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Abstract

Reducing radiation dose in dual energy computed tomography (DECT) is highly desirable but it 

may lead to excessive noise in the filtered backprojection (FBP) reconstructed DECT images, 

which can inevitably increase the diagnostic uncertainty. To obtain clinically acceptable DECT 

images from low-mAs acquisitions, in this work we develop a novel scheme based on 

measurement of DECT data. In this scheme, inspired by the success of edge-preserving non-local 

means (NLM) filtering in CT imaging and the intrinsic characteristics underlying DECT images, 

i.e., global correlation and non-local similarity, an averaged image induced NLM-based (aviNLM) 

regularization is incorporated into the penalized weighted least-squares (PWLS) framework. 

Specifically, the presented NLM-based regularization is designed by averaging the acquired DECT 

images, which takes the image similarity within the two energies into consideration. In addition, 

the weighted least-squares term takes into account DECT data-dependent variance. For simplicity, 

the presented scheme was termed as “PWLS-aviNLM”. The performance of the presented PWLS-

aviNLM algorithm was validated and evaluated on digital phantom, physical phantom and patient 

data. The extensive experiments validated that the presented PWLS-aviNLM algorithm 

outperforms the FBP, PWLS-TV and PWLS-NLM algorithms quantitatively. More importantly, it 

delivers the best qualitative results with the finest details and the fewest noise-induced artifacts, 

due to the aviNLM regularization learned fromDECT images. This study demonstrated the 
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feasibility and efficacy of the presented PWLS-aviNLM algorithm to improve the DECT 

reconstruction and resulting material decomposition.

1. Introduction

Dual-energy computed tomography (DECT) scans the object using different energy spectra, 

which can be regarded as one of the most exciting evolving fields in radiology (Alvarez et al 
1976, Noh et al 2009). Comparing to standard CT, or single-energy CT, DECT can take 

advantage of energy-specific attenuation coefficients to obtain material- and energy- 

selective images, which has led to a wide range of clinical applications, such as the 

automatic bone removal (Johnson et al 2007) and assessment of myocardial blood supply 

(Ruzsics et al 2009). Therefore, the DECT can provide more clinical information on the 

object than standard CT. Moreover, X-ray exposure to patients may generate healthy risks, 

so minimizing the exposure risk has been one of the major endeavors in current DECT 

study. However, reducing radiation dose may lead to excessive noise in the filtered 

backprojection (FBP) reconstructed DECT images if no adequate treatments in the 

reconstruction. Besides, in DECT imaging the material-selective images can be separated 

from two sets of measurements by solving an inverse problem. However, a generic problem 

of the direct inversion process is that the resulting images will suffer from severe noise-

induced artifacts. Therefore, the purpose of this study is to propose an iterative approach to 

suppress noise effects and improve DECT images quality.

Up to now, many considerable efforts to suppress noise-induced artifacts in DECT images 

and material-decomposed images have been reported (Rutherford et al 1976, Kalender et al 
1988, Warp et al 2003, Leng et al 2011, Zeng et al 2016a, Niu et al 2014, Clark et al 2014, 

Dong et al 2014, Sukovic et al 2000, Petrongolo et al 2015, Zhang et al 2014, Long et al 
2014, Zhang et al 2016a, Zhang et al 2016b, Szczykutowicz et al 2011, Liu et al 2016). 

Among them, projection or image domain denoising approaches were proposed to improve 

low-dose DECT images quality (Rutherford et al 1976, Kalender et al 1988, Warp et al 
2003, Leng et al 2011, Zeng et al 2016a, Niu et al 2014, Clark et al 2014). Recently, Zeng et 
al (2016a) developed a non-local means (NLM)-based filter for low-dose DECT imaging 

wherein the fillter operation considers the image similarity within DECT images. Although 

these approaches can suppress the noise to some extent, they often result in spatial resolution 

loss because the noise in DECT images does not obey a uniform distribution. By better 

modeling the projection data and the image geometry in the DECT imaging, statistical 

iterative reconstruction (SIR) algorithms have shown to be more robust than FBP algorithm 

in regard to the presence of noise-induced artifacts (Dong et al 2014, Sukovic et al 2000, 

Petrongolo et al 2015, Zhang et al 2014, Long et al 2014, Zhang et al 2016a, Szczykutowicz 

et al 2011, Liu et al 2016). Based on the maximum a posterior (MAP) estimation criteria, the 

SIR algorithms can be mathematically formulated with a cost function. In general, the cost 

function has two terms: a data-fidelity term considering the measurement statistics and a 

regularization term evaluating which degree the objective image fulfills the prior 

information. Specifically, the data-fidelity term which is a critical component of SIR 

algorithms models the consistency between the objective DECT images and measurements. 

And the regularization term has been proven to be effective in DECT images reconstruction. 
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Therefore, designing effective regularization term to reflect the image priors is at the core of 

DECT images reconstruction. One classic family of the regularization term is based on total 

variation (TV) model, which does take into consideration the information that the DECT 

images are blocky and discontinuous and measure the discontinuities in the objective data 

(Dong et al 2014, Zhang et al 2016a, Szczykutowicz et al 2011). These regularizations are 

generally defined to work in a small local neighborhood. For example, Szczykutowicz et al. 
proposed a prior image constrained compressed sensing (PICCS) algorithm for DECT 

reconstruction by incorporating a prior image (averaging over FBP images reconstructed 

from different energies) into the reconstruction procedure (Szczykutowicz et al 2011). 

Moreover, Liu et al (2016) designed a material reconstruction model with nonlocal total 

variation (NLTV) regularization to improve the reconstructed material images quality, e.g. 

contrast-to-noise ratio and spatial resolution. Although these TV-based regularizations have 

been widely used in DECT images reconstruction, they usually smear out image details and 

cannot deal well with fine structures. Moreover, motion between DECT images can be an 

important issue in the case of slow-kV p based DECT system, which could result in that the 

PICCS approaches do not work effectively (Leng et al 2011).

Another established family is based on nonlocal means (NLM) based model, which has been 

widely used in low-dose CT image reconstruction (Zeng et al 2016a, Zhang et al 2014a, Ma 

et al 2012a). For instance, Ma et al (2012a) proposed a prior-image induced NLM-based 

regularization for low-dose cerebral perfusion CT reconstruction wherein the regularization 

utilized the redundant prior information within the NLM-based framework. Inspired by the 

success of Ma’s work and the intrinsic characteristics underlying DECT images, i.e., global 

correlation and non-local similarity, in this study, we propose a penalized weighted least-

squares (PWLS) criteria incorporating the NLM-based regularization. Specifically, the 

weighted least-squares term takes into account DECT data-dependent variance and the 

NLM-based regularization utilizes the redundant information from an average image 

wherein the average image is generated from all of the images reconstructed in all energy 

domain. Our contributions can be summarized as follows: First, the aviNLM regularization 

fully takes global correlation and non-local similarity underlying the DECT images, which 

can characterize the priors of desired DECT images in the reconstruction framework. 

Second, under the one-step-late framework, the steepest descent scheme was designed to 

optimize the objective function to achieve clinically acceptable DECT images from low-

mAs acquisitions. Experiments on digital phantom, physical phantom and patient data show 

that the presented PWLS-aviNLM approach can achieve remarkable gains in various 

aspects.

The remaining parts of this paper are organized as follows. In section 2, we describe the 

DECT imaging model, the presented aviNLM prior and the associated PWLS-aviNLM 

image reconstruction algorithm. Section 3 validates the performance of our proposed 

reconstruction method using digital phantom, physical phantom and clinical data. Finally, 

the discussion and conclusion are given in section 4.
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2. Methods and materials

2.1. SIR framework for low-dose DECT

In this study, the DECT measurements at distinct projections are assumed to be 

conditionally independent. And under the assumption of monochromatic X-ray generation, 

the DECT measurements can be approximately expressed as discrete linear system:

(1)

where  denotes the obtained DECT sinogram data after the system calibration 

and logarithm transformation to form ray-sums, and  is the desired reconstructed 

DECT images, where ‘T’ denotes the matrix transpose. M in Eq. (1) represents the joint 

system matrix, which can be expressed as follows:

(2)

where  is the identity matrix with the size of .  denotes the Kronecker product. 

The operator H denotes system matrix with the size of , where I is the number of 

detector bins and J is the number of energy-specific image voxels to be reconstructed.  is 

typically calculated as the path length of projection ray i with energy-specific voxel j. The 

goal of DECT images reconstruction is to estimate the desired DECT images U to enable 

image-based material decomposition.

In our study, it is the objective to reconstruct DECT images by solving the following 

optimization problem within PWLS criterion:

(3)

where  is a hyper-parameter vector to balance the data-fidelity term and 

regularization term. Assuming the ray-sum measurements among all the bins are statistically 

independent, is the inverse covariance of measurements Y, which can be expressed as 

follows:

(4)

where  is the variance of high-energy sinogram data  and  is the variance of low-

energy sinogram data . According to our previous studies (Ma et al 2012b), the projection 

data after the calibration and log-transformation follow approximately a Gaussian 
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distribution with an associated relationship between the data sample mean and variance, 

which can be expressed as follows (Ma et al 2012b) :

(5)

where  represents the incident X-ray intensity at high- or low- energy, and  is the 

mean of sinogram data at bin i at high- or low- energy and  is the background electronic 

noise variance.

2.2. aviNLM regularization

It is noted that the regularization term  in Eq. (3) plays a critical role for successful 

DECT images reconstruction and the DECT image are structurally similar implying global 

correlation underlying the DECT images. In this paper, according to our previous studies 

(Ma et al 2012a, Zhang et al 2014a, Zhang et al 2014b, Zhang et al 2014c), we propose an 

averaged image induced NLM-based (aviNLM) regularization, which fully takes global 

correlation and non-local similarity underlying the DECT images and is defined as follows:

(6)

where  denotes a non-quadratic function and can be chosen as 

(Bouman et al 1993). In this study, p is set to be  for all the experiments. 

represents an average image induced NLM filter and is described as follows (Zeng et al 
2016a) :

(7)

where  represents the search window in the image volume  which is produced by 

averaging the DECT images. The weighting coefficients  can be written as follows

(8)

where  denotes the patch centered at the pixel i in the energy-specific image  and 

denotes the patch centered at the pixel j in the averaged image . The notation 

denotes a Gaussian-weighted Euclidean distance metric between two similar patches 

(Buades et al 2005). The parameter d represents smoothing factor controlling the decay of 
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the exponential function as well as the weighting coefficient. According to our previous 

work (Ma et al 2012a), C is local compensation factor accounting for local intensity 

changes, which can be expressed as follows:

(9)

where  denotes the expected value or mean of the intensity in the patch-window V.

In summary, the objective function in Eq. (3) can be rewritten as:

(10)

2.3. Implementation of the PWLS-aviNLM algorithm

Because the weighting coefficients in Eq. (8) are actually determined by the desired DECT 

images and the aviNLM regularization term is nonlinear, it is difficult to effectively optimize 

the objective function in Eq. (10) with general optimization algorithms. To address this 

issue, similar to our previous works (Ma et al 2012a, Zhang et al 2014b), we now consider 

that an empirical one-step-late (OSL) scheme can be used to optimize the objective function 

in Eq. (10) which contains four main following steps:

1. Prior estimation. Given the current estimation  where n denotes the iterative 

index and the averaged image , the aviNLM filter in Eq. (7) is first performed 

between Un and , and then the regularization term  is calculated in Eq. 

(6).

2. Steepest descent optimization. For minimizing the objective function of the 

PWLS-aviNLM algorithm, a steepest descent optimization algorithm is utilized 

to yield new image estimation, i.e. , which can be described as follows:

(11)

where  denotes the gradient step-size and can be 

determined adaptively as follows (Sullivan et al 1991) :

(12)

where , 

wherein Z denotes the normalizing factor of the aviNLM filter for each voxel in 
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Eq. (7), and . In the implementation, as , let 

.

3. Cycle update. Update using the aforementioned step until stop criteria is 

satisfied.

2.4. Parameters selection

2.4.1. Selection of aviNLM filter parameters—It is not a trivial task to determine the 

optimal aviNLM filter parameter. In this work, these parameters were empirically set 

through extensive experiments by quantitative measures and visual inspection. We found that 

a  search-window  and  patch-window  are adequate for suppressing 

noise-induced artifacts while retaining computational efficiency, and  wherein 

denotes the standard deviation of .  denotes the size of the search window , and 

is a free scalar parameter and is determined by experiments.

2.4.2. Selection of hyper-parameter—The hyper-parameter vector  is used 

to balance the data fidelity and regularization terms. Optimizing them is a difficult task in 

CT image reconstruction. In this study, the hyper-parameter is tuned manually to achieve a 

good compromise between a low noise level and a high level of detail.

2.4.3. Selection of the stop criterion—The iterative process is finished if particular 

convergence criterion is satisfied for a relatively stable solution. In this study, 50 iterations 

are usually sufficient for a stable result with sufficient stability for the presented PWLS-

aviNLM algorithm.

2.5. Experimental data acquisition

To evaluate the performance of the presented PWLS-aviNLM algorithm for low dose DECT 

image reconstruction, a digital 4D extended cardiac-torso (XCAT) phantom (Fig. 1(a)), a 

physical clock phantom (Fig. 1(b)) and clinical DECT data were utilized in the study.

2.5.1. XCAT phantom study—The digital XCAT phantom (Fig. 1(a)) study was 

conducted to assess the presented PWLS-aviNLM algorithm performance. The XCAT 

phantom in this study consists of three different materials mimicking air, soft tissue and 

bone, with the issues and materials defined in Table 2. A geometry similar to mono-

energetic fan-beam CT scanner model with a circle orbit is used and the related scan 

geometry parameters are listed in Table 3. Similar to the work (Le et al 2010, Shikhaliev 

2005, Zeng et al 2015), for energy-specific noise-free sinogram data , then noisy 

transmission measurements  at each bin was generated according to the statistical model :

(13)
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where  denotes the energy-specific incident X-ray intensity and is set to be  and 

 for high- and low -energy cases (i.e., 140 kVp, and 80 kVp), respectively. 

denotes the electronic background noise variance and is set to be 11(Ma et al 2012b).

2.5.2. Physical phantom study—In this study, the physical phantom (Fig. 1(b)) data 

were collected on a commercial CT scanner with two different tube potentials (90 and 120 

kVp) at two noise level (282 and 56 mGs), respectively. Specifically, the detail scan 

protocols are listed in Table 4. A representative slice was specifically selected from the 

image volume to evaluate the presented PWLS-aviNLM algorithm. The phantom consists of 

a circular water background with the diameter of 15 cm, and eight large circular inserts, with 

detail information summarized in Table 5. In the study, the projection data were simulated 

by projecting the image into its sinogram domain with Siddon’s ray algorithm (Siddon 

1985).

To demonstrate the performance of the presented PWLS-aviNLM algorithm for low-dose 

DECT image reconstruction. The related scan geometry parameters are listed in Table 3. In 

the study, the DECT images at low noise level are selected as normal dose images which are 

served as ground truth.

2.5.3. Clinical data study—The clinical study was approved by the institutional review 

board, and written informed consent was obtained from the volunteer patient with coronary 

atherosclerotic plaques. The patient was scanned by the GE Discovery CT750 HD scanner 

with 600 mA and 281 ms (CTDIvol: 11.55 mGy). The related scan geometry parameters are 

listed in Table 3. The virtual monochromatic spectral (VMS) images were generated using 

the GE commercial software at 10 keV monochromatic energy level increments from 40–

140 keV. In the study, the VMS images at 60 keV and 100 keV specifically selected as the 

DECT images. The low-dose DECT sinogram data were acquired using the similar 

simulation method in the study (Zeng et al 2015).

2.6. Performance evaluation

2.6.1. Noise reduction performance—To quantitatively evaluate the noise reduction 

performance of the presented PWLS-aviNLM algorithm, two metrics were utilized: (1) the 

peak signal-to-noise ratio (PSNR); and (2) the normalized mean square error (NMSE) :

(14)

(15)
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where  and  represent the intensity value at the pixel k in the image μ and the 

ideal image , respectively. K denotes the number of image pixels, and 

represents the maximum intensity value of the ideal phantom image.

2.6.2. Modulation transfer function measure—In this study, to measure the spatial 

resolution of the DECT images reconstructed by the different algorithms, the modulation 

transfer function (MTF) in introduced. For the MTF computation, an edge spread function 

(ESF) was first obtained along the profile at one direction on the inserts (B3 and B4) in Fig. 

1(b). The ESF was resampled using linear interpolation. The resampled ESF was averaged 

across multiple ESF realizations (measured at 3, 6, 9, and 12 o’clock positions) to yield the 

ensemble ESF aiming to reduce noise in ESF. Then, a line spread function (LSF) was 

estimate from the derivation of the ensemble ESF. The MTF could be obtained by applying 

the Fourier transformation of the LSF (Richard et al 2012).

2.6.3. Feature similarity index measure—To further quantify the improved accuracy 

obtained by the presented PWLS-aviNLM algorithm, the feature similarity (FSIM) index is 

employed. It is reported that the FSIM is a novel human-perception based metric with range 

of values from 0 to 1, which means a higher value indicating a better similarity between the 

estimated and reference DECT images (Zhang et al 2011).

2.7. Comparison methods

To evaluate the performance of the presented PWLS-aviNLM algorithm, the FBP algorithm 

with the ramp filter, the PWLS-TV algorithm and the PWLS-NLM algorithm were adopted 

for comparison. Specifically, the objective function of the PWLS-TV and PWLS-NLM 

algorithms can be written as follows:

(16)

For the PWLS-TV algorithm, the TV regularization term can be written as follows:

(17)

In addition, for the PWLS-NLM algorithm, the NLM regularization term can be written as 

follows:

(18)

For the two compared SIR algorithms, the penalty parameters are also tuned manually to 

achieve a good compromise between a low noise level and a high level of detail, and the 

iterative processes are finished when the results achieve the particular convergence criterion. 

Specifically, the selection for the NLM filter parameters (search-window , patch-window 
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 and scalar parameter h) for PWLS-NLM algorithm is similar to the PWLS-aviNLM 

algorithm introduced above.

3. Results

3.1. The XCAT phantom study

Fig. 2 shows the XCAT DECT images reconstructed by the different algorithms. The first 

column shows the digital phantom images, which were used as the ground truth images for 

comparison. The second column shows the low-dose DECT images reconstructed by the 

FBP algorithm, and severe noise-induced artifacts are presented. The last three columns 

show the low-dose DECT images reconstructed by the PWLS-TV, PWLS-NLM, and 

presented PWLS-aviNLM algorithms. It can be seen that the results from the SIR methods 

have noticeable gains relative to those from the standard FBP algorithm in terms of noise-

induced artifact suppression. Some visibly obvious artifacts still exist in the PWLS-TV and 

PWLS-NLM reconstructed DECT images while the artifacts are basically eliminated in the 

PWLS-aviNLM reconstructed DECT images. To visualize the results in a better manner, the 

zoomed images of one selected region of interest (ROI) as indicated by the red rectangles are 

displayed in Fig. 3. The results further illustrate the gains obtained by the presented PWLS-

aviNLM algorithm.

Table 6 lists the PSNR and NMSE measurements of the DECT images reconstructed by four 

different algorithms. As expected, all the SIR algorithms exhibit significant gains over the 

FBP method in terms of the two measurements. Moreover, the presented PWLS-aviNLM 

algorithm yields an average of more than 10%, and 50% gains over the PWLS-TV and 

PWLS-NLM algorithms in terms of the PSNR and NMSE measurements on the DECT 

images, respectively. This can evidently demonstrate that the presented PWLS-aviNLM 

algorithm work best in noise-induced artifacts suppression among the four algorithms. In 

addition, Table 7 summarizes the FSIM scores of the DECT reconstructed images. We have 

the following observations: (1) All SIR algorithms yield better indices than the FBP 

algorithm in all the cases, implying that the SIR algorithms have a great potential to suppress 

noise-induced artifacts. (2) The presented PWLS-aviNLM algorithm has the highest FSIM 

scores in all the cases, indicating the high quality of the presented PWLS-aviNLM 

reconstructed DECT images. This is also consistent with our observations in visualization-

based evaluation performed above. Therefore, the quantitative measurements illustrate that 

the presented PWLS-aviNLM algorithm has the best overall DECT image quality among all 

the algorithms.

Fig. 4 shows the decomposed images of basis materials from the different algorithms 

wherein the bone and soft tissue were chosen as the basis materials (Soft tissue: Breast 

Tissue ICRU-44, 1.00 ; Bone: B-100 Bone-Equivalent Plastic, 1.50 ). In this 

study, the decomposed images of the basis materials are calculated from the DECT images 

via a direct inverse method (Heismann et al 2012). It can be seen that the noise level of the 

presented PWLS-aviNLM decomposed images is lowest, followed by the PWLS-NLM and 

PWLS-TV decomposed images wherein artifacts can be still observed. Moreover, Fig. 5 

shows the mean and standard deviations (SD) values of the selected ROIs (i.e., ROI 1, and 
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ROI 2) as indicated by the squares in Fig. 1(a) for the selective algorithms. From the results, 

it can be seen that the FBP algorithm has the greatest SD values in all the material, and 

generally the values decreases gradually from the PWLS-TV, PWLS-NLM, to the presented 

PWLS-aviNLM algorithm, indicating that the high quality PWLS-aviNLM reconstruction 

leads to excellent material decomposition results.

3.1. Physical phantom stud

Fig. 6 shows the physical phantom images reconstructed from low-dose DE projections by 

the different algorithms. As visualized in the figure, the low-dose DECT images 

reconstructed by the FBP algorithm suffer from severe noise-induced artifacts. Meanwhile, 

the SIR algorithms outperform FBP algorithm in terms of noise-induced artifacts 

suppression and the presented PWLS-aviNLM algorithm yields DECT images with superior 

quality, as shown in the zoomed-in ROIs indicated by the red boxes. Moreover, two ROIs 

(ROI A and ROI B) indicated by the boxes in Fig. 1(b) are selected to measure the contrast-

to-noise ratio (CNR), which was used to estimate the detectability of objects within 

reconstructed images. The corresponding results are listed in Table 8. From the results, it can 

be observed that the presented PWLS-aviNLM algorithm can yield higher CNR values than 

the other three algorithms in all cases, which suggests the improvements dedicated by the 

presented PWLS-aviNLM algorithm.

Fig. 7 shows the horizontal profiles through the centers of the inserts (B3 and B5) in the 

reconstructed DECT images. It can be observed that the presented PWLS-aviNLM 

algorithm generally appeared to produce profiles close to the ground truth as seen in the 

magnified views. The prior information from average image helps better adapt to the edge 

variation compared to other three algorithms. Moreover, Fig. 8 shows the MTFs obtained by 

the PWLS-TV, PWLS-NLM, and presented PWLS-aviNLM algorithms in both high and low 

contrast level from reconstructed DECT images. It can be observed that the PWLS-aviNLM 

algorithm can yield a better spatial resolution than the other two algorithms. The spatial 

resolution evaluations demonstrated that the presented PWLS-aviNLM algorithm can yield 

higher low-contrast detestability and noticeable edge-preservation in comparison with the 

other three algorithms.

Fig. 9 shows the material decomposition images by the different algorithms. In this study, 

the material decomposition images are yielded via a direct inverse method (Heismann et al 
2012). From the results, it can be seen that the presented PWLS-aviNLM algorithm can 

provide the most accurate water and Teflon component among the four algorithms. In 

addition, it can be observed that some cupping artifacts occur in the basic material images, 

especially in the “water” images, which may be mainly caused by the beam hardening 

effects. To further quantitatively evaluate the decomposition results, the mean and SD values 

of ROI A in the decomposed Teflon images are computed and the corresponding results are 

depicted in Table 9.

3.3. Clinical patient study

Fig. 10 shows the reconstructed images by the FBP, PWLS-TV, PWLS-NLM, and presented 

PWLS-aviNLM algorithms from low-dose DECT projection data. It can be seen that the 
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three SIR algorithms have noticeable gains relative to the FBP algorithm in terms of the 

noise-induced artifacts suppression. From the zoom-in views of the detailed regions, it can 

also be seen that the presented PWLS-aviNLM algorithm outperforms the other two SIR 

algorithms on the fine structures reconstruction.

Fig. 11 shows the VMS images generated from the DECT images reconstructed by different 

algorithms. Moreover, the zoomed images of the ROI indicated by red box are also 

displayed. From the results, it can be observed that the presented PWLS-aviNLM algorithm 

can yield the noticeable gains over the other three algorithms in terms of noise suppression 

and detail preservation of coronary atherosclerotic plaques in the VMS image.

To qualitatively evaluate the performances of the presented PWLS-aviNLM algorithm in a 

subjective manner, three radiologists with at least five years of experience in CT imaging 

were asked to score the VMS images in terms of noise reduction (NR), artifact suppression 

(AS), edge preservation (EP) and overall image quality (IQ). The four VMS images 

reconstructed by the different algorithms were displayed on the screen randomly, so it was a 

completely blind procedure for the radiologists. The scoring was done from 0 (worst) to 10 

(best), and the corresponding scores are listed in Table 10. From the results, it can be seen 

that the presented PWLS-aviNLM algorithm can yield the highest scores among all the 

algorithms, indicating that the presented PWLS-aviNLM algorithm can generate high-

quality VMS images. The results are consistent with the previous observations in both the 

XCAT phantom and physical phantom studies.

4. Discussion

In this study, we proposed an iterative approach wherein an average image induced edge-

preserving regularization is incorporated into the PWLS DECT reconstruction framework to 

reduce noise-induced artifacts in low dose DECT images. Specifically, the presented 

aviNLM regularization utilizes the redundancy information existing in the DECT data for it 

is reported that the measured DECT data both have geometrical self-similarities and are 

highly correlated between the two energies and the inter-image similarity is important prior 

knowledge for DECT images reconstruction. The experiments were conducted with the 

digital XCAT phantom, physical phantom and clinical patient data. The preliminary results 

presented in Section 3 demonstrated that the gains from the presented PWLS-aviNLM 

algorithm are remarkable compared with those from the PWLS-TV algorithm and PWLS-

NLM in terms of qualitative and quantitative measurements. It is noted that the difference of 

the pixel value in the  from that in the energy-specific image  or  could cause a slight 

loss of contrast in the component coefficient images.

There are ways in which the performance of the presented PWLS-aviNLM algorithm should 

be improved. One of these ways, as we have discussed previous in the paper, is to determine 

the algorithm parameters, namely the search-window, the patch-window, the control 

parameter and the hyper-parameter. Based on our previous studies (Ma et al 2012a, Zhang et 
al 2014b), the size of search-window and patch-window that are set in a reasonable range do 

not have noticeable effect on the resultant DECT images quality and the control parameter is 

set according to the scalar parameter that is determined by experiments. In addition, the 
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determination of hyper-parameter is tuned manually to achieve a good tradeoff between 

noise and resolution in all the cases. It should be noted that the question, what a “good 

tradeoff” is, depends strongly on the task-specific cases and the preference of the observer. 

Thus, optimized parameters would be an interesting topic in the future study. Another way is 

that the mismatch between the DECT images should be taken into consideration. Although 

most DECT systems acquire the DECT data simultaneously in which tissue deformation is 

of minimal concern, somewhat motion effects may occur in the case of slow kVp switching 

(Zeng et al 2016a). Therefore, to obtain accurate material-specific images, some general 

motion correction procedures can be incorporated into the PWLS-aviNLM algorithm 

framework to mitigate the effects in the case of slow-kVp scanning. This can be another 

topic in our future research plan

In conclusion, we have developed a PWLS-aviNLM algorithmfor low-dose DECT image 

reconstruction. In the clinic, the presented PWLS-aviNLM algorithm can be stretched into 

various applications, such as photon-counting CT imaging (Zhang et al 2016a, Zeng et al 
2016b, Yu et al 2016), 4D CT/CBCT imaging (Dang et al 2016), and perfusion imaging 

(Fang et al 2015, Zeng et al 2016c), where redundant information can be observed among 

image data. Also, the aviNLM-based idea could be possibly used to solve the metal artifacts 

reduction problem (i.e., degraded projection that might be truncated due to strong 

attenuation or streak artifacts around metallic objects), because the vast body of external 

knowledge can be globally searched in the domain of the already acquired medical CT 

images.
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Figure 1. 
The digital XCAT phantom (a), physical clock phantom (b) for DECT experiments and 

detail information of the physical clock phantom in (b).
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Figure 2. 
The XCAT DECT images reconstructed by the different algorithms. All the images are 

displayed in the same window.
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Figure 3. 
One zoomed region indicated by the red rectangle in Fig. 2. All the images are displayed in 

the same window.
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Figure 4. 
The material decomposition results from the XCAT phantom study. All the basic material 

images are displayed in the same window.
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Figure 5. 
The comparison of basis material concentration obtained by the different algorithms. (a) 

Decomposed bone concentration as a function of the different algorithms. (b) Decomposed 

soft tissue concentration as a function of the different algorithms. The bone and soft tissue 

concentration during the simulation were 1.50 and 1.00 . The error bars represent the 

SD.
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Figure 6. 
The physical phantom images reconstructed by the different algorithms from the DECT 

projection data. All the images are displayed in the same window.
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Figure 7. 
The horizontal profiles through the center of the teflon insert (B3) and the PMP insert (B5) 

in the reconstructed DECT images. (a) the profile of the 120 kVp; and (b) the profile of the 

90kVp.
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Figure 8. 
MTF curves obtained from the different algorithms at (a) 120 kVp in high contrast level 

(B3); (b) 120 kVp in low contrast level (B4); and (c) 90 kVp in high contrast level (B3) and 

(d) 90 kVp in low contrast level (B4).
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Figure 9. 
The material decomposition results from physical phantom study. All the basic material 

images are displayed in the same window.
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Figure 10. 
The patient data images reconstructed by the different algorithms. All the images are 

displayed in the same window.
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Figure 11. 
The VMS images (70 keV) generated from DECT images reconstructed by the different 

algorithms. (a) is from the FBP algorithm, (b) is from the PWLS-TV algorithm, (c) is from 

the PWLS-NLM algorithm, and (d) is from the presented PWLS-aviNLM algorithm. All the 

images are displayed in the same window.
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Table 1

Abbreviations and acronyms.

Acronym Full Name Acronym Full Name

aviNLM averaged image induced NLM-based AS artifact suppression

CDPE polyethylene CNR contrast-to-noise ratio

DECT dual energy computed tomography EP edge preservation

ESF edge spread function FBP filtered backprojection

FSIM feature similarity IQ image quality

LDPE polyethylene LSF line spread function

MAP maximum a posterior MTF modulation transfer function

NMSE normalized mean square error NLM non-local means

NR noise reduction NLTV nonlocal total variation

OSL one-step-late PICCS prior image constrained compressed sensing

PMP polymethylpentene PSNR peak signal-to-noise ratio

PWLS penalized weighted least-squares ROI region of interest

SIR statistical iterative reconstruction TV total variation

VMS virtual monochromatic spectral XCAT extended cardiac-torso
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Table 2

Material types of the sub-regions in the phantom as shown in Fig. 1(a).

Material

Density( )

1 Air 0.00

2 Average of soft tissue 1.00

3 Bone 1.50
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Table 3

The comparison of scan geometry parameters for different experiments.

Parameters XCAT phantom study Physical phantom study Clinical data study

Projection views 1160 984 984

ChannelsPerView (bin) 672 672 888

DetectorBinSpace (mm) 1.85 0.75 1.00

DistanceSourceToDetector (mm) 1361.20 1183.00 946.74

DistanceSourceToCenter (mm) 615.18 645.00 538.52

SliceThickness (mm) 0.625 3.000 0.625
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Table 4

The detail scan protocol for the physical phantom.

120 kVp 90 kVp

Normal-Dose Low-Dose Normal-Dose Low-Dose

Exposure time (ms) 1776 1776 1776 1776

Tube current (mA) 282 56 282 56

CTDIvol (mGy) 53.1 10.6 24.1 4.8

Noise level ( )
0.012 1.682 0.034 2.328
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Table 5

Detail information for the inserts in the physical phantom.

Material Fomula Gravity Inserts

Acrylic [C5H8O2] 1.147 B1

DelrinTM – 1.368 B2

Teflon [CF2] 1.868 B3,S2

Air N:0.78;O:0.21;Ar:0.01 0.000 B4,B8,S1,S3,S4

PMP [C6H12(CH2)] 0.858 B5

LDPE [C2H4] 0.945 B6

Polystyrece [C8H8] 0.998 B7

Phys Med Biol. Author manuscript; available in PMC 2017 July 07.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 32

Table 6

The PSNR and NMSE measurements of the DECT images reconstructed by the different algorithms.

Methods

80kVp 140kVp

PSNR NMSE(×10−3) PSNR NMSE(×10−3)

FBP 33.32 5.5 33.54 4.1

PWLS-TV 35.96 3.0 36.54 2.1

PWLS-NLM 35.23 3.6 35.19 2.8

PWLS-aviNLM 39.41 1.4 39.36 1.1
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Table 7

The FSIM measurements of the DECT images reconstructed by the different algorithms.

FBP PWLS-TV PWLS-NLM PWLS-aviNLM

80 kVp 0.9643 0.9897 0.9875 0.9986

140kVp 0.9726 0.9987 0.9985 0.9989
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Table 8

The CNR measurements of the physical phantom images reconstructed by the different algorithms.

Methods
90 kVp 120 kVp

ROIA ROIB ROIA ROIB

FBP 6.1735 2.4076 7.6481 2.7716

PWLS-TV 9.4489 6.6737 11.2703 7.3962

PWLS-NLM 8.3524 5.1791 10.0140 6.5013

PWLS-aviNLM 10.8970 9.3684 12.3086 9.7798
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Table 9

The mean±SD measurements of ROI A in Fig. 1(b).

FBP PWLS-TV PWLS-NLM PWLS-aviNLM Normal-Dose

1.80±1.95 1.82±0.31 1.82±0.32 1.83±0.27 1.82±0.26
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