remains to be further explored.

Oxidation of calcium channels and transporters—Cytosolic homeostasis of Ca2+ is 

essential for cytoskeletal-mediated cell behaviors, most notably cell contraction, migration 

and growth, and several ion channels and transporters that regulate Ca2+ flux have been 

shown to be responsive to oxidation. Cytosolic Ca2+ influx is regulated by L-type voltage-

gated Ca2+ channels (LTCC), which contain an α1C-subunit that is sensitive to inactivation 

by oxidation [221–223]. Inositol 1,4,5-trisphosphate receptor (IP3R) is another major Ca2+ 

channel that releases Ca2+ from the sarcoplasmic reticulum (SR) into the cytosol and is 

conformationally regulated by oxidative species [224]. Oxidation of Cys34-Cys42 of the 

IP3R reduces its activity in line with the conformational changes, indicating that Cys34 and 

Cys42 may serve as reduction sensors. In addition, it has been suggested that Cys65 may act 

as an oxidation sensor [224, 225].

Calcium reuptake, and therefore reduction of cytosolic calcium, is also redox sensitive. 

Sarco-/endoplasmic reticulum Ca2+-ATPase (SERCA), the major Ca2+ reuptake effector on 

SR, contains almost 25 cysteine residues that are easily oxidized, especially Cys674, which 

is the most redox-sensitive. Reversible S-glutathiolation of Cys674 enhances the SERCA 

activity [226–228]. However, irreversible oxidative modifications including sulfonylation of 

Cys674 and nitration of Tyr294/295 decrease SERCA activity [229]. The sodium-calcium 

exchanger (NCX) is another significant mechanism for cytosolic Ca2+ removal. NCX is 

mainly located on plasma membrane. It mediates efflux of one single Ca2+ ion in exchange 

for the import of three Na+ ions [230, 231]. NCX can be activated in the presence of ROS, 

such as H2O2 or that produced by xanthine oxidase with hypoxanthine in vitro [232–234]. 

However, strong ROS like hypochlorite inhibit NCX activity [235]. The potential 

mechanisms of these effects may involve disulfide bond formation by direct redox 

modification and phosphorylation by PKC [236, 237]. Moreover, the plasma membrane 

Ca2+-ATPase, which is responsible for a more modest cytosolic Ca2+ extrusion, is also 

suppressed by oxidative species [238, 239].

Although direct oxidative modification has effects on these Ca2+ channels and transporters, 

oxidative modification of upstream kinases plays a role in Ca2+ regulation as well. In 

particular, LTCC [240–242] and NCX [236, 237, 243] are substrates of protein kinases such 

as PKC (see above) and Ca2+/calmodulin-dependent protein kinase II (CAMKII, see below), 
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which both can be regulated by ROS. The complexity of the intracellular Ca2+ system, 

together with multiple levels of redox sensitivity, makes it challenging to separate the effects 

of direct oxidation by ROS and redox-sensitive kinase activity on Ca2+ channels and 

transporters.

Calmodulin oxidation and calcium/calmodulin dependent protein kinase II 
activation by oxidants—Calmodulin (CaM) is a Ca2+ binding protein that mediates 

many effects of Ca2+. For example, the formation of the Ca2+/CaM complex activates 

MLCK, which in turn regulates actin-myosin interaction and VSM contraction [244]. CaM 

contains four EF-hand Ca2+ binding sites and at least six redox-sensitive methionines. While 

oxidation of Met36, Met51, Met71, Met72 and Met145 lead to CaM degradation [245, 246], 

oxidation of Met144 and Met145 affects the tertiary structure of the C-lobe, resulting in 

destabilization and decreasing substrate affinity [247–249].

CaMKII is a CaMK isoform with many functions, as it phosphorylates various proteins 

involved in migration [250], proliferation [251] and ion channel activity [252] in many 

vascular cells. CaMKII is activated by CaM binding to its autoinhibitory regulatory domain 

[253–255]. The methionines on CaMKII are also sensitive to oxidative species. Erickson et 

al. [256] reported that oxidative modification on Cys280/Met281 in the α isoform or 

Met281/282 in the β, γ, and δ isoforms leads to increased CaMKII activation. Methionine 

sulfoxide reductase A (MsrA) inactivates CaMKII by reducing oxidized methionine residues 

[256]. Moreover, it has been suggested that Ca2+ and CaM are required for oxidative 

modification on CaMKII [256].

Based on current knowledge, Ca2+ and CaM are more potent regulators of CaMKII 

activation than direct oxidative modification [257–260]. How CaM is oxidized in vivo and 

how oxidation might affect its interaction with CaMKII remains unclear. Since both CaM 

and CaMKII play important roles in calcium/CaM signaling and affect a wide range of 

Ca2+-mediated cellular functions [261, 262], further investigation of the interplay of 

oxidation with activation/inactivation of this complex is warranted.

REDOX REGULATION OF THE ACTIN CYTOSKELETON IN CELL 

PHYSIOLOGY

Cell adhesion and migration

Mounting evidence suggests that ROS, particularly H2O2 derived from NADPH oxidases, 

are necessary for cell movement [17, 263]. When cell surface receptors like receptor tyrosine 

kinases (RTKs) and G-protein-coupled receptors (GPCRs) bind to extracellular stimuli such 

as growth factors and chemoattractants, ROS are generated at the cell surface as well as 

within intracellular compartments and react with specific proteins to regulate their activity 

and function [17, 20]. Early studies showed simply that ROS promote cell migration, 

because treatment with ROS-degrading enzymes suppressed growth factor- and 

chemoattractant-induced migration in endothelial cells, neutrophils, fibroblasts and VSMCs 

[264–268]. Moreover, it has been shown that ROS are produced during migration in these 

cells [264, 265, 267, 268]. In particular, PDGF one of the most potent migratory factors for 
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VSMCs, activates NOX1 to produce H2O2, which is required for PDGF-induced migration 

[269–272]. Migration in response to this peptide is attenuated by pre-treatment with 

antioxidants such as NAC, the glutathione peroxidase (GPx) mimetic, ebselen, and catalase 

[269]. VSMCs from NOX1 deficient mice display reduced PDGF- and basic fibroblast 

growth factor (bFGF)-induced migration [273, 274], while VSMCs from NOX1 transgenic 

mice exhibit enhanced migration [273]. NOX4 has also been shown to be critical for VSMC 

migration in response to PDGF [147], and both NOX1 and NOX4 play a role in VSMC 

migration in response to other agonists such as insulin-like growth factor-I [134], VEGF 

[275] and angiotensin II [266].

Migration begins when a cell is exposed to an environmental signal such as a 

chemoattractant or growth factor [276, 277]. Initially, cell membrane extensions protrude 

from the plasma membrane either as spike-like filopodia or broad lamellipodia [278]. 

Protrusive forces, generated by actin polymerization and increased actin branching, are 

needed for the formation of these structures at the leading edge of the cell [16]. Integrins on 

the tips of these lamellipodia mediate the first contacts with the substrate and thus stabilize 

the membrane extensions. If appropriate integrin ligands are sensed, signals are conveyed 

into the cells, resulting in recruitment of further integrins to these sites and the assembly of 

cytoskeletal and signaling molecules into focal contacts, which consequently mature into 

focal adhesions [279, 280]. Next, cell contraction via engagement of actin-myosin 

interactions occurs, facilitated by the Rho signaling pathway [156]. Focal adhesions mature 

and strengthen at the leading edge, while their dissolution in the rear allows the cell to 

contract and move forward [281]. Redox regulation of the actin cytoskeleton and its 

associated proteins is highly integrated into the entire cycle of migration, beginning with 

lamellipodium formation [282]. The growth factor or chemoattractant binds receptor 

tyrosine kinases or G protein-coupled receptors and activates a GEF and consequently Rac 

and CDC42 [276, 283, 284]. Rac and CDC42 separately activate WASP homologue (WH) 

domain-containing proteins neural WASP (NWASP) and WAVE, activating the ARP2/3 

complex and resulting in extension and branching of F-actin [285–287] (Figure 2). Because 

both Rac and CDC42 are redox-sensitive, it is very likely that branched F-actin formation is 

controlled by ROS. Another potential point of redox regulation is the involvement of cofilin 

in F-actin dynamics. Extension of F-actin requires free-barbed ends [288, 289], which 

cofilin provides by its severing function [290, 291]. Thus, free-barbed ends formed by 

cofilin activation, along with the released G-actin, enable formation of new actin filaments 

[292]. As noted above, cofilin itself can be directly oxidized. It was reported recently that 

elevation of H2O2 in migrating cells results in cofilin oxidation on Cys139 and Cys147. 

Oxidation-resistant cofilin impedes cell spreading, adhesion and directional migration [109]. 

This evidence is in line with recent studies that showed physiological oxidative 

modifications on cytoskeletal proteins are required for cell motility [69, 75, 76]. Perhaps 

more importantly, Slingshot1L (SSH1L) phosphatase, which activates cofilin by 

dephosphorylating its inactive form, is also mediated by ROS. In PDGF-treated VSMCs, 

H2O2 derived from NOX1 oxidizes the scaffold protein 14-3-3, leading to disruption of the 

SSH1L/14-3-3 complex and activation of SSH1L, activating cofilin [293, 294]. Cofilin is 

returned to its inactive form by LIMK-mediated phosphorylation [295]. LIMKs, in turn, are 

phosphorylated and activated by Rho and its downstream kinase ROCK as well as Rac and 
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its downstream kinase p21-activated kinase (PAK) [295, 296] (Figure 2). Because Rho and 

Rac are redox-sensitive, LIMK is also likely to be dependent upon ROS, although this 

possibility has not yet been studied in detail.

The next step in migration—leading edge attachment to the substrate—is mediated by 

integrin binding, a phenomenon that has been closely linked to ROS [115]. Integrin 

engagement occurs upon binding with specific sequence motifs of extracellular matrix 

proteins [115, 281]. Subsequently, the activated integrins recruit actin binding proteins such 

as talin [297], paxillin [298], vinculin [299], and α-actinin [300], as well as signaling 

proteins such as Src, FAK and integrin-linked kinase [301], creating focal adhesions (Figure 

2). In fibroblasts, ROS are dramatically increased due to NOX and 5-lipoxygenase activation 

during the adhesion process [181]. Because integrin signaling pathways contain a range of 

redox-sensitive kinases, phosphatases, GTPases and transcription factors, altered ROS levels 

likely affect focal adhesions at multiple levels. For example, inhibition of LMW-PTP by 

direct oxidation enhances FAK and focal adhesion maturation [181]. Two other important 

redox-sensitive protein kinases involved in integrin-mediated signaling are Src and FAK 

[302, 303] (Figure 2). PDGF activates Src during VSMC migration, and inhibition of Src 

attenuates PDGF-induced VSMC migration [302]. Integrin-mediated activation of FAK 

leads to phosphorylation of paxillin, thus regulating its translocation to focal adhesions and 

promoting focal adhesion formation [303]. At the same time, autophosphorylation of FAK 

on tyrosine 397promotes its association with Src [304, 305]. This phosphorylation is 

essential for FAK-induced focal adhesion disassembly, which is important as the cell begins 

to move [306]. Thus, it has been suggested that FAK–Src signaling interrupts focal adhesion 

maturation by promoting disassembly and in turn promoting adhesion turnover as the cell 

extends [307]. Since H2O2 induces FAK autophosphorylation and activates Src, ROS are 

almost certainly physiological mediators of focal adhesion turnover. Furthermore, FAK–Src 

signaling [308] leads to the activation of several downstream signaling cascades, including 

the mitogen-activated protein kinase (MAP kinase)/ERK pathway [309], which in turn 

phosphorylates and activates MLCK [310] and alters the rate constant of FA disassembly 

[311]. Although MAPK/ERK are not known to be directly modified by ROS in this context, 

they experience redox regulation by ROS-activated upstream molecules such as Src, PKC 

and PAK [312–314] (Figure 2).

In addition to influencing focal adhesion disassembly, actin-myosin interactions regulate 

contraction of the cell body to propel forward movement. Ca2+-dependent activation of 

MLCK is the major mechanism regulating VSMC contraction, but Rho GTPases also fine 

tune actin-myosin function [281] (see Contraction below for further details). ROS have been 

extensively linked to activation of RhoA/ROCK signaling in rat aorta [153] and in 

pulmonary VSMCs and endothelial cells [153, 315, 316]. ROCK phosphorylates the myosin 

binding subunit, myosin light chain phosphatase (MLCP), reducing its activity [317]. ROCK 

also acts in cooperation with MLCK to phosphorylate myosin II during migration [318]. 

PAKs, downstream of Rac, negatively regulate myosin II phosphorylation by 

phosphorylating MLCK, but also phosphorylates myosin II directly, leading to actomyosin 

interaction [319] (Figure 2). This mechanism may be ROS-regulated, because PAK 

activation in VSMCs is dependent on NOX1-generated ROS [273]. However, how ROS-
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specific modification of these proteins interacts with phosphorylation signals remains to be 

determined.

In summary, based on the known redox-sensitivity of many cytoskeleton-related signaling 

molecules, as well as whole cell studies using antioxidants to inhibit migration, a clear role 

for targeted, specific redox regulation of migration exists (Figure 2). It is likely that cell 

migration occurring during both normal and pathological processes is regulated by ROS via 

effects on actin dynamics [320–322]. Thus, further investigations of the specific targets of 

ROS and how they are modified during migration of all vascular cells types is in order.

Cell contraction

Contraction of VSMCs is integral to control of vessel tone and blood pressure, and there is 

increasing evidence that ROS are involved in cell contraction pathways. Since Heinle [323] 

showed that exogenous H2O2 application induces vasoconstriction of carotid artery, it has 

been demonstrated that both exposure to ROS and selective depletion of endogenous ROS 

alter cell contractility [324]. The specific roles of ROS in VSMC contraction remain unclear, 

although there are several likely molecular targets. Under oxidative conditions, ROS act both 

upstream and downstream of intracellular Ca2+ release and cytosolic Ca2+ influx. ROS 

increase the open probability of membrane Ca2+ channels and increase Ca2+ release [325–

327] to promote contractile bundle formation. It should be noted that most studies report that 

higher concentrations of ROS suppress force [328, 329]; however, mounting evidence shows 

that low levels of ROS increase force [324, 325, 329].

Although contractile mechanisms differ among cells and tissues, the most well-established 

model of cell contraction relies on actin-myosin cross-bridge cycling driven by ATP 

hydrolysis (Figure 3). This pathway is present in striated muscle as well as in nonmuscle 

cells. The repeated cycles begin with myosin activation, which occurs via phosphorylation of 

the myosin light chain by MLCK, a Ca2+/calmodulin-dependent process [330]. As the 

myosin head crawls along actin filaments, ATP is hydrolyzed. The energy produced during 

this process induces a conformational change in myosin, leading to continued cycles of 

actin-myosin complex formation, ATP hydrolysis and muscle contraction [95]. Actin-

myosin complex formation is regulated by two accessory proteins bound to actin filaments, 

tropomyosin and troponin. In non-muscle and smooth muscle cells, the actin contractile 

bundles are associated with tropomyosin [317]. Here, we mainly focus on redox regulation 

mechanism of contraction in VSMCs (Figure 3).

Cell contraction is induced by multiple stimuli (Figure 3). When agonists such as 

norepinephrine and angiotensin II bind to G-protein coupled receptors, or growth factors 

bind to RTKs, phospholipase C (PLC) is activated. Phospholipase Cγ in particular is a 

redox-sensitive protein activated by recruitment of its Src homology domains to 

phosphotyrosine residues on activated RTKs [331]. In contrast, PLCβ isoforms, which are 

activated by GPCRs, do not have SH2 domains, are not regulated through tyrosine 

phosphorylation, and are not redox-sensitive enzymes [331]. Activation of PLCs catalyzes 

the formation of IP3 and DAG. IP3 binds to receptors in the SR to release Ca2+ into the 

cytosol. Of note, the IP3R is targeted to proteasome degradation by H2O2 [332], resulting in 

a decrease in Ca2+ efflux from the SR. DAG, along with Ca2+, activates the redox-sensitive 
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PKC to promote downstream contractile signaling [95] (Figure 3). How oxidants interact 

with PKC during contraction is unknown. Increases in cytosolic Ca2+ promote the binding of 

CaM to MLCK, resulting in phosphorylation of MLCK and actin-mysoin assembly. The 

small G protein RhoA and its downstream effector ROCK can also regulate the activity of 

MLC by promoting MLCK and inhibiting MLCP, as noted above [317] (Figure 3). ROS-

induced vascular smooth muscle cell contraction mediated via activation of Rho/ROCK has 

been demonstrated by several experimental approaches [139, 153, 315, 333, 334].

Redox regulation of ion channels also has a well-established role in contraction. LTCCs 

open, Ca2+ influx occurs, which, together with IP3R activation, induces Ca2+ release from 

the SR [330] (Figure 3). It has been shown that oxidative modifications suppress the activity 

of these channels [335], while ROS-regulated activation of CaMKII [336], PKA [337], and 

PKC [240] lead to an increase in Ca2+ current by phosphorylation of these channels.

Cell relaxation occurs as a result of decreased intracellular Ca2+ due to inactivation of LTCC 

and activation of SERCA and NCX as well as PMCA to re-uptake Ca2+ into the SR, and 

increased MLCP activity [330] (Figure 3). This complicated process is mediated by a variety 

of redox-sensitive protein kinases and phosphatases such as CaMKII, PKA, PKC, among 

others [255, 338, 339]. As with cell migration, establishing the relationship between 

regulation of these molecules by direct oxidative modification and phosphorylation is 

challenging.

Finally, it should be noted that redox regulation of NO-mediated vasodilation is well 

established. Aside from O2
•−-mediated inactivation of NO itself, which inhibits vasodilation, 

activation of protein kinase G (PKG) to enhance relaxation can be achieved by S-

nitrosylation of Cys42 [340] (Figure 3). This cGMP-independent mechanism of activation 

facilitates Ca2+ extrusion, MLCP activation and consequently relaxation [341].

Cell division and proliferation

Depending on the concentration and duration of ROS exposure, ROS are widely 

acknowledged to both promote and inhibit cell proliferation [342–344]. It appears that low 

levels of transient ROS promote proliferation, while higher levels and/or sustained ROS 

result in cell cycle arrest [344], and very high levels induce apoptosis [345, 346]. Indeed, 

depletion of the ROS generator NOX1 reduces cell proliferation, while NOX1 

overexpression enhances proliferation [273] in an H2O2-dependent manner [347]. Similarly, 

treatment with ROS scavengers or knockdown of NOX2 or NOX4 to decrease endogenous 

ROS decreases endothelial cell proliferation [348], yet NOX4 can also induce VSMC 

differentiation via H2O2 to have the opposite effect [349, 350].

Integrin activation (necessary for anchorage-dependent growth) and growth factor binding 

both stimulate ROS production that is thought to act as a signaling molecule in a variety of 

pathways to regulate cell division [342–344]. Indeed, ROS levels are highest during mitosis 

and lowest during the G1 phase of the cell cycle [351–353]. ROS levels are especially high 

and diffuse in prophase, and while levels of ROS drop during cytokinesis, there appear to be 

discrete areas of high ROS. For example, a methodology paper by Hsiegh and colleagues 
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[352] shows high ROS levels in what appears to be the intercellular bridge during late stages 

of cytokinesis.

While we have not been able to identify any reports of the actin cytoskeleton or its 

regulatory proteins being oxidized during proliferation, the actin cytoskeleton is intimately 

involved in cell division, as are many of the proteins discussed above that are known to be 

oxidized. With this in mind, we summarize here the indirect evidence for cytoskeletal 

oxidation in proliferation (Figure 4).

The role of the actin cytoskeleton in cell division has been recently reviewed in detail [92]. 

The dynamic ratio of G- and F-actin within a cell regulates four main aspects of cell 

division: 1) transcription of pro-proliferative genes; 2) cell rounding at mitosis onset; 3) 

mitotic spindle orientation and function; and 4) contractile ring formation/cytokinesis 

completion (Figure 4). The first of these functions is related to the transcriptional co-factor 

myocardin-related transcription factor (MRTF-A). When actin is in its monomeric (globular) 

form it prevents MRTF-A nuclear localization via multiple mechanisms. Nuclear G-actin 

binds MRTF-A and enhances its nuclear export [354]. Cytoplasmic G-actin binds MRTF-A 

and sequesters it in the cytoplasm. However, polymerization of actin allows the release of 

MRTF-A, which then translocates to the nucleus to enhance transcription of serum response 

factor (SRF)-target genes [355]. Depending on a variety of factors (SRF phosphorylation, 

cell type, etc. [356, 357]), SRF can either enhance proliferation or promote VSMC 

differentiation. In general, MRTF-A/SRF signaling promotes the latter. This effectively 

inhibits pro-growth signaling of SRF, because MRTF-A competes for a common binding 

surface on SRF with co-activators that promote proliferation [358]. While there are 

exceptions, in general oxidation of actin on cysteine or methionines (by MICALs) causes the 

balance between G- and F- actin to be shifted towards G-actin [70, 71, 77, 78]. However, 

cofilin oxidation has the opposite effect, impairing cofilin’s severing functions and 

promoting F-actin [106–109]. Therefore, one would predict that actin oxidation will enhance 

cell proliferation, but cofilin oxidation will inhibit proliferation by promoting MRTF-A/SRF 

complex formation. However, a recent report suggests that it is more complicated than this. 

As expected, MICAL-2 oxidation of nuclear actin on Met44 promoted F-actin disassembly, 

yet surprisingly this promoted MRTF-A/SRF-driven gene expression, including cardiac 

muscle specific genes in developing zebrafish embryos [83]. Since differentiation and 

proliferation are antagonistic in muscle cells, this suggests that oxidation of nuclear actin by 

MICAL-2 may impair proliferation in these conditions. To complicate matters further, F-

actin promotes nuclear entry of pro-proliferative transcriptional co-activators (e.g.YAP and 

TAZ), as well [359].

Separate from this probability, myosin II recruitment to the cell cortex generates intracellular 

tension that is required for cell rounding during mitosis [360]. This rounding is important for 

proper spindle assembly and efficient, error-free chromosome separation [361]. When 

myosin II is directly oxidized, its activity is inhibited [96]. Therefore, for proper cell division 

to occur, myosin II must be protected from the elevated levels of ROS during mitosis to 

enable cell rounding. Additionally, the interaction of F-actin with myosin II helps generate 

the forces necessary to promote contractile ring ingression and centrosome separation [92, 

362]. Opposing this, branching of actin seems to inhibit contractile ring formation and thus 
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cytokinesis [92]. Cdc42 and IQGAP, which promote actin branching, are both directly 

oxidized [138, 163], yet it is unclear how this affects their roles in cell division.

All of these functions of actin are tightly regulated spatiotemporally by numerous proteins 

(Figure 4). Cofilin binds to F-actin and severs it to shift the balance towards G-actin [359], 

while formins (such as mDia) speed the assembly of F-actin [134]. Cofilin and myosin II 

activities are regulated by kinases, which in turn are regulated by Rho family GTPases, 

which are activated by specific GEFs and turned “off” by GAPs at discrete locations during 

mitosis and cytokinesis. For example, during anaphase, the RhoGEF Ect2 is recruited to the 

mitotic spindle (and held in an active conformation) through binding MgcRacGAP [363]. 

This causes RhoA activation directly above the central spindle, which leads to formin-

induced actin polymerization to generate the contractile ring. RhoA also activates ROCK to 

stimulate myosin II to pull on the actin filaments and cause furrow ingression [134]. Too 

wide an area of RhoA activation and/or Rac1 activation at the cleavage furrow leads to 

cytokinesis defects, demonstrating how important it is that these GTPases are tightly 

regulated spatiotemporally during this process [364]. As described above, both RhoA and 

Rac1 can be directly oxidized to activate these GTPases [92, 139] and RhoA can also be 

inhibited by high levels of ROS [144].

Unfortunately, the role of ROS in cell division is difficult to predict, since different 

concentrations and durations of ROS signaling can have very different effects [342–344], 

and ROS are transient signaling molecules that must be generated at the correct time and 

place to regulate cellular processes. The known role of ROS in growth, coupled with the 

established regulation of the cytoskeleton by ROS, clearly indicate the need for further 

investigation into how ROS regulate the cytoskeleton in the context of cell division.

REDOX REGULATION OF THE ACTIN CYTOSKELETON IN VASCULAR 

DISEASE

Vascular disease results in part from impaired vascular function caused by several vessel 

wall pathologies such as hypertensive vascular remodeling, atherosclerosis, restenosis and 

thrombosis [365–367]. A considerable amount of in vivo evidence suggests that ROS are 

involved in both hypertension and proatherogenic mechanisms and contribute to vascular 

dysfunction [368, 369]. Activation of NOXes has been demonstrated in a variety of animal 

models of vascular disease such as spontaneous hypertension [370], angiotensin-II-induced 

hypertension [371, 372], hypercholesterolemia [373] and atherosclerosis [374–376]. Many 

vasoactive agonists, such as angiotensin II, VEGF, PDGF, and thrombin [377–381] generate 

ROS. As discussed above, ROS regulate the actin cytoskeleton at multiple levels, impacting 

cell migration, proliferation and contraction [382]. All these process have distinct 

repercussions on the structure of vascular wall, suggesting that redox regulation of actin 

cytoskeletal signaling may play important roles in vascular remodeling and dysfunction.

In hypertension, vascular remodeling is characterized by rearrangement of vascular wall 

components like the actin cytoskeleton [383]. A decline in G-actin content, conforming to 

increased actin polymerization and F-actin formation was described [384, 385]. Actin 

polymerization is also believed to contribute to vascular constriction and resistance artery 
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remodeling in hypertension [386, 387]. Disruption of actin filaments inhibits Ca2+ channels 

in VSMC from spontaneously hypertensive rats, resulting in dysfunction of vasodilation 

[388]. Several redox-senstive signaling pathways have also been suggested to link the 

cytoskeleton and vascular disease. For example, PKC-mediated vasoconstriction in cerebral 

arteries is highly dependent on cytoskeletal actin polymerization for force generation [389]. 

Although only a few studies have directly explored the relationship of ROS-induced 

cytoskeleton modification to vascular remodeling, most of the regulatory mechanisms have 

yet to be elucidated. The role of redox modification of cytoskeleton signaling must be 

considered in this context.

Studies in atherosclerosis showed that ROS modulate cytoskeletal changes in VSMCs [390, 

391]. A reduction of actin binding proteins such as gelsolin and vinculin associated with 

actin disorganization was reported in the medial layer of human atherosclerotic coronary 

arteries [390, 391]. In animal models of vascular injury, superoxide dismutase attenuated 

neointima formation by inhibiting VSMC migration and proliferation [392, 393], potentially 

through down-regulation of the actin polymerization protein, mDia1 [392]. In a 

hypercholesterolemic rabbit model, changes in actin microfilaments initially promoted 

endothelial–substratum adhesion, but eventually led to a reduction of stress fibers and 

dysfunctional adhesion, with accumulation of macrophages and atherosclerotic plaque 

formation [394]. Several studies indicated that inhibition of actin filament polymerization 

interferes with vasodilator signaling in human coronary arterioles and the pulmonary 

circulation, also suggesting a pivotal role for endothelial cytoskeleton integrity in 

modulating endothelial-dependent vasodilator signal transduction [206, 395, 396]. However, 

none of these studies considered the potential role of redox regulation of the actin 

cytoskeleton in these outcomes, even though in every case ROS have been implicated in the 

response.

The redox-sensitive Rho family GTPases also play an important role in hypertension and 

atherosclerosis. Alterations in activity of RhoA/ROCK signaling have been proposed to 

contribute to the increased peripheral vascular resistance in hypertension [397–402]. Uehata 

et al [403] first reported a reduction of smooth muscle contraction and correction of 

hypertension in several hypertensive rat models by the specific ROCK inhibitor Y-27632. 

Recent studies showed that ROCK inhibition also prevented hypertrophic remodeling of 

coronary arterioles in spontaneously hypertensive rats [400, 404]. In addition, ROCK has 

been shown to participate in the pathogenesis of atherosclerosis [405], since long-term 

inhibition of ROCK can significantly reduce atherosclerotic lesion both in LDLr−/− mice 

and porcine models [406–408]. However, these studies did not explore the role of ROS in 

ROCK activation. Only Jin et al. [153] reported that Y-27632 relaxed rat aortic segments 

made to contract in response to experimental protocols that generate ROS. Because 

oxidative stress characterizes many models of vascular diseases [26, 409, 410], the 

intersection between ROS and the Rho/ROCK pathway should be further explored.

CONCLUSIONS AND FUTURE DIRECTIONS

While ROS regulate cell motility and proliferation, and direct oxidation of many of the actin/

actin-regulatory proteins involved in these responses has been described, the precise role of 
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oxidation of specific proteins in these critical cellular functions largely remains to be 

determined. Measurement of oxidation of specific cytoskeletal proteins during migration, 

proliferation and contraction is warranted. As mentioned above, different concentrations and 

durations of ROS signaling can have very different effects [342–344], and ROS are transient 

signaling molecules that must be generated at the correct time and place to regulate cellular 

processes. This suggests that measurement of oxidation of cytoskeletal proteins must be 

considered over time and in specific subcellular localizations. Tools are just now being 

developed that allow us to determine the subcellular localization of specific ROS generated 

throughout the cell cycle and during migration (for example organelle-targeted HyPer for 

H2O2 [411] or DCP-Bio to detect oxidized proteins in situ [412]). Additionally, it will be 

necessary to synchronize cells or use single cells to determine if each of the proteins 

described above is oxidized at specific times during migration, contraction and cell division. 

Oxidation-resistant mutants of these proteins should be tested for their ability to impair these 

processes in order to confirm a role for oxidation. Although many contributing factors lead 

to the development of vascular diseases [413], the potential role of oxidative modification of 

actin/actin-regulatory proteins appears to be a ripe area for investigation.
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Cys cysteine

Met methionine

-SOH sulfenic acid

GSH glutathione

GSSG glutathione disulfide

RS-SR′ disulfide bond

SNO S-nitrosylation

SO2H sulfinic acid

SO3H sulfonic acid

NF-κB nuclear factor-κB

AP-1 activator protein-1

Hic-5 hydrogen peroxide-inducible clone-5

MICALs molecule interacting with CasL

NM myosin II non-muscle myosin II

VSMCs vascular smooth muscle cells

MHC myosin heavy chain

MLCK myosin light chain kinase

MLCP myosin light chain phosphatase

ROCK Rho kinase

ECM extracellular matrix

NAC N-acetyl-cysteine

GEFs guanine nucleotide exchange factors

GAPs GTPase activating proteins

GDIs guanine nucleotide dissociation inhibitors

PAO phenylarsine oxide

PTPs protein tyrosine phosphatases

LMW-PTP low-molecular-weight protein tyrosine phosphatase

VEGF vascular endothelial growth factor

PDGF platelet-derived growth factor
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FAK focal adhesion kinase

CSK C-terminal Src-kinase

PKC protein kinase C

DAG diacyglycerol

LTCC L-type voltage-gated Ca2+ channels

IP3R inositol 1,4,5-trisphosphate receptor

SR sarcoplasmic reticulum

SERCA sarco-/endoplasmic reticulum Ca2+-ATPase

NCX sodium-calcium exchanger

CaM calmodulin

CAMKII calmodulin-dependent protein kinase II

RTKs receptor tyrosine kinases

GPCRs G-protein-coupled receptors

GPx glutathione peroxidase

bFGF basic fibroblast growth factor

WASP Wiskott–Aldrich Syndrome protein

SSH1L slingshot1L

PAK p21-activated kinase

MAPK mitogen-activated protein kinase

PLC phospholipase C

PKG protein kinase G

SRF serum response factor

MRTF-A myocardin-related transcription factor

YAP yes-associated protein

TAZ transcriptional co-activator with PDZ-binding motif
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Highlights

• The actin cytoskeleton serves structural and signaling functions in vascular 

cells.

• Actin, its associated proteins and upstream signaling molecules can be 

oxidized by reactive oxygen species induced by physiological or 

pathophysiological stimuli.

• Redox-regulation of the actin signaling network is involved in cell migration, 

contraction and proliferation.

• Redox modification of actin cytoskeletal proteins may be important in the 

development of vascular diseases
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Figure 1. The major mechanisms of protein oxidative modifications
Left panel indicates the conventional model of reversible oxidative modifications of protein 

on cysteine thiol groups. These reversible modifications of sulfenic acid residues (-SOH) 

include formation of glutathione disulfide (GSSG), intra- or extra-molecular disulfide bonds 

(RS-SR′), S-glutathionylated proteins (R-SSG) and S-nitrosylation (SNO). The 

modifications can be reversed by, for example, thioredoxin (Trx) and/or glutathione (GSH). 

When levels of ROS increase, sulfenic acids undergo further oxidation to sulfinic (SO2H) 

and/or sulfonic acid (SO3H), which are irreversible. These and two other major irreversible 

oxidative modifications of proteins (tyrosine nitration and carbonylation) are shown on the 

right panel.
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Figure 2. The actin cytoskeleton signaling network controlling cell motility and its redox 
regulation
Cell migration consists of cycles of lamellipodia formation, focal adhesion assembly at the 

leading edge, contraction of the cell body and de-adhesion and retraction at the rear edge. 

The signaling pathways that have been implicated in cell adhesion and migration are shown., 

including cell division control protein 42 homolog, Cdc42; Wiskott-Aldrich syndrome 

protein, WASP; WASp family verprolin-homologous protein, WAVE; actin-related protein 

2/3, ARP2/3; protein kinase C, PKC; Rho-associated protein kinase, ROCK; LIM domain 

kinase, LIMK; myosin light chain kinase, MLCK; p21-activated kinase, PAK; protein 

tyrosine phosphatases, slingshot-1L phosphatase, SSH1L, low molecular weight PTPs, 

LMW-PTPs, myosin light chain phosphatase, MLCP; Rho GTPases and guanine nucleotide 

exchange factors (GEFs); phospholipase C β/γ (PLC β/γ); phosphatidylinositol (4,5)-

bisphosphate (PIP2); inositol 1,4,5-trisphosphate (IP3); diacylglycerol (DAG). In this 

diagram, directly oxidized proteins are indicated by bold in red.
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Figure 3. The actin cytoskeleton signaling network controlling cell contraction and its redox 
regulation
Cell contraction is induced when agonists such as norepinephrine or angiotensin II bind to 

receptors and activate phosphoinositide-specific-phospholipase C (PLC) to catalyze the 

formation of inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) from 

phosphatidylinositol (4,5)-bisphosphate (PIP2). Meanwhile, Ca2+ influx induced by voltage-

gated Ca2+ channels (LTCC) along with inositol 1,4,5-trisphosphate receptor (IP3R) 

activation inducing release of Ca2+ from the endoplasmic reticulum, promotes Ca2+ /

calmodulin (CaM) activation of the actin-myosin complex. Decreased intracellular Ca2+ 

concentration achieved by inactivation of LTCC, activation of Ca2+ reuptake by the sarco-/

endoplasmic reticulum Ca2+ -ATPase (SERCA), and activation of Ca2+ extrusion by the 

sodium-calcium exchanger (NCX) and plasma membrane Ca2+-ATPase (PMCA) results in 

cell relaxation by reducing Ca2+ and disrupting actin-myosin interaction. These processes 

are also regulated by kinases (calmodulin-dependent protein kinase II, CaMKII; Rho-

associated protein kinase, ROCK; myosin light chain kinase, MLCK; protein kinase C, 

PKC; protein kinase A, PKA; protein kinase G, PKG) and phosphatases (myosin light chain 

phosphatase, MLCP), Rho GTPases and Guanine Nucleotide Exchange Factors (GEFs). In 

this diagram, directly oxidized proteins are indicated by bold in red.
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Figure 4. The actin cytoskeleton signaling network controlling cell division and its redox 
regulation
The ratio of globular to filamentous actin within a cell regulates transcription of anti-

proliferative genes; cell rounding at mitosis onset; mitotic spindle orientation and function; 

and contractile ring formation/cytokinesis completion. These processes are further regulated 

by transcriptional regulators (serum response factor, SRF; myocardin-related transcription 

factor, MRTFA), actin regulatory proteins (diaphanous-related formin-1, mDia; Cofilin; cell 

division control protein 42 homolog, Cdc42; Wiskott-Aldrich syndrome protein, WASP; 

WASp family verprolin-homologous protein, WAVE; actin-related protein 2/3, ARP2/3), 

kinases (Rho-associated protein kinase, ROCK; LIM domain kinase, LIMK; myosin light 

chain kinase, MLCK; citron kinase, Citron-K; p21-activated kinase, PAK), phosphatases 

(myosin light chain phosphatase, MLCP), Rho GTPases, guanine nucleotide exchange 

factors (Rho guanine nucleotide exchange factor 2, GEFH1; epithelial cell transforming 

sequence #2, Ect2), and GTPase activating proteins, of which many can be directly oxidized 

to regulate their function. In this diagram, directly oxidized proteins are indicated by bold in 

red.
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