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Abstract There is a critical need for customized analytics
that take into account the stochastic nature of the inter-
nal structure of materials at multiple length scales in order
to extract relevant and transferable knowledge. Data-driven
process-structure-property (PSP) linkages provide a systemic,
modular, and hierarchical framework for community-driven
curation of materials knowledge, and its transference to
design and manufacturing experts. The Materials Knowl-
edge Systems in Python project (PyMKYS) is the first open-
source materials data science framework that can be used
to create high-value PSP linkages for hierarchical materi-
als that can be leveraged by experts in materials science and
engineering, manufacturing, machine learning, and data sci-
ence communities. This paper describes the main functions
available from this repository, along with illustrations of
how these can be accessed, utilized, and potentially further
refined by the broader community of researchers.
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Introduction

Current practices for developing tools and infrastructure
used in multiscale materials design, development, and
deployment are generally highly localized (sometimes even
within a single organization) resulting in major inefficien-
cies (duplication of effort, lack of code review, not engaging
the right talent for the right task, etc.). Although it is well
known that the pace of discovery and innovation signifi-
cantly increases with effective collaboration [1-4], scaling
such efforts to large heterogeneous communities such as those
engaged in materials innovation has been very difficult.

The advent of information technology has facilitated
massive electronic collaborations (generally referred to as
e-collaborations) that have led to significant advances in
several domains including the discovery of the Higg’s boson
[5], the sequencing of the human genome [6], the Polymath
project [7], the monitoring of species migration [8, 9], and
numerous open-source software projects. E-collaborations
allow experts from complementary domains to create
highly productive collaborations that transcend geograph-
ical, temporal, cultural, and organizational distances. E-
collaborations require a supporting cyber-infrastructure that
allows team members to generate, analyze, disseminate,
access, and consume information at dramatically increased
pace and/or quantity [10]. A key element of this emerging
cyber-infrastructure is open-source software, as it elimi-
nates collaboration hurdles due to software licenses and can
help foster truly massive e-collaborations. In other words,
even with collaborations involving proprietary data, open-
source cyber-infrastructure provides a common language
that can facilitate e-collaborations with large numbers of
team members.
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Several recent national and international initiatives [11—
13] have been launched with the premise that the adoption
and utilization of modern data science and informatics
toolsets offers a new opportunity to accelerate dramatically
the design and deployment cycle of new advanced materials
in commercial products. More specifically, it has been rec-
ognized that innovation cyber-ecosystems [14] are needed
to allow experts from the materials science and engineer-
ing, design and manufacturing, and data science domains
to collaborate effectively. The challenge in integrating these
traditionally disconnected communities comes from the vast
differences in how knowledge is captured, curated, and dis-
seminated in these communities [15]. More specifically,
knowledge systems in the materials field are rarely captured
in a digital form. In order to create a modern materials inno-
vation ecosystem, it is imperative that we design, develop,
and launch novel collaboration platforms that allow auto-
mated distilling of materials knowledge from large amounts
of heterogeneous data acquired through customized pro-
tocols that are necessarily diverse (elaborated next). It is
also imperative that this curated materials knowledge is pre-
sented to the design and manufacturing experts in highly
accessible (open) formats.

Customized materials design has great potential for
impacting virtually all emerging technologies, with signif-
icant economic consequences [12, 13, 16-24]. However,
materials design (including the design of a manufacturing
process route) resulting in the combination of properties
desired for a specific application is a highly challenging

inverse problem due to the hierarchical nature of the inter-
nal structure of materials. Material properties are controlled
by the materials’ hierarchical internal structure as well
as physical phenomena with timescales that vary at each
of the hierarchical length scales (from the atomic to the
macroscopic length scale). Characterization of the struc-
ture at each of these different length scales is often in
the form of images which come from different experimen-
tal/computational techniques resulting in highly heteroge-
neous data. As a result, tailoring the material hierarchical
structure to yield desired combinations of properties or per-
formance characteristics is enormously difficult. Figure 1
provides a collection of materials images depicting materi-
als structures at different length scales, which are generally
acquired using diverse protocols and are captured in equally
diverse formats.

While the generation (from experiments and computer
simulations) and dissemination of datasets consisting of
heterogeneous images are necessary elements in a modern
materials innovation ecosystem, there is an equally criti-
cal need for customized analytics that take into account
the stochastic nature of these data at multiple length scales
in order to extract high-value, transferable knowledge.
Data-driven process-structure-property (PSP) linkages [26]
provide a systemic, modular, and hierarchical framework
for community engagement (i.e., several people making
complementary or overlapping contributions to the overall
curation of materials knowledge). Computationally cheap
PSP linkages also communicate effectively the curated

Fig. 1 Heirarchical materials structure at multiple length scales
a Simulated graphene crystalline structure. b Simulated fivefold icosa-
hedral Al-Ag quasicrystals. ¢ High-resolution electron microscopy
image of delamination cracks in h-BN particles subjected to com-
pressive stress in the (0001) planes (within a silicon nitride particu-
late-reinforced silicon carbide composite). d Electron diffraction
pattern of an icosahedral Zn-Mg-Ho quasicrystal. e Cross-polarised

light image of spherulites in poly-3-hydroxy butyrate (PHB). f Cast
iron with magnesium-induced spheroidised graphite. g SEM micro-
graph of a taffeta textile fragment. h Optical microscopy image of a
cross-section of an aluminum casting. i X-ray tomography image of
open-cell polyurethane foam. Images courtesy of Core-Materials [25]
(Color figure online)
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materials knowledge to design and manufacturing experts in
highly accessible formats.

The Materials Knowledge Systems in Python project
(PyMKS) is the first open-source materials data analytics
toolkit that can be used to create high-value PSP linkages
for hierarchical materials in large-scale efforts driven and
directed by an entire community of users. In this regard, it
could be a foundational element of the cyber-infrastructure
needed to realize a modern materials innovation ecosystem.

Current Materials Innovation Ecosystem

Open-access materials databases and computational tools
are critical components of the cyber-infrastructure needed
to curate materials knowledge through -effective e-
collaborations [27]. Several materials science open-source
computational toolsets and databases have emerged in
recent years to help realize the vision outlined in the Mate-
rials Genome Initiative (MGI) and the Integrated Computa-
tional Materials Engineering (ICME) paradigm [12, 13, 16—
24]. Yet, the creation and adoption of a standard materials
taxonomy and database schema has not been established due
to the unwieldy size of material descriptors and heteroge-
neous data. Additionally, the coupled physical phenomena
that govern material properties are too complex to model all
aspects of a material simultaneously using a single compu-
tational tool. Consequently, current practices have resulted
in the development of computation tools and databases with
a narrow focus on specific length/structure scales, material
classes, or properties.

The NIST Data Gateway contains over 100 free and paid
query-able web-based materials databases. These databases
contain atomic structure, thermodynamics, kinetics, funda-
mental physical constants, and x-ray spectroscopy, among
other features [28]. The NIST DSpace provides a cura-
tion of links to several materials community databases [29].
The NIST Materials Data Curation Systems (MDCS) is a
general online database that aims to facilitate the captur-
ing, sharing, and transforming of materials data [30]. The
Open Quantum Materials Database (OQMD) is an open-
source data repository for phase diagrams and electronic
ground states computed using density functional theory
[31]. MatWeb is a database containing materials properties
for over 100,000 materials [32]. Atomic FLOW of Materi-
als Discovery (AFLOW) databases millions of materials and
properties and hosts computational tools that can be used
for atomic simulations [33]. The Materials Project (and the
tool pyMatgen) [34, 35] provides open web-based access
to computed information on known and predicted materials
as well as analysis tools for electronic band structures. The
Knowledgebase of Interatomic Models (OpenKIM) hosts
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open-source tools for potentials for molecular simulation of
materials [36]. PRedictive Integrated Structural Materials
Science (PRISMS) hosts a suite of ICME tools and datas-
torage for the metals community focused on microstructure
evolution and mechanical properties [37]. Granta Materi-
als and Citrine Informatics represent two of the for-profit
efforts in these domains. Granta Materials Intelligence pro-
vides enterprise-scale infrastructure for in-house materials
data management, which can be integrated with design tools
[38]. Citrine Informatics is a cloud-based platform that pro-
vides access to multisource material databases as well as
machine learning tools [39, 40]. Citrine Informatics also
maintains open-access databases as well as open-source
software projects [41].

SPPARKS Kinetic Monte Carlo Simulator (SPPARKS)
is a parallel Monte Carlo code for on-lattice and off-lattice
models [42]. MOOSE is a parallel computational frame-
work for coupled systems of nonlinear equations [43].
Dream3D is a tool used for synthetic microstructure genera-
tion, image processing, and mesh creation for finite element
[44].

While there exits a sizable number of standard ana-
lytics tools [45-54], none of them are tailored to create
PSP linkages from materials structure image data and their
associated properties. PyMKS aims to seed and nurture
an emergent user group in the materials data analytics
field for establishing homogenization and localization (PSP)
linkages by leveraging open-source signal processing and
machine learning packages in Python. An overview of the
PyMKS project accompanied with several examples is pre-
sented here. This paper is a call to others interested in
participating in this open science activity.

Theoretical Foundations of Materials
Knowledge Systems

Material properties are controlled by their internal structure
and the diverse physical phenomena occurring at multi-
ple time and length scales. Generalized composite theories
[55, 56] have been developed for hierarchical materials
exhibiting well-separated length scales in their internal
structure. Generally speaking, these theories either address
homogenization (i.e., communication of effective proper-
ties associated with the structure at a given length scale to
a higher length scale) or localization (i.e., spatiotemporal
distribution of the imposed macroscale loading conditions
to the lower length scale). Consequently, homogeniza-
tion and localization are the essential building blocks in
communicating the salient information in both directions
between hierarchical length/structure scales in multiscale
materials modeling. It is also pointed out that localization
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is significantly more difficult to establish, and implicitly
provides a solution to homogenization.

The most sophisticated composite theory available today
that explicitly accounts for the full details of the mate-
rial internal structure (also simply referred as microstruc-
ture) comes from the use of perturbation theories and
Green’s functions [55, 57-68]. In this formalism, one usu-
ally arrives at a series expansion for both homogenization
and localization, where the individual terms in the series
involve convolution integrals with kernels based on Green’s
functions. This series expansion was refined and gener-
alized by Adams and co-workers [67, 69, 70] through
the introduction of the concept of a microstructure func-
tion, which conveniently separates each term in the series
into a physics-dependent kernel (based on Green’s func-
tions) and a microstructure-dependent function (based on
the formalism of n-point spatial correlations [61-66]).

Materials knowledge systems (MKS) [71-77] comple-
ments these sophisticated physics-based materials compo-
site theories with a modern data science approach to create
a versatile framework for extracting and curating multiscale
PSP linkages. More specifically, MKS employs a discretized
version of the composite theories mentioned earlier to gain
major computational advantages. As a result, highly adapt-
able and templatable protocols have been created and used
successfully to extract robust and versatile homogenization
and localization metamodels with impressive accuracy and
broad applicability over large microstructure spaces.

The MKS framework is based on the notion of a
microstructure function. The microstructure function pro-
vides a framework to represent quantities that describe
material structure such as phase identifiers, lattice orien-
tation, chemical composition, defect types, and densities,
among others (typically referred to as local states). The
microstructure function, m; (h; s), represents a probability
distribution for the given local state, h € H, at each posi-
tion, s € S, in a given microstructure, j [78-81]. The
introduction of the local state space H (i.e., the complete set
of all potential local states) provides a consolidated variable
space for combining the diverse attributes (often a combina-
tion of scalar and tensor quantities) needed to describe the
local states in the material structure. The MKS framework
requires a discretized description of m ;, which is denoted
here as m [h; s], where the [-; -] represent the discretized
space (in contrast to (-; -), which defines the continuous
space). The “;” symbol separates indices in physical space
to the right of “;” from indices in local state space to the
left of *“;”. In most applications, S is simply tessellated into
voxels on a regular (uniform) grid so that the position can
be denoted by s — i, j, k in three dimensions.

As noted earlier, the local state space in most advanced
materials is likely to demand sophisticated representations.

In prior work [73, 82, 83], it was found that spectral repre-
sentations on functions on the local state space offered many
advantages both in compact representation and in reduc-
ing the computational cost. In such cases, i indexes the
spectral basis functions employed. The selection of these
functions depends on the nature of local state descriptors.
Examples include (i) the primitive basis (or indicator func-
tions) used to represent simple tessellation schemes [71, 72,
74-79, 84], (ii) generalized spherical harmonics used to rep-
resent functions over the orientation space [73, 82], and (iii)
Legendre polynomials used to represent functions over the
concentration space [83].

Homogenization

Comparing different microstructures is quite difficult even
after expressing them in convenient discretized descriptions
mainly due to the lack of a reference point or a natural origin
for the index s in the tessellation of the microstructure vol-
ume. Yet the relative spatial distributions of the local states
provide a valuable representation of the microstructure that
can be used effectively to quantify the microstructure and
compare it with other microstructures in robust and mean-
ingful ways [77-79, 81, 84]. The lowest order of spatial cor-
relations with relative spatial information comes in the form
of 2-point statistics and can be computed as a correlation of
a microstructure function such that

1

fj[h,h;r]=m

ij[h;s]mj[h/;s—i-r], (D

N

where r is a discrete spatial vector within the voxelated
domain specified by s, fj[h,h';r] is one set of 2-point
statistics for the local stats & and 4, and € [r] is a nor-
malization factor that depends on r [84]. The subscript j
refers to a sample microstructure used for analysis (i.e.,
each j could refer to a microstructure image). The physical
interpretation of the 2-point statistics is explained in Fig. 2
with a highly simplified two-phase microstructure (the two
phases are colored white and gray). If the primitive basis
is used to discretize both the spatial domain and the local
state space then f;[h, h'; r] can be interpreted as the prob-
ability of finding local states & and A’ at the tail and head,
respectively, of a randomly placed vector r.

Two-point statistics provide a meaningful representation
of the microstructure, but create an extremely large feature
space that often contains redundant information. Dimen-
sionality reduction can be used to create low dimensional
microstructure descriptors from the sets of spatial corre-
lations (based on different selections of 4 and k') with
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Fig. 2 The discretization scheme for both the microstructure func-
tion and the vector space needed to define the spatial correlations,
illustrated on a simple two-phase composite material. The discretized
vectors r describe the relative positions between different spatial
locations

principal component analysis (PCA). The PCA dimension-
ality reduction can be mathematically expressed as follows:

filll~ Y ki ¢k, 11+ FI00. @)

keK

In Eq. 2, f; [!]is a contracted representation of f; [h, h; r]
as a large vector (i.e., / maps uniquely to every combination
of h, h’, and r deemed to be of interest in the analyses).
The 1 j[k] are low dimensional microstructure descriptors
(the transformed 2-point statistics) or principal component
scores (PC scores). The ¢ [k, [] are the calibrated principle
components (PCs) and the f[I] are the mean values from the
calibration ensemble of f; [/] for each [. The k € K indices
refer to the u; [k] in decreasing order of significance and
are independent of /, I/, and r. The main advantage of this
approach is that the f; [/] can be reconstructed to sufficient
fidelity with only a small subset of w ; [k] [85].

After obtaining the needed dimensionality reduction in
the representation of the material structure, machine learn-
ing models can be used to create homogenization PSP link-
ages of interest. As an example, a generic homogenization
linkage can be expressed as follows:

P = Fu k) 3)

In Eq. 3, p".ff

G is the effective materials response (reflect-
ing an effective property in structure-property linkages or
an evolved low dimensional microstructure descriptor in
process-structure linkages), and F is a machine learning

function that links w ;[k] to p;ff )

@ Springer

Localization

MKS Localization linkages are significantly more com-
plex than the homogenization linkages. These are usually
expressed in the same series forms that are derived in the
general composite theories, while employing discretized
kernels based on Green’s functions [55, 57-68]. Mathe-
matically, the MKS localization linkages are expressed as
follows:

pjls] = Za[h; rimjlh;s —r]

h;r
+ Z alh, h'sr, r'lmjlhy s — rim;
hh s’
[As —7r' 1+ ... 4)

In Eq. 4, p;[s] is the spatially resolved (localized) response
field (e.g., a response variable such as stress or strain rate
in a structure-property linkage, or an evolved microstructure
function in a process-structure linkage), and «[A; r] are the
Green’s function-based discretized influence kernels. These
digital kernels are calibrated using regression methods
[71-74, 82, 83].

Figure 3 provides schematic overviews of the MKS
homogenization and localization workflows. More detailed
explanations on the MKS homogenization and localization
linkages can be found in prior literature [71-79, 83, 841].

Materials Knowledge Systems in Python

PyMKS is an object-oriented numerical implementation of
the MKS theory developed in the literature [72]. It pro-
vides a high-level, computationally efficient framework
to implement data pipelines for classification, cataloging,
and quantifying materials structures for PSP relationships.
PyMKS is written in Python, a natural choice for scientific
computing due to its ubiquitous use among the data science
community as well as many other favorable attributes [86].
PyMKS is licensed under the permissive MIT license [87]
which allows for unrestricted distribution in commercial and
non-commercial systems.

Core Functionality

PyMKS consists of four main components including a
set of tools to compute 2-point statistics, tools for both
homogenization and localization linkages, and tools for
discretizing the microstructure. In addition, PyMKS has
modules for generating data sets using conventional numer-
ical simulations and a module for custom visualization of
microstructures. PyMKS builds on Scikit-learn’s pipelining



Integr Mater Manuf Innov (2017) 6:36-53

41

Discretize :
Microstructures

Compute
2-Point
Statistics
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Fig. 3 The MKS homogenization workflow (left) consists of four
steps. 1. Discretize the raw microstructure with the microstructure
function. 2. Compute 2-point statistics using local states (Eq. 1).
3. Create low dimensional microstructure descriptors using dimen-
sionality reduction techniques (Eq. 2). 4. Establish a linkage with

methodology to create materials-specific machine learning
models. This is a high-level system for combining multiple
data and machine learning transformations into a single cus-
tomizable pipeline with only minimal required code. This
approach makes cross-validation and parameter searches
simple to implement and avoids the complicated book keep-
ing issues associated with training, testing, and validating
data pipelines in machine learning.

The starting point for an MKS homogenization analysis
is to use 2-point statisics as outlined in Eq. 1 and provided in
PyMKS by the MKSStructureAnalysis object, which
calculates the objective low dimensional structure descrip-
tors, w j[k]. The default dimensionality reduction technique
is PCA, but any model that uses the transform fit or
a “transformer” object can be substituted. After calculat-
ing the descriptors, the MKSHomogenizationModel is
used to create linkages between the w ;[k] and the effective
material response, psff, as indicated in Eq. 3. The default
machine learning algorithm is a polynomial regression, but
any estimator with the £it and predict methods can be
substituted to create the linkages between ( j[k] and pjff.

The MKSLocalizationModel object provides the
MKS localization functionality. It calibrates the first-order
influence kernels «[k; r] used to predict local materials
responses, p;[s], as outlined in Eq. 4. The calibration of
the influence kernels is achieved using a variety of linear
regression techniques described in numerous previous stud-
ies [71-73, 83]. The MKSLocalizationModel object
uses £it and predict methods to follow the standard
interface for a Scikit-learn estimator object.

Discretize
Microstructures

Establish
Linkage
Kernels

Materials
Knowledge
Systems
Workflows

low dimensional microstucture descriptors using machine learning.
(Eq. 3). The MKS localization workflow (right) consists of 2 steps.
1. Discretize the raw microstructure with the microstructure func-
tion. 2. Calibrate physics-based kernels using regression methods
(Eq. 4) (Color figure online)

To use either the homogenization or the localization
models in PyMKS, the microstructure first needs to be
represented by a microstructure function, m; [, s]. The
bases module in PyMKS contains four transformer
objects for generating the m [k, s] using a varietly of dis-
cretization methods [71-77, 83]. These four objects can
be thought of as materials-specific extension to the feature
extraction module in Scikit-learn. A PrimitiveBasis
object uses indicator (or hat) functions and is well suited
for microstructures that have discrete local states (e.g.,
distinct thermodynamic phases). The LegendreBasis
and FourierBasis objects create spectral representa-
tions of microstructure functions defined on nonperiodic
and periodic continuous local state spaces, respectively. For
example, functions over a range of chemical compositions
can be described using LegendreBasis, while functions
over orientations in two-dimensional space can be described
using FourierBasis. Furthermore, GSHBasis creates
compact spectral representations for functions over lat-
tice orientation space (such as those needed to describe
polycrystalline microstructures) [88-99].

PyMKS contains modest data generation tools (in
the datasets module) that are used in both the
PyMKS examples and the PyMKS test suite. The
MicrostructureGenerator object creates stochastic
microstructures using digital filters. This assists users in
creating PyMKS workflows even when data is unavail-
able. PyMKS has objects for generating sample data
from both a spinodal decomposition simulation (using
the CahnHilliardSimulation object) and a linear
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elasticity simulation (using the ElasticFESimulation
object). PyMKS comes with custom functions for
visualizing microstructures in elegant ways (in the tools
module). These are used extensively in the PYMKS exam-
ple notebooks to minimize incidental code associated with
visualization.

Underlying Technologies

PyMKS is built upon the highly optimized Python pack-
ages NumPy [100], SciPy [101], and Scikit-learn [47].
NumPy arrays are the primary data structure used through-
out PyMKS and provide the basic vector and matrix manip-
ulation operations. SciPy’s signal processing and numerical
linear algebra functions are used to calibrate models and
generate synthetic data. PyMKS is highly integrated with
Scikit-learn and mimics its simple API in order to leverage
from Scikit-learn’s data pipeling methodology for machine
learning and data transformations. In addition, PyMKS uses
the Pytest framework to automate execution of the test
suite [102].

Optional packages that can be used with PyMKS include
Simple Finite Elements in Python (SfePy) [103], the
python wrapper for the FFTW library (pyFFTW) [104],

Fig.4 One sample from each of
the 16 different microstructure
classes used for calibration of
the homogenization model

.;,f:

1%
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and the plotting package Matplotlib [105]. SfePy is used
to simulate linear elasticity to create sample response field
data. PyFFTW is a highly optimized fast Fourier trans-
form library that enhances the efficiency of PyMKS and
enables parallel computations in PyMKS. Matplotlib is used
to generate custom microstructure visualizations.

Development Practices

PyMKS leverages from existing tools, standards, and web
resources wherever possible. In particular, the developers
are an open community that use GitHub for issue tracking
and release management (see https://github.com/materials
innovation/pymks). Additionally, a Google group is used as
a public forum to discuss the project development, support,
and announcements (see pymks-general @ googlegroups.com).
The Travis CI continuous integration tool is used to auto-
mate running the test suite for branches of the code stored
on GitHub. Code standards are maintained by follow-
ing the Python PEPS standards and by reviewing code
using pull requests on GitHub. Detailed administrative
guidelines are outlined in the ADMINISTRATA .md doc-
ument, and potential developers are encouraged to follow
them.

o

©
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Examples of Homogenization and Localization
with PyMKS

A demonstration of the MKS homogenization and localiza-
tion workflows as shown in Fig. 3 is presented in this section
using PyMKS. Additional workflow examples can be found
on the PyYMKS website pymks.org.

Prediction of Effective Stiffness with Homogenization
Generation of Calibration Data

In this example, the MKSHomogenizationModel is
used to create a structure-property linkage between a 2-
phase composite material and effective stiffness Cy,.

Multiple classes of periodic microstructures and their
effective elastic stiffness values can be generated by import-
ing the make_elastic._stiffness function from
pymks.datasets.

This function has several arguments. n_samples is a
list indicating the number of microstructures for each class.
grain_size and volume_fraction are also lists that
specify the average grain features and mean volume
fractions for each of the microstructure classes. Vari-
ance in the volume fractions for each class can be con-
trolled using percent_variance which specifies a
range of volume fractions centered about the mean val-
ues (i.e., volume_fration + percent_variance).
size indicates the dimensions of all the microstructures.
elastic.modulus and poissons_ratio are used to
indicate the material properties for each of the phases. Lastly,
seed is used as the seed for the random number generator.

In this homogenization example, 50 samples from 16 dif-
ferent microstructures classes with dimensions 21 x 21,
and their effective stiffness values were created total-
ing to 800 samples. Each of the 16 classes has differ-
ent sized microstructure features and volume fractions.
The make_elastic_stiffness function returns the
microstructures X and their associated stiffness values y.

from pymks.datasets import make_elastic_stiffness

import numpy as np

sample_size = 50
n_samples = [sample_size] * 16
grain_size = [(8, 8), (8, 6), (6,
(10, 4), (4, 10),
(12, 2), (2, 12),
(14, 1), (1, 14),
volume_fraction = [(0.8, 0.2), (O
(0.2, 0.8), (O
(0.8, 0.2), (0.
(0.2, 0.8), (0.
percent_variance = 0.15
elastic_modulus = (300, 200)
poissons_ratio = (0.28, 0.3)
size = (21, 21)
seed = 1
X,y =

w J w 3

~

8), (6, 6),
, 4), (10, 10),
, 2), (12, 12),
, 1), (14, 14)]
, 0.3), (0.6, 0.4), (0.5, 0.5),
, 0.7), (0.4, 0.6), (0.5, 0.5),
, 0.3), (0.6, 0.4), (0.5, 0.5),
0.7) (0.4, 0.6) (0.5, 0.5)1

~
~

make_elastic_stiffness (n_samples=n_samples,

volume_fraction=volume_fraction,
grain_size=grain_size, size=size,
percent_variance=percent_variance,
elastic_modulus=elastic_modulus,
poissons_ratio=poissons_ratio,

seed=seed)
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An example microstructure from each of the 16 classes
can be visualized by importing draw_microstructures

function from pymks.tools. The output from draw_
microstructures can be found in Fig. 4.

from pymks.tools import draw_microstructures

X_examples = X[l::sample_size]

draw_microstructures (X_examples,

figsize=(4, 4))

Calibration of Homogenization Model

Before an instance of the MKSHomogenizationModel
can be made, an instance of a basis class is needed to
specify the discretization method for the microstructure
functions (see Fig. 3). For this particular example, there
are only two discrete phases numerated by 0 and 1. It has
been shown that the primitive basis provides the most com-
pact representation of discrete phases [71, 71, 74, 77-79,
81, 84]. In PyMKS, the class PrimitiveBasis from

pymks .bases can be used with n_states equal to 2
and the domain equal to [0, 11].

The periodic axes as well as the set(s) of spatial corre-
lations need to be specified in addition to the basis class
for the MKSHomogenizationModel. This is done using
the arguments periodic._axes and correlations
respectively. In practice, the set of spatial correlations are
a hyper-parameter of our model that could be optimized,
but for this example, only the two autocorrelations will
be used.

from pymks import MKSHomogenizationModel

from pymks import PrimitiveBasis

prim basis = PrimitiveBasis (n_states=2, domain=[0, 1])

model = MKSHomogenizationModel (basis=prim_basis,

periodic_axes=[0, 1],

correlations=[ (0, 0), (1,

1)

The default pipeline used to create the homogeniza-
tion linkage uses PCA and polynomial regression objects
from Scikit-learn. Using GridSearchCV from Scikit-
learn, cross-validation is used on the testing data to find
the optimal number of principal components and degree
of polynomial (based on the R-squared values) within a
defined subspace for the hyper parameters for our model. A

dictionary params_to_tune defines the subspace. For
this example, n_components will be varied between 1 to
13, and degree of the polynomial regression will be varied
between 1 to 3. StratifiedKFold is used to ensure that
microstructures from each of the classes are used for each
fold during cross-validation. The array labels is used to
label each of the classes.

from sklearn.cross_validation import StratifiedKFold

from sklearn.grid_search import GridSearchCV

flat_shape = (X.shape[0],) +

params_to_tune = {’degree’:

"n_components’ :

labels = np.repeat (np.arange(16),

np.arange (1,
50)

(X[0] .size,)

np.arange(l, 4),

13)}

skf = StratifiedKFold (labels, n_folds=5)

fit_params = {’size’:

gs = GridSearchCV (

model, params_to_tune, cv=skf,

X[0] .shape}

\usepackage{courier}fit_params=fit_params) .fit (X.reshape (

flat_shape), vy)
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The results of our parameter grid search can be examined = and score of the best estimator can be printed as shown
by either printing or creating visualizations. The parameters  below.

from __ future__ import print_function

print (Order of Polynomial’, gs.best_estimator_.degree)
print (! Number of Components’, gs.best_estimator_.n_components)

print (' R—squared Value’, gs.score(X, vy))

Order of Polynomial 2
Number of Components 11
R-squared Value 0.999960653331

Two different visualizations of the results from draw_gridscores_matrix provides a visualiza-
GridsearchCV can be created using draw. tion of two matrices for both the mean R-squared
gridscores matrix and draw_gridscores from  values and their standard deviation. The output from
pymks.tools. draw_gridscores_matrix can be found in Fig. 5.

from pymks.tools import draw_gridscores_matrix

draw_gridscores_matrix(gs, [’n_components’, ’'degree’],
score_label='R-Squared’,
param_labels=[’Number of Components’,

"Order of Polynomial’])

draw_gridscores provides another view of the same  and the standard deviation indication by the shared regions.
information with the mean values indicated by the points  The output from draw_gridscores can be found in Fig. 6.

from pymks.tools import draw_gridscores

gs_deg_1 = [x for x in gs.grid_scores_ \

if x.parameters[’degree’] == 1]
gs_deg_2 = [x for x in gs.grid_scores_ \

if x.parameters|[’degree’] == 2]
gs_deg_3 = [x for x in gs.grid_scores_ \

if x.parameters|[’degree’] == 3]

draw_gridscores ([gs_deg_1, gs_deg_2, gs_deg_3], ’'n_components’,
data_labels=["1st Order’,
’2nd Order’, ’'3rd Order’],
param_label='Number of Components’,

score_label=’R-Squared’)
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Fig.5 Mean R-squared values
and standard deviation as a
function of the order of the
polynomial and the number of
principal components

w

Order of Polynomial
N

w

Order of Polynomial
N

For the specified parameter range, the model with the
highest R-squared value was found to have a 2nd-order
polynomial with 11 principal components. This model is
calibrated using the entire training dataset and is used for
the rest of the example.

model = gs.best_estimator__

model.fit (X, vy)

Prediction of Effective Stiffness Values

In order to validate our model, additional data is gen-
erated using the make elastic_stiffness function

1.000 - e—e 1st Order

o—o 2nd Order
e—e 3rd Order

,Ife/;’"

0.995 -

R-Squared

o
©o
®
[

0.980 -
0 2 4 6 8 10 12
Number of Components
Fig. 6 The mean R-squared values indicated by the points and the
standard deviation indication by the shared regions as a function of

the number of principal components for the first three orders of a
polynomial function (Color figure online)
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again with the same parameters with the exception of
the number of samples and the seed used for the ran-
dom number generator. The function returns the new
microstructure X_new and their effective stiffness values
y._new.

test_sample_size = 10
n_samples = [test_sample_size] * 16
seed = 0

X_new, y_new = make_elastic_stiffness(
n_samples=n_samples, size=size,
grain_size=grain_size,
volume_fraction=volume_fraction,
percent_variance=percent_variance,
elastic_modulus=elastic_modulus,
poissons_ratio=poissons_ratio,

seed=seed)

Effective stiffness values predicted by the model for the
new data are generated using the predict method.

y_pred = model.predict (X_new)

A visualization of the PC scores for both the cal-
ibration and the validation data can be created using
draw_components_scatter from pymks.tools.
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The output from draw_components_scatter can be
found in Fig. 7.

Because both the validation and the calibration data were
generated from the make_elastic_stiffness func-

tion with the same parameters, both sets of data are different
samples from the same distribution. Similar visualizations
can provide insights on differences between different data
sources.

from pymks.tools import draw_components_scatter

draw_components_scatter ([model.reduced_fit_datal:, :21],
model .reduced_predict_datal:, :211,
["Training Data’, ’'Test Data’],

legend_outside=True)

To evaluate our model’s predictions, a goodness-of-fit
plot can be generated by importing draw_goodness_
of _fit from pymks.tools. The results from draw_

goodness_of _fit can be found in Fig. 8. Addition-
ally, the R-squared value for our predicted data can be
printed.

from pymks.tools import draw_goodness_of_ fit

fit_data = np.array(ly, model.predict (X)])

pred_data = np.array([y_new, y_pred])

draw_goodness_of_fit (fit_data, pred_data,

[/ Training Data’, ’'Test Data’])

print (' R—squared value’, model.score (X_new, y_new))

R-squared value 0.999949544961

Prediction of Local Strain Field with Localization

Generation of Calibration Data

In this example, the MKSLocalizationModel is used to
predict the local strain field for a three-phase microstructure
Low Dimensional Representation

e o Training Data
15- o o Test Data
10-

05 -

Component 2

Component 1

Fig. 7 Low dimensional microstructure distributions (i ;[k] from
Eq. 2) for both the calibration and validation datasets (Color figure
online)

with elastic moduli values of 80, 100, and 120 MPa;
Poisson’s ratio values all equal to 0.3 and a macro-
scopic imposed strain equal to 0.02. The model is cal-
ibrated using delta microstructures (analogous to using a

_— Goodness of Fit

e e Training Data
e o Test Data

280 -

260 -

240 -

Predicted

220 -

200 - . ] ' ' s
200 220 240 260 280 300

Actual

Fig. 8 Goodness-of-fit plot for effective stiffness Cy, for the homog-
enization model (Color figure online)
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unit impulse response to find the kernel of a system in
signal processing) [71]. The material parameters speci-
fied above are used in a finite element simulation using

the make elasticFEstrain_delta function from
pymks.datasets. The number of Poisson’s ratio and

elastic moduli values indicates the number of phases.

from pymks.datasets import make_elastic_FE_strain_delta

import numpy as np

n = 21

n_phases = 3

100,
0.3,

120)
0.3)

elastic_modulus = (80,
(0.3,

macro_strain = 0.02

poissons_ratio =

size = (n, n)

X_delta,

strains_delta = make_elastic_FE_strain_delta(

elastic_modulus=elastic_modulus,

poissons_ratio=poissons_ratio,

size=size, macro_strain=macro_strain)

Delta microstructures are composed of only two phases
with the center of the microstructure being a different phase
from the rest. All permutations of the delta microstruc-
tures and their associated strain fields &,, are needed to
calibrate the localization model. A delta microstructure

and its strain field can be visualized using draw._
microstructure_strain from pymks.tools. The
output from draw microstructure_strain can be
found in Fig. 9.

from pymks.tools import draw_microstructure_strain

draw_microstructure_strain (X_deltal[0],

strains_delta[0])

Calibration of the Localization Model

In order to make an instance of the MKSLocalization
Model, an instance of a basis class must first be created

Fig. 9 Delta microstructure
(right) and its associated strain
field (left). The delta
microstructures and their local
response fields are used to
calibrate the localization model
(Color figure online)
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to specify the discretization method for the microstructure
function (see Fig. 3). For this particular example, there are
three discrete phases; therefore, the PrimitiveBasis
from pymks.bases will be used. The phases are

Microstructure Exx

- 0.0204

- 0.0200

- 0.0196

- 0.0192
‘|

- 0.0188

- 0.0184

- 0.0180
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Influence Coefficients =0

Influence Coefficients [=1

Influence Coefficients =2

- 0.0048
- 0.0040
- 0.0032
-0.0024
- 0.0016
- 0.0008
- 0.0000
- —0.0008

Fig. 10 Calibrated influence kernels for the localization model (Color figure online)

enumerated by 0, 1, and 2; therefore, we have three local
states with a domain from O to 2. An instance of the
PrimitiveBasis with these parameters can be used to

create an instance of the MKSLocalizationModel as
follows:

from pymks import MKSLocalizationModel

from pymks import PrimitiveBasis

p_basis =PrimitiveBasis (n_states=3,

domain=[0, 2])

model = MKSLocalizationModel (basis=p_basis)

With the delta microstructures and their strain fields, the
influence kernels can be calibrated using the £it method.
A visualization of the influence kernels can be generated
using the draw_coeff function from pymks.tools.
The results from draw_coeff can be found in Fig. 10.
from pymks.tools import draw_coeff

model.fit (X_delta, strains_delta)

draw_coeff (model.coef_)

Fig. 11 Random microstructure
and its local strain field found
using finite element analysis
(Color figure online)

Microstructure

Prediction of the Strain Field for a Random Microstructure

Model validation is done by comparing strain fields
computed using a finite element simulation and our
localization model for the same random microstructure.
The make_elasticFEstrain_random function from
pymks.datasets generates a random microstructure
and its strain field results from finite element analysis.
The output from make_ elasticFEstrain random is

-0.0255
- 0.0240
- 0.0225
- 0.0210
- 0.0195
- 0.0180

- 0.0165
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Fig. 12 A comparison between
the local strain field computed
using finite element (left) and
the prediction from the
localization model (right)
(Color figure online)

visualized using draw_microstructure_strain and
can be found in Fig. 11.

exx - Finite Element

-0.0255
-0.0240
-0.0225
-0.0210
-0.0195
-0.0180

-0.0165

-0.0150

from pymks.datasets import make_elastic_FE_strain_random

np.random.seed (101)

X, strain =

n_samples=1,

poissons_ratio=poissons_ratio,

macro_strain=macro_strain)

draw_microstructure_strain (X[0]

r

make_elastic_FE_strain_random (

elastic_modulus=elastic_modulus,

size=size,

strain[0])

The localization model predicts the strain field by pass-
ing the random microstructure to the predict method. A
visualization of the two strain fields from both the local-
ization model and finite element analysis can be created
using draw_strains_compare from pymks.tools.
The output from draw_strains_compare can be found
in Fig. 12.
from pymks.tools import draw_strains_compare
strain_pred = model.predict (X)

draw_strains_compare (strain[0], strain_pred[0])

These examples demonstrate the high-level code that cre-
ates accurate and computationally efficient homogenization
structure-property linkages using MKSHomogenization
Model and localization linkages using MKSLocalization
Model with PyMKS.

Conclusion

The MKS framework offers a practical and computation-
ally efficient approach for distilling and disseminating the

@ Springer

core knowledge gained from physics-based simulations and
experiments using emerging concepts in modern data sci-
ence. PyMKS is an open-source project with a permissive
license that provides simple high-level APIs to access the
MKS framework by implementing pipelines from Scikit-
learn with customized objects for data from hierarchical
materials. PyMKS has been launched with the aim to nucle-
ate and grow an emergent community focused on establish-
ing data-driven homogenization and localization process-
structure-property linkages for hierarchical materials.
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