Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Nov;87(21):8472–8475. doi: 10.1073/pnas.87.21.8472

Labeling of epsilon-lysine crosslinking sites in proteins with peptide substrates of factor XIIIa and transglutaminase.

K N Parameswaran 1, P T Velasco 1, J Wilson 1, L Lorand 1
PMCID: PMC54978  PMID: 1978326

Abstract

Peptides patterned on the N-terminal sequence of fibronectin were synthesized and tested for amine acceptor qualities in reactions with dansylcadaverine catalyzed either by coagulation factor XIIIa or intracellular transglutaminase (protein-glutamine:amine gamma-glutamyltransferase, EC 2.3.2.13). On the basis of inverse half-saturations of the enzymes, the order of acceptor substrate affinity for factor XIIIa was pEAQQIV much greater than Boc-AQQIV greater than Boc-QQIV, and for transglutaminase, Boc-QQIV greater than Boc-AQQIV greater than pEAQQIV (amino acid residues are shown in one-letter code; pE, pyroglutamic acid; Boc, tert-butyloxycarbonyl). Sequence analysis of dansylcadaverine-substituted pEAQQIV indicated that the first of the two adjacent glutamine residues was the target of enzymatic modification. Boc-QIV showed no substrate activity with either enzyme. Crosslinking of crystallins in Ca2(+)-treated rabbit lens homogenate was readily inhibited by Boc-QQIV, Boc-AQQIV, and pEAQQIV, as was the formation of alpha-chain polymers in human fibrin by pEAQQIV in the presence of human factor XIIIa. SDS/PAGE analysis suggested that the inhibitory peptides selectively blocked the electron donor functionalities in these enzymatic crosslinking reactions.

Full text

PDF
8472

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cariello L., Velasco P. T., Wilson J., Parameswaran K. N., Karush F., Lorand L. Probing the transglutaminase-mediated, posttranslational modification of proteins during development. Biochemistry. 1990 May 29;29(21):5103–5108. doi: 10.1021/bi00473a015. [DOI] [PubMed] [Google Scholar]
  2. Curtis C. G., Lorand L. Fibrin-stabilizing factor (factor XIII). Methods Enzymol. 1976;45:177–191. doi: 10.1016/s0076-6879(76)45018-8. [DOI] [PubMed] [Google Scholar]
  3. König W., Geiger R. Eine neue Methode zur Synthese von Peptiden: Aktivierung der Carboxylgruppe mit Dicyclohexycarbodiimid unter Zusatz von 1-Hydroxy-benzotriazolen. Chem Ber. 1970;103(3):788–798. doi: 10.1002/cber.19701030319. [DOI] [PubMed] [Google Scholar]
  4. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  5. Lorand L., Campbell L. K. Transamidating enzymes. I. Rapid chromatographic assays. Anal Biochem. 1971 Nov;44(1):207–220. doi: 10.1016/0003-2697(71)90362-9. [DOI] [PubMed] [Google Scholar]
  6. Lorand L., Conrad S. M. Transglutaminases. Mol Cell Biochem. 1984;58(1-2):9–35. doi: 10.1007/BF00240602. [DOI] [PubMed] [Google Scholar]
  7. Lorand L., Conrad S. M., Velasco P. T. Formation of a 55 000-weight cross-linked beta crystallin dimer in the Ca2+-treated lens. A model for cataract. Biochemistry. 1985 Mar 12;24(6):1525–1531. doi: 10.1021/bi00327a035. [DOI] [PubMed] [Google Scholar]
  8. Lorand L., Credo R. B., Janus T. J. Factor XIII (fibrin-stabilizing factor). Methods Enzymol. 1981;80(Pt 100):333–341. doi: 10.1016/s0076-6879(81)80029-8. [DOI] [PubMed] [Google Scholar]
  9. Lorand L., Rule N. G., Ong H. H., Furlanetto R., Jacobsen A., Downey J., Oner N., Bruner-Lorand J. Amine specificity in transpeptidation. Inhibition of fibrin cross-linking. Biochemistry. 1968 Mar;7(3):1214–1223. doi: 10.1021/bi00843a043. [DOI] [PubMed] [Google Scholar]
  10. McDonagh R. P., McDonagh J., Petersen T. E., Thøgersen H. C., Skorstengaard K., Sottrup-Jensen L., Magnusson S., Dell A., Morris H. R. Amino acid sequence of the factor XIIIa acceptor site in bovine plasma fibronectin. FEBS Lett. 1981 May 18;127(2):174–178. doi: 10.1016/0014-5793(81)80198-6. [DOI] [PubMed] [Google Scholar]
  11. Petersen T. E., Thøgersen H. C., Skorstengaard K., Vibe-Pedersen K., Sahl P., Sottrup-Jensen L., Magnusson S. Partial primary structure of bovine plasma fibronectin: three types of internal homology. Proc Natl Acad Sci U S A. 1983 Jan;80(1):137–141. doi: 10.1073/pnas.80.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Schwartz M. L., Pizzo S. V., Hill R. L., McKee P. A. Human Factor XIII from plasma and platelets. Molecular weights, subunit structures, proteolytic activation, and cross-linking of fibrinogen and fibrin. J Biol Chem. 1973 Feb 25;248(4):1395–1407. [PubMed] [Google Scholar]
  13. Velasco P. T., Lorand L. Acceptor-donor relationships in the transglutaminase-mediated cross-linking of lens beta-crystallin subunits. Biochemistry. 1987 Jul 28;26(15):4629–4634. doi: 10.1021/bi00389a006. [DOI] [PubMed] [Google Scholar]
  14. Velasco P. T., Murthy P., Goll D. E., Lorand L. Cross-linking and proteolysis in Ca2(+)-treated lens homogenates. Biochim Biophys Acta. 1990 Sep 3;1040(2):187–191. doi: 10.1016/0167-4838(90)90074-p. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES