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Abstract

Trypsin is the most widely used enzyme in proteomic research due to its high specificity. Although 

the in-solution digestion is predominantly used, it has several drawbacks, such as long digestion 

times, autolysis, and intolerance to high temperatures or organic solvents. To overcome these 

shortcomings trypsin was covalently immobilized on solid support and tested for its proteolytic 

activity. Trypsin was immobilized on bridge-ethyl hybrid silica sorbent with 300 Å pores, packed 

in 2.1 × 30 mm column and compared with Perfinity and Poroszyme trypsin columns. Catalytic 

efficiency of enzymatic reactors was tested using Nα-Benzoyl-L-arginine 4-nitroanilide 

hydrochloride as a substrate. The impact of buffer pH, mobile phase flow rate, and temperature on 

enzymatic activity was investigated. Digestion speed generally increased with the temperature 

from 20 to 37 °C. Digestion speed also increased with pH from 7.0 to 9.0; the activity of prototype 

enzyme reactor was highest at pH 9.0, when it activity exceeded both commercial reactors. 

Preliminary data for fast protein digestion are presented.
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1. Introduction

Enzymatic proteolysis is a common sample preparation method for LC–MS identification, 

and characterization of proteins. The most common choice of enzyme is trypsin, a highly 

specific protease, which cleaves peptide bonds only after arginine and lysine residues [1]. 

The enzymatic in-solution protein digestion is associated with a number of difficulties. It can 

be time consuming (up to 24 h), trypsin autolysis peptides are observed, and the enzymatic 
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activity can be impaired at elevated temperatures [2] or in the presence of organic solvents 

[3].

Some of these limitations can be overcome by enzyme immobilization on solid support. 

Immobilized enzymes can be used in either batch mode digestion or as flow through 

reactors. Both approaches have been investigated over the past two decades and several 

commercial products have been introduced. However, adoption of immobilized enzyme 

reactors (IMERs) for protein analysis has been slow due to their price, limited stability, and 

in some cases by an incorrect application. While the IMERs can be highly active, the speed 

of proteolysis can be reduced by secondary/tertiary protein sequence (inaccessible digestion 

sites). Presence of chaotropic agents used to denature proteins may inactivate immobilized 

enzyme, while the presence of primary sequence motifs with slow digestion kinetics may 

result in production of missed cleavage peptides. The dependence of tryptic digestion 

kinetics on primary protein sequence was studied recently [4–6].

Despite these shortcomings, IMERs have been shown to perform protein digestion within 

minutes [7,8], or even seconds [9–11]. Since the intermolecular collisions of trypsin are 

minimal, high enzyme concentration can be used in immobilized reactors, improving speed 

of digestion, while minimizing enzyme autolysis. Packed IMERs can be readily used with 

LC instrumentation in flow through mode, reducing the sample manipulations and possible 

contamination. Trypsin has been immobilized using a wide variety of carriers; monoliths 

[8,12], silica particles, nano particles, or membranes [9,13,14]. The nature of the carrier is 

the most important factor in determining activity stability, and capacity of enzymatic 

reactors; stationary phase can either stabilize or denature the enzyme [9,15]. As suggested in 

a recent review [13], the development of carriers with superior characteristics, such as 

mechanical strength, large surface area, low back pressure, high enzyme loading capacity, 

and good biocompatibility, is the main goals of current IMER research.

The commercially available IMERs are reportedly stable in organic solvents, high flow rates, 

elevated temperatures, and compatible with moderate pressures up to 2500 psi. The most 

frequently used is Poroszyme® Immobilized Trypsin Cartridge from Applied Biosystems® 

based on polystyrene divinylbenzene (PDVB) particles available since 1995 [11,16–34]. The 

manufacturer states, that this column provides enhanced biomolecule access via large pores, 

fast 1–5 min digestion, high sample recovery, and chemical stability [35]. A similar product 

StyrosZyme™ TPCK-Trypsin column manufactured by OraChrom was applied to on-line 

BSA digestion [36] and compared to other trypsin columns [37]. Perfinity Biosciences offer 

trypsin immobilized on sorbent for batch digestion in vial [38] or in column format. 

Perfinity Biosciences IMERs have been used for automated protein digestion –LC/MS 

analysis and applied for identification of transferrin peptides [39], characterizing the post-

translational modifications of human serum albumin [40] and for analysis of therapeutic 

proteins [41].

Abundance of IMER research reports have been published in last two decades including 

useful reviews [15,39,42,43]. While the research is very active in microscale proteomic LC–

MS applications [9,44], where the ability to process small samples without protein losses is 

important, the IMER technology is not widely applied to routine protein bioanalysis or 

Šlechtová et al. Page 2

J Chromatogr A. Author manuscript; available in PMC 2017 July 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



peptide mapping [43]. The reason that the conventional in-solution trypsin digestion remains 

the workhorse may be attributed to several factors. (i) Commercially available IMERs are 

expensive. (ii) Although the trypsin autolysis is reportedly limited, it is still present. 

Acetylation has been shown to reduce the immobilized trypsin autolysis and improve its 

proteolytic activity [10]. (iii) IMER and in-solution tryptic digestions provide consistent, but 

different results [39,43]. The presence of incompletely cleaved peptides have been reported 

in IMER digest [42]; this may be related to the short digestion times chosen for digestion. 

(iv) Immobilized trypsin is reportedly stable [11] and reasonably resistant to mildly 

denaturing conditions such as elevated digestion temperature [38] or the presence of organic 

solvents [3]. However, some loss of digestion performance is expected over long term use, 

posing problem for the digestion repeatability. (v) Immobilized trypsin should not be 

exposed to reduction agents (to avoid enzyme activity loss). This forces the changes of 

traditional digestion protocol. The reduction/alkylation step can either be omitted (resulting 

in generation of different peptide map) or performed pre or post digestion. Performing 

reduction/alkylation step on certain protein classes (antibodies) often lead to their 

denaturation. This may improve the success of tryptic digestion. On the other hand, 

denaturation may lead to protein precipitation out of solution [45], posing a challenge for 

sample handling and on-line IMER digestion. In such case the elevated temperature, organic 

solvents and mild denaturants [46] may have to be used to aid the solubilization of sample, 

with potential adverse effects on IMER columns longevity.

Many immobilized enzymatic reactors have been prepared in past years; however, their 

performance is rarely compared to the commercial IMERS [33,37]. In this work we prepared 

a prototype immobilized trypsin reactor based on high pressure compatible 5 μm bridged 

ethyl hybrid (BEH) silica particles with 300 Å pores packed into ultra performance 

chromatography column hardware withstanding operational pressures up to 15 000 psi [47]. 

The prototype IMER was compared to Poroszyme and Perfinity IMERs available in similar 

column dimensions (Table 1). The goal of the work was to benchmark the digestion activity 

and repeatability of three IMERs at various temperatures, flow rates (residence time) and 

buffer pH. Nα-Benzoyl-L-arginine 4-nitroanilide hydrochloride, a common digestion 

substrate. Preliminary digestion test of the prototype IMER with model protein was 

performed using Cytochrome C and BSA. Further evaluation of prototype IMER with more 

complex protein samples was described in a separate report [7].

2. Materials and methods

2.1. Chemicals and reagents

Nα-Benzoyl-L-arginine 4-nitroanilide hydrochloride (BAPNA, ≥99%), Nα-Benzoyl-L-

arginine ethyl ester hydrochloride (BAEE), acetonitrile (ACN, gradient grade), chloroacetic 

acid (ACS reagent, 37%), calcium chloride (Dri™, ≥97%), Trizma® base (Tris, ≥99.9%), 

ethanolamine (≥98%), formic acic (>99%), bovine cytochrome C (molecular weight 12230.9 

Da), BSA, dithiothreitol (DTT, >99%), iodoacetamide (IAM, >99%), and trypsin (T1426, 

TPCK Treated, essentially salt-free, lyophilized powder, ≥10,000 BAEE units/mg protein) 

were supplied by Sigma Aldrich (St. Louis, MO, USA). Micro BCA Protein Assay Reagent 

Kit and trifluoroacetic acid (≥99.5%) were supplied by Thermo Fisher Scientific (Waltham, 
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MA, USA). ALD Coupling Solution which contained 1 M NaCNBH3 was obtained from 

Sterogene (Carlsbad, CA, USA), triethoxysilyl butyraldehyde (90%) from Gelest Inc. 

(Morrisville, PA, USA), ammonium bicarbonate (≥99.5%) from Fluka (Buchs, Switzerland), 

anhydrous ethanol (≥99.5%) from Acros Organics (Belgium, NJ, USA). Non-bonded BEH 

silica particles (5 μm, 300 Å) were supplied by Waters Corporation (Milford, MA, USA). 

Deionized water was purified with a Rowapur and Ultrapur system from Watrex (Prague, 

Czech Republic). 50 mM ammonium bicarbonate buffer was made by dissolving the 

appropriate amount of ammonium bicarbonate in deionized water and adjusted to pH 9.0 

with 1 M NaOH. Tris digestion buffer composed of 0.05 M Tris, 0.01 M calcium chloride 

titrated to desired pH by 2 M chloroacetic acid.

2.2. Preparation of IMER prototype

The trypsin immobilization was carried out at the University of North Carolina at Chapel 

Hill (UNC) using protocol adapted from Ahn et al. [47]. Approximately 0.6 g of BEH silica 

particles supplied by Waters Corporation were added to a 25 mL round bottom flask and 

placed in an oven (110 °C) overnight prior to immobilization. When cooled, the flask and its 

contents were kept under a constant flow of nitrogen. Then 220 μL of triethoxysilyl 

butyraldehyde in 4 mL of anhydrous ethanol was added to the flask. The mixture underwent 

magnetic stirring for 2 h at room temperature. Approximately 10 mL of 50 mM ammonium 

bicarbonate buffer (pH 9.0) was added to the reaction and the mixture was transferred into a 

50 mL centrifuge tube. The particles were washed three times via centrifugation with 20–30 

mL of 50 mM ammonium bicarbonate buffer to remove unreacted silane. After the final 

decant, particles were slurried in 4 mL of buffer in a round bottom flask with magnetic 

stirrer. 80 mg of trypsin dissolved in 4 mL of 50 mM ammonium bicarbonate buffer, 

followed by the addition of 2 mL of ALD Coupling Solution (containing 1 M NaCNBH3). 

Reaction was performed for 2 h at room temperature. Afterwards, 2 mL of 1 M 

ethanolamine was added to quench the reaction for another 30 min at room temperature. 

Particles were washed three times with 50 mM ammonium bicarbonate buffer to remove 

excess of trypsin and ethanolamine using the above described protocol. Scheme of covalent 

bond can be found in Ahn et al. [47]; basic chemistry of aldehyde reductive amination 

reaction is described in the following textbook [48]. Bonded BEH particles with 

immobilized trypsin were slurried in water with trifluoroacetic acid (pH 4.0) and packed into 

the 2.1 × 30 mm column hardware.

Before column packing, the amount of immobilized trypsin on BEH particles was estimated 

using Micro BCA Protein Assay Reagent Kit. Presence of protein was measured as a color 

reaction at 562 nm using UV–vis μQuant microplate spectrophotometer (BioTek, Winooski, 

VT, USA). BSA was used to construct the calibration plot of absorbance versus mg of 

protein. The amount of immobilized trypsin per 1 g of BEH sorbent was approximately 84 

mg. This value indicates the amount of immobilized protein, but not its activity, which could 

be impaired by immobilization procedure.

To determine the activity of immobilized trypsin, BAEE was used as substrate. BAEE 

digestion was monitored as change in UV absorbance at 253 nm using Labda35 UV/VIS 

spectrometer (Perkin Elmer, Waltham, MA, USA). Slope of the UV absorbance change 
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versus time obtained for trypsin in-solution digestion was compared to equal amount of 

trypsin immobilized on BEH particles dispersed in the reaction buffer. The retained activity 

of immobilized trypsin was ~35–40% compared to freshly prepared trypsin solution. 

Prototype IMER was further tested in flow-through mode LC/MS using direct injection of 

Cytochrome C (the protein was neither reduced nor alkylated).

2.3. Instrumentation and methods

The activity of immobilized trypsin (IMERs) was determined by HPLC using a Waters 

Alliance System composed of Waters 2690 Separation Module, Waters 2487 UV–vis 2-

channel detector, 717 Plus autosampler and Waters Alliance Series column heater and cooler 

(Waters Corp., Milford, MA, USA). Instrument control and data collection were performed 

by Empower 2 software. For enzymatic digestion, three different trypsin columns were used, 

i.e. Poroszyme® (Applied Biosystems, Foster City, CA, USA), Perfinity (Perfinity 

Biosciences Inc., West Lafayette, IN, USA) and prototype IMER synthesized at University 

of North Carolina at Chapel Hill using a modified method described previously [47]. 

Separation of digestion products was carried out using an XTerra® RP18 column (Waters, 

Milford, MA, USA), 150 × 3.0 mm, 3.5 μm. In Table 1 we list IMER data provided by 

manufacturers. Although the operating temperature range is up to 67 °C, we restricted 

digestion temperatures 20–37 °C in order to maintain IMER’s activity.

Digestion experiments were carried out using BAPNA as a substrate. BAPNA was prepared 

at concentration 6 mg/mL in mixture of 25% ACN, 25% water and 50% digestion buffer 

(v/v/v). 100 μL of BAPNA substrate was injected on IMER connected in series to separation 

column (mobile phase gradient passed through both IMER and separation column). 

Substrate BAPNA and its yellow digestion product p-nitroaniline were identified and 

quantified using UV–vis detector set at 254 and 410 nm detection wavelengths. Mobile 

phase consisted of Tris buffer (pH 7.0, 8.0 or 9.0) and ACN. Three different gradients and 

flow rates were used. The rationale for changing flow rate was to alter the residence time of 

substrate on the IMER column. The completeness of digestion is expected to decrease at 

elevated flow rates. Mobile phase gradient started at 95/5 Tris/ACN volume ratio held for 1 

min; it was raised to 50/50 in 110, 70 and 50 min for flow rates 0.1, 0.2, and 0.3 mL/min, 

respectively. Given the physical dimension of IMERs and volume fraction of reactor 

containing mobile phase (εt ~ 0.7), the estimated residence times of substrate on the IMERs 

were 44, 22 and 15 s for flow rates 0.1, 0.2, and 0.3 mL/min, respectively. Separation and 

digestion temperature was 20, 25, 30 and 37 °C. The autosampler temperature was set to 

25 °C.

The IMER experiments started at pH 8.0 (recommended pH for tryptic digestion) followed 

by pH 7.0 and pH 9.0. The order of temperature experiments for each IMER at given pH 

was 20, 25, 30, and 37 °C; each digestion condition was tested at 0.3, 0.2 and 0.1 mL/min 

flow rate, respectively. Initial mobile phase composition, i.e. 5/95 (v/v) ACN/Tris buffer, is 

recommended by column manufacturers. Since the presence of organic modifier in the 

buffers affects the activity of hydronium ions [49], we report pH of aqueous buffer before 

the addition of acetonitrile. On-line digestion measurements were performed in eight 

repetitions for each separation conditions; the calculated relative standard deviation (RSD) 
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values are reported (Supplemental Table S3). All experiments were reported using a single 

IMER column of each type. Enzyme in all columns was treated by N-tosyl-L-phenylalanine 

chloromethyl ketone (TPCK) by manufacturer to minimize the undesired chymotrypsin 

activity.

Activity of prototype BEH IMER column was subsequently evaluated for digestion of 

bovine cytochrome C protein. 11.5–115 μg of protein (1–10 nmol) was injected onto 

prototype IMER at room temperature at 1 mL/min flow rate. Sample solvent and IMER 

mobile phase was 50 mM ammonium bicarbonate, pH 7.8. Digested peptides were trapped 

on 3 × 250 mm CSH XSelect C18, 5 μm column (Waters Corp., Milford, MA, USA). Then 

the IMER was taken off-line and peptides were eluted with gradient of acetonitrile in water 

(both containing 0.1% formic acid). Gradient was held from 0 to 0.6 min at 0.5% acetonitrile 

content, followed with 0.5–70% of acetonitrile in 0.6–5.6 min. ACQUITY UPLC system 

with TQ triple quadrupole MS (Waters Corp., Milford, MA, USA) in full scan mode were 

used for analysis of cytochrome C digest. Digested peptides data were analyzed manually 

using Masslynx v 4.1 (Waters Corp., Milford, MA, USA) using Biolynx Protein/Peptide 

editor autodigest simulation function. TQ MS was tuned to resolution 1800 Da; average 

mass error for peptides was 240 ppm. Cytochrome C and BSA data analysis is provided as 

Supplemental information.

3. Results and discussion

For proteomic research, fast, repeatable and more reliable protein digestions are desirable. 

With the on-line digestion setup the IMER is connected in series with chromatographic 

column. In such case, protein sample is introduced by HPLC injector, transported by the 

stream of mobile phase through the IMER, digested, and the resulting peptides trapped onto 

an HPLC column prior to analysis. In this experimental setup the IMER is exposed to 

elevated working pressures. This was the motivation for creation of in-house prototype 

IMER capable of withstanding pressures up to 15 000 psi produced by UPLC instrument. 

This prototype IMER was compared to two commercially available IMERs.

One drawback of the described experimental setup is that the mobile phase gradient eluting 

digestion products from the column passes via IMERs (serially connected to column). 

Enzyme was repeatedly exposed to high concentration of acetonitrile in our experiment, and 

a slight decrease in trypsin catalytic activity was noted. To insure meaningful comparison we 

performed the pH, flow rates and temperature experiments in the same order for all three 

tested IMERs.

To evaluate the LC-UV–VIS analysis repeatability we first performed analysis of BAPNA 

substrate without the IMER in the flow path and compared it with the setup where the IMER 

was placed between the injector and a RP18 HPLC column for all the digestion conditions 

tested. Obtained RSD values of eight repetitive analyses are summarized in Table 2. The LC 

analysis repeatability (no IMER) was 1.4%; the variability with IMER was several time 

higher (see Table 2). The increased variability is in part due to the digestion process, and in 

part caused by integration error of substantially smaller peak (BAPNA substrate is partially 
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or nearly completely converted by the IMER to digestion product). Average RSD obtained 

for trypsin digestion in tandem with separation on RP18 column was 5.4%.

IMER activity results (percent of BAPNA substrate remaining) are summarized in Table 3; 

the measurements repeatability is provided in Supplemental Table S3. Several common 

trends were observed for all three IMERs: (i) Digestion speed increases with pH of the 

digestion buffer. This is most obvious for the UNC prototype, which had significantly higher 

activity at pH 9.0 than pH 8.0 or 7.0. (ii) With exception of a few experiments at pH 7.0 

(suboptimal pH) the IMERs activity increases with temperature. The most complete 

digestion was observed at 37 °C. (iii) Digestion improves at lower flow rate (longer 

residence time of substrate on IMER). Notable exceptions from this trend are the Poroszyme 

IMER at pH 8.0 and experiments at the suboptimal pH 7.0.

The optimal pH range for tryptic digestion is 7–9 according to Sigma Aldrich [50] or 7.8–

8.7 according to Worthington Biochemical Corporation [51]. Our results indicate great loss 

of trypsin activity at pH 7.0 for all IMERs used in the study. Interestingly, the UNC 

prototype (prepared using TPCK treated bovine trypsin from Sigma Aldrich) exhibited 

significantly higher activity at pH 9.0; at flow rate 0.1 mL/min no undigested BAPNA 

substrate remained.

Given that 2.1 × 30 mm IMER hardware has ~0.1 mL volume, packing density of BEH is 

0.7 g/mL, and amount of trypsin immobilized on UNC prototype is ~78 mg/mL, the amount 

of trypsin in the prototype IMER is approximately 5.7 mg. Even if only 35–40% remains 

active, the amount of trypsin available for digestion is three orders of magnitude higher than 

the amount typically used for in-solution protein digestion (microgram amounts of trypsin). 

This explains why IMER’s has a potential to perform faster digestions compared to in-

solution proteolysis typically practiced today.

Out of the three IMERs tested in this study, the UNC prototype outperformed the Poroszyme 

and Perfinity at pH 9.0 and performed comparably well at pH 7.0 and 8.0. It should be noted 

that BEH sorbent is stable in such pH range.

We selected UNC prototype IMER for further experiments with bovine cytochrome C 

sample, a protein often selected as model protein substrate for IMER activity evaluation 

[3,8,11,12]. To investigate the utility of IMER for accelerated digestion we utilized 1 

mL/min digestion flow rate which resulted in 4.2 s protein residential time on IMER 

(calculated from the void volume of packed 2.1 × 30 mm IMER). Cytochrome C was 

prepared at concentration of 2.3 mg/mL in ammonium bicarbonate buffer, pH 7.8 and 

digested in the same running mobile phase.

Fig. 1A shows a control experiment for 11.5 μg cytochrome C injection with no IMER 

present. The protein elutes from the CSH XSelect C18 column undigested and its intact 

mass was detected by MS instrument (experimental deconvoluted mass was 12226.7 Da, 

expected mass is 12230.9 Da). Fig. 1A shows MS chromatogram generated by extracting 

three dominant ions of cytochrome C (14+, 15+, and 16+ charged states) for mass spectrum 

of protein (see inset in Fig. 1A).
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In the subsequent experiment the IMER was included in the flow path, and identical amount 

of protein was injected. Only 0.5% of intact cytochrome C peak area was observed by MS 

compared to control experiment (data not shown). Fig. 1B shows the experiment with ten-

fold increased protein load (115 μg); we detected approximately 2% of undigested protein 

(Fig. 1B). It appears that IMER is capable of digesting significant mass loads of proteins in 

reaction time of 4.2 s.

The experimental data from 115 μg cytochrome C injection were used to investigate the 

masses of tryptic peptides formed during the passage of cytochrome C through the IMER. 

Total ion MS chromatogram in Fig. 2 show signal of multiple tryptic peptides (along with a 

small amount of undigested cytochrome C, and 6557 Da protein clip). Intriguingly, many of 

the observed peptides appear to be so-called missed cleavage peptides, i.e. incompletely 

digested peptides. Selected ion current MS chromatogram in Fig. 2B highlights the signals 

of selected peptides. The dominant signals are related to T8, T10, T12, and T19 peptides. 

Apparently, the 4.2 s digestion time is not a sufficient to achieve complete proteolysis of 

cytochrome C. The full set of MS identified peptides is listed in Fig. 3. Sequence coverage 

(Fig. 3B) illustrates that only several short hydrophilic peptides and T5 peptide with HEME 

group were not detected in the experiment.

Further inspection of sequences in Fig. 3 reveals missed-cleaved motifs that are known to be 

digested to final tryptic peptides with slow kinetics [4]. Among those are peptides with 

arginine/lysine cleavage site surrounded with acetic amino acids or miss-cleaved peptides 

with arginine/lysine residue at N- or C- termini [4]. We believe this is the main reason for 

the incomplete on-line digestion. This hypothesis is supported by presence of multiple 

variants of T19 peptide (Fig. 3B). The cleavage site between T18/T19 peptides GER/

EDLIAYLK consists of arginine surrounded by three acidic amino acids. This is likely to 

make the cleavage site more resistant to digestion.

We performed digestion at similar conditions as described above with 10 fold lower mass 

load of cytochrome C (11.5 μg load). Smaller mass load did not result in more complete 

digestion (see Supplemental information, Fig. S1). Missed cleaved peptides were still 

present; their relative quantity compared to fully digested peptides (zero missed cleavages) 

did not decrease significantly.

To further investigate the missed-cleavages phenomenon we performed digestion of BSA 

(alkylated and reduced) using UNC IMER prototype. 200 μL of 100 nM BSA solution (1.3 

μg mass) was loaded on IMER at flow rate of 1000, 500, 100, and 10 μL/min. This resulted 

in digestion/residential time of 5, 10, 48, and 480 s (8 min); respectively. The flow through 

fractions were collected and analyzed by LC MS(E) experiment as described previously [7]. 

The IMER digestions were compared to 15 h long in-solution digestion (Supplemental 

information, Tables S4A–C, and Fig. S4A–B). The results support the previous cytochrome 

C observations. Abundant missed-cleaved BSA peptides were observed in IMER digestions 

(supplemental Fig. S4A). When extending the IMER digestion time, some of the BSA 

missed-cleaved peptides were more readily digested to final products. However, the 

digestion of peptides with cleavage resistant motifs [4] is not accomplished neither in IMER, 

nor 15 h long in-solution digestion experiments (supplemental Fig. S4B). The digestion of 
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such missed-cleaved peptides is hindered by their 2–3 orders of magnitude slower digestion 

kinetics (compared to digestion of arginine site [4]). The implication of this phenomenon to 

IMER based digestions have not been studied yet.

One of the reviewers of this manuscript proposed additional investigation of the digestion 

specificity of the three IMERS using protein substrates. According to him/her, both activity 

and selectivity of trypsin may be affected by the immobilization procedure or environment 

(solid support). While we believe the LC–MS investigation of protein digestion selectivity, 

bleed of trypsin peptides from IMERs, and digestion efficiency of proteolytic-resistant 

proteins could be useful [45], the proposed study exceeds the scope of this manuscript. Such 

study may become a subject of the future work.

4. Concluding remarks

We evaluated a novel prototype IMER with high amount of trypsin immobilized on high 

pressure resistant BEH 300 Å particles. Trypsin activity was not significantly affected at 

elevated pressure (up to 2600 psi) used in the initial study even with mobile phases 

containing high acetonitrile concentrations. We compared the activity of UNC prototype 

IMER with commercially available devices. The activity of all the IMERs was suboptimal at 

pH 7.0; several fold faster digestion was observed at pH 8.0 and 9.0. The highest activity of 

the UNC prototype was measured at pH 9.0 for all temperatures and flow rates. At this pH, 

the UNC prototype IMER activity surpassed the commercial enzymatic reactors used in this 

study. Temperature had moderate effect on digestion speed; the IMERs activity improved 2–

3 fold when increasing the digestion temperature from 20 to 37 °C.

The UNC prototype IMER compatible with operational pressure up to 15,000 psi was tested 

for preliminary experiments with cytochrome C at 8000 psi. The 115 μg protein injection on 

IMER was nearly completely digested in 4.2 s in flow-through mode. Analysis of generated 

peptides revealed the presence of missed-cleaved tryptic peptides, often as the dominant 

products. Slower digestion speed is required to achieve more complete proteolysis.

Further optimization of trypsin immobilization procedure, selection of particle pore size, 

enhancement of activity and IMER stability at elevated pressure, temperature, and organic 

solvent conditions is desirable in order to design enzymatic reactor with superior 

performance to existing products. Few reports have been published on commercially 

available IMERs activity [33,37], autolysis rate, longevity, and digestion selectivity 

(completeness) compared to in-solution digestion. These attributes of IMERs are important 

for rational selection of digestion method.

Immobilizing trypsin onto a high pressure compatible media opens a possibility of high 

pressure and high speed digestions with IMER serially connected to long LC columns or to 

columns packed with sub-two micron particles.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
MS chromatograms of cytochrome C. (A) Injection of 11.5 μg of protein without enzymatic 

reactor; (B) injection of 115 μg (10 fold greater mass) with IMER on-line. About 2% of 

protein was left undigested. The MS chromatograms were generated by summing signals for 

three most dominant 14–16+ charge states indicated in the MS spectrum inset.
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Fig. 2. 
Analysis of on-line digested cytochrome C; injection of 115 μg of protein. (A) Total ion 

current MS chromatogram of tryptic peptides and residual protein; (B) selected ions MS 

chromatogram of the dominant peptides. The m/z and charge state of peptides are indicated 

along with the peptide assignment. For additional data see Supplemental information, Table 

S1, S2, and Fig. S1.
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Fig. 3. 
(A) Bovine cytochrome C sequence with acetylated N-terminus and covalently attached 

HEME group. Arginine, R, lysine, K (basic cleavage sites), glutamic acid, E, and aspartic 

acid, D (acidic amino acids) are highlighted. The underlining indicates the detected 

sequences. (B) List of LC/MS observed peptides generated by on-line digestion with UNC 

IMER prototype (115 μg protein injection). For additional data see Supplemental 

information, Table S1, S2, and Fig. S1.
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Table 1

General parameters of tested trypsin IMERs.

Poroszyme Perfinity UNC Prototype

Dimensions, particle size 2.1 × 30 mm, 20 μm 2.1 × 33 mm, 20 μm 2.1 × 30 mm, 5 μm

Pore size 500–10000 Å »1000 Å 300 Å

Maximum pressure 2500 psi 2500 psi 15000 psi

Operating temperature 25–67 °C 25–67 °C 20–60 °C

Sorbent PDVB PDVB BEH

Trypsin origin Bovine Porcine Bovine
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Table 2

RSD values of injections obtained with XTerra RP18 column only and trypsin reactors connected in series 

with XTerra RP18 column for various IMER’s and pH conditions. RSDs were calculated from substrate peak 

area. All experiments were performed in eight replicates (n = 8).

Perfinity Poroszyme UNC Prototype RP18

RSD [%] RSD [%] RSD [%] RSD [%]

pH 7.0 2.6 3.7 4.8 1.3

pH 8.0 6.1 6.7 3.1 1.4

pH 9.0 5.4 9.2 6.7 1.3
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