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Abstract
Fibrosis is defined as excess deposition of extracellular matrix, resulting in
tissue scarring and organ dysfunction. It is estimated that 45% of deaths in the
developed world are due to fibrosis-induced organ failure. Despite the
well-accepted role of fibrosis in the pathogenesis of numerous diseases, there
are only two US Food and Drug Administration–approved anti-fibrotic therapies,
both of which are currently restricted to the treatment of pulmonary fibrosis.
Thus, organ fibrosis represents a massive unmet medical need. Here, we
review recent findings suggesting that an epigenetic regulatory protein, BRD4,
is a nodal effector of organ fibrosis, and we highlight the potential of
small-molecule BRD4 inhibitors for the treatment of diverse fibrotic diseases.
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Introduction
Acetylation of nucleosomal histone tails plays a fundamental role 
in epigenetic control of gene transcription. One mechanism by 
which acetylation regulates transcription is by creating docking 
sites for acetyl-lysine binding proteins, which often are referred 
to as “readers”. Among the most well-characterized proteins  
that bind acetyl-lysine marks on histone tails are the BET (bro-
modomain and extra-terminal) family of proteins, which consists 
of BRD2, BRD3, BRD4, and BRDT1,2. This review focuses on 
BRD4 because this BET family member has been clearly shown 
to regulate pro-fibrotic gene expression in various tissues. BRD4  
associates with acetyl-histones via two tandem, amino-terminal 
bromodomains. The C-terminal region of BRD4 contains a  
carboxy-terminal motif (CTM) that is not present in other BET 
family members. Through its CTM, BRD4 interacts with pro-
tein complexes such as P-TEFb that signal to gene promoters. 
BRD4 directly associates with and allosterically activates cyclin- 
dependent kinase 9 (CDK9), the core kinase within the P-TEFb 
complex, resulting in phosphorylation of RNA polymerase II (Pol 
II) C-terminal heptapeptide repeats, and subsequent pause release 
and transcription elongation (Figure 1)3.

Knowledge of the functions of BET proteins in diverse physi-
ological and pathophysiological processes has been greatly 
advanced by the availability of selective small-molecule BET 
inhibitors. These compounds—such as JQ1, I-BET151, and PFI-
1—bind BET bromodomains with high affinity, thereby com-
petitively displacing these epigenetic regulators from acetylated  
histones at target gene regulatory sites. BET proteins are prom-
ising therapeutic targets for a wide variety of diseases, and thus  
vigorous, ongoing medicinal chemistry efforts are aimed at 
developing newer generations of BET inhibitors with increased 
potency, selectivity, and drug-like properties4. As detailed  
below, BET inhibitors have exhibited profound anti-fibrotic  
effects in rodent models of organ failure. Furthermore, genetic  

loss-of-function studies in cultured cells have revealed that BRD4 
is a nodal, positive regulator of pro-fibrotic gene expression and  
that BRD4 promotes differentiation of precursor cells into myofi-
broblasts, a cell type that governs extracellular matrix (ECM)  
deposition and tissue remodeling throughout the body. We high-
light these findings and expound on the promise of developing  
BET/BRD4 inhibitors for the treatment of fibrotic diseases that  
thus far have been recalcitrant to therapeutic intervention.

BRD4 and pulmonary fibrosis
Pulmonary fibrosis is a devastating complication of a heteroge-
neous group of lung disorders collectively known as interstitial 
lung disease (ILD). Idiopathic pulmonary fibrosis (IPF), which 
is the most common ILD, manifests as progressive lung fibrosis 
that culminates in shortness of breath, dyspnea on exertion, and  
hypoxia. Strikingly, the median survival time following diag-
nosis of IPF is two to three years5. The sole US Food and Drug  
Administration–approved anti-fibrotic therapies, which are pir-
fenidone (unknown mechanism of action) and nintedanib (tyro-
sine kinase inhibitor), are both indicated for the treatment of IPF.  
Unfortunately, the efficacy of these drugs is limited, and neither 
agent has been shown to significantly reduce mortality6,7.

In cultured lung fibroblasts (LFs) obtained from healthy donors, 
the BET inhibitors JQ1 and I-BET were shown to blunt induction  
of a multitude of pro-fibrotic, transforming growth factor-beta 
(TGF-β)-responsive genes, including alpha-smooth muscle actin 
(α-SMA), collagen 1A1, fibronectin, and interleukin-68. Both 
compounds also blocked platelet-derived growth factor (PDGF)-
mediated migration of LFs, a hallmark of the contractile myofi-
broblast state. Similar findings were made with LFs derived from 
patients with IPF9. Importantly, BET inhibitor treatment of LFs 
did not directly inhibit TGF-β signaling, as SMAD activation 
was not directly affected. Rather, BET inhibition appeared to alter 
recruitment of BRD4 to histone H4K5 acetyl marks in regula-
tory elements of pro-fibrotic genes9. More recently, using immor-
talized human small-airway epithelial cells, investigators found  
that BRD4 is required for TGF-β and nuclear factor-kappa B  
(NF-κB)/RelA-dependent expression of epithelial-mesenchymal-
transition genes (for example, SNAI1, TWIST1, and ZEB1) by  
facilitating CDK9-mediated phosphorylation of RNA Pol II10. In 
mouse models, JQ1 was found to suppress pulmonary fibrosis 
induced by bleomycin or repeated intranasal delivery of TGF-β, 
further validating a role for this epigenetic pathway in the control 
of lung fibrosis8–11.

BRD4 and renal fibrosis
Chronic kidney disease (CKD) is caused by a heterogeneous 
group of conditions, such as diabetes and polycystic kidney  
disease. Remarkably, fibrosis is a final common pathway in the 
pathogenesis of all forms of kidney disease that lead to CKD. 
Clinical data have shown clearly that there is a correlation between 
the amount of renal fibrosis and progression of CKD12. During  
kidney fibrosis, normal renal epithelial cells are replaced with 
inflammatory cells and fibroblasts, and there is increased depo-
sition of ECM. As the normal architecture of the kidney erodes, 
renal failure progresses. In the US alone, more than nine million 
people have CKD and over 600,000 have end-stage renal disease, 

Figure 1. A model for the regulation of pathological organ fibrosis 
by BRD4. Stress signals, such as those elicited by transforming 
growth factor-beta (TGF-β), trigger recruitment of BRD4 to regulatory 
regions (super-enhancers, typical enhancers, and promoters) of 
genes that drive organ fibrosis. Bromodomain and extra-terminal 
(BET) inhibitors prevent association of BRD4 with these loci and thus 
suppress pro-fibrotic gene expression.
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the most severe form of CKD (2015 USRDS Annual Data Report,  
Volume 2: End-stage Renal Disease; Centers for Disease Control 
and Prevention, Age-adjusted prevalence of CKD Stages 1–4 by 
Gender 1999–2012, CKD Surveillance Project).

Two recent articles suggest that BRD4 inhibition could be used 
as a strategy to treat renal fibrosis. In cultured normal rat or 
human kidney fibroblast cell lines (NRK-49F and HK-2), BET  
inhibitors blunted TGF-β-induced ECM gene expression, and 
this effect was recapitulated by BRD4 knockdown13,14. The BET  
inhibitor I-BET151 was shown to prevent renal fibrosis in a 7-day 
mouse unilateral ureteral obstruction (UUO) model13, and JQ1 was 
able to attenuate progression of pre-existing renal fibrosis when 
delivered between days 7 and 14 post-UUO in rats14. Interestingly, 
unlike what was observed in LFs, both BET inhibitors appeared to 
suppress renal TGF-β signaling, as indicated by reduced SMAD 
phosphorylation.

Inflammation is a key driver of fibrosis15. In a comprehensive 
series of experiments, JQ1 was shown to potently inhibit renal  
inflammation in mice in response to UUO (up to 5 days) or angi-
otensin II infusion (3 days) or in a model of anti-glomerular base-
ment membrane nephritis induced by nephrotoxic serum (NTS) 
administration (10 days)16. The anti-inflammatory action of JQ1 
was mediated, at least in part, by inhibition of NF-κB. In addition 
to suppressing inflammation, JQ1 prevented NTS-mediated renal 
functional impairment and improved glomerular lesions. It will 
be important to test BET inhibitors in more prolonged models of 
CKD where physiological markers of kidney function—such as 
serum creatinine, glomerular filtration rate, proteinuria, and water/ 
electrolyte balance—are examined17.

BRD4 and hepatic fibrosis
Similar to CKD, fibrosis is the final common pathway of many 
chronic liver diseases, irrespective of etiology. Cirrhosis is the end-
stage consequence of fibrosis of the hepatic parenchyma, resulting 
in altered hepatic biochemical function and impaired portal blood 
flow. Several clinically relevant complications arise from cirrho-
sis, including portal hypertension, encephalopathy, coagulopathy, 
peritoneal ascites, volume overload, hypoalbuminemia, suscepti-
bility to infection, and increased risk of hepatocellular carcinoma.  
Cirrhosis affects hundreds of millions of patients worldwide, and 
liver transplantation remains the only long-term therapy for chronic 
cirrhosis that results in end-stage liver disease18.

Hepatic stellate cells (HSCs) are the main cell type capable  
of pro-fibrotic transformation in the liver19. In an RNA interfer-
ence screen, BRD4 was found to be required for HSC activa-
tion in response to TGF-β20. Consistent with this, three distinct 
BET inhibitors—JQ1, IBET-151, and PFI-1—blunted expres-
sion of nearly 30 fibrosis-related transcripts, and JQ1 suppressed 
HSC proliferation and differentiation into myofibroblasts, as evi-
denced by reduced α-SMA expression. Whole-genome chromatin  
immunoprecipitation sequencing (ChIP-seq) revealed that BRD4 
associates with acetyl-histone H3K27-marked enhancers for a 
variety of pro-fibrotic genes in HSCs, and computational analyses 

suggested roles for pro-fibrotic transcription factors such as SRF, 
SMAD, and NF-κB in recruitment of BRD4 to these sites. Finally, 
JQ1 was also shown to be efficacious in a mouse model of liver 
fibrosis induced by carbon tetrachloride. Based on these findings, 
additional studies of BRD4 and BET inhibitors in the context of 
liver fibrosis are warranted21.

BRD4 and pancreatic fibrosis
Akin to the liver, the pancreas has resident stellate cells that pro-
duce high levels of ECM proteins upon activation22. Pancreatic 
ductal adenocarcinoma (PDAC), a highly aggressive and deadly 
form of cancer, is characterized by dense, fibrotic ECM, which 
appears to enhance tumor progression23. A recent report revealed 
a critical role for BRD4 in the control of pancreatic stellate cell 
(PSC) activation24. In cultured PSCs, JQ1, I-BET151, and siRNA 
targeting BRD4 all reduced collagen mRNA and protein expres-
sion whereas knockdown of BRD2 and BRD3 appeared to enhance 
ECM expression. Crucially, in a mouse model of pancreatic cancer 
driven by transgenic expression of mutant kRas, JQ1 treatment led 
to blockade of myofibroblast differentiation and fibrosis within the 
pancreas. These findings suggest that BRD4 inhibition could be a 
useful strategy for the treatment of PDAC, as well as other forms of 
cancer such as myelofibrosis25, where fibrosis contributes to disease 
progression26.

BRD4 and cardiac fibrosis
Increasing evidence implicates fibrosis as a key event that drives 
heart failure pathogenesis in response to stresses such as long-
standing hypertension, myocardial infarction (MI), and aging27. 
Heart failure affects nearly six million people in the US alone, 
915,000 new cases are diagnosed annually, and the 5-year mortality 
rate is 42%, which exceeds that of many cancers28,29. In addition 
to contributing to contractile dysfunction, fibrosis disrupts normal 
patterns of cardiac electrical conduction, forming the substrate for 
arrhythmias and sudden cardiac death.

We previously showed that JQ1 prevents several hallmarks of  
heart failure, including cardiomyocyte hypertrophy, cardiac fibro-
sis, and systolic dysfunction, in a mouse model of aortic con-
striction-induced left ventricular pressure overload30–32. We found  
that, mechanistically, BRD4 promotes cardiomyocyte hyper-
trophy by triggering RNA Pol II pause release at promoters of  
pro-hypertrophic genes30 and by contributing to the formation of 
long-range super-enhancers (SEs) associated with these genes33; 
SEs are thought to signal to proximal promoters to stabilize  
coactivator complexes near transcription start sites and facili-
tate P-TEFb–mediated Pol II phosphorylation and transcription  
elongation34–36. Intriguingly, in addition to controlling pro-growth 
genes, many of the BRD4-enriched SEs identified in cardiomyo-
cytes were associated with pro-fibrotic genes, including those 
encoding the secreted factors connective tissue growth factor 
(CTGF), plasminogen activator inhibitor-1 (PAI-1/Serpine1), 
and TGF-β233. These findings suggest the possibility that BRD4  
signaling in cardiomyocytes regulates expression of paracrine  
factors that crosstalk with fibroblasts and other stress-activated  
cell types in the heart to elicit fibrotic remodeling.
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More recently, we have found that late administration of JQ1 also 
attenuates cardiac dysfunction both in the murine transverse aortic 
constriction (TAC) model and in post-MI cardiac remodeling37. In 
addition, JQ1 blocked agonist-induced pathological hypertrophy 
and brain natriuretic peptide (BNP) expression in human induced 
pluripotent stem (iPS) cell-derived cardiomoycytes. Integrated  
transcriptomic analyses across rodent and human iPS cell mod-
els have made clear that JQ1 preferentially suppresses trans-
activation of a broad pro-fibrotic and pro-inflammatory gene  
program. Although precise delineation of cell type–specific effects 
in vivo will require the development of conditional and induc-
ible genetic loss-of-function models for the BET alleles, the tran-
scriptomic analysis of mouse bulk LV tissue revealed a strong  
suppression of myofibroblast activation by JQ1. Consistent with 
this, using cultured primary cardiac fibroblasts, we have found 
that BRD4 coordinates TGF-β–mediated pro-fibrotic gene expres-
sion and myofibroblast differentiation (unpublished data). Thus,  
BRD4 appears to play a crucial role in cardiac fibrosis by  
regulating fibrogenic gene expression in both cardiomyocytes 
and resident cardiac fibroblasts and possibly other cell types that  
populate the stressed myocardium.

Conclusions
Organ fibrosis has devastating consequences, contributing to  
millions of deaths annually38. The study of BRD4 and BET inhibi-
tors in the context of fibrosis has just begun, and the mechanis-
tic underpinnings of BRD4-dependent regulation of pro-fibrotic  
gene expression remain poorly understood. The encouraging  
pre-clinical findings highlighted above—particularly the ability of 
BET inhibitors to block pulmonary, renal, hepatic, pancreatic, and 
cardiac fibrosis in animal models—justify aggressive expansion of 
research and drug discovery efforts in this burgeoning arena.

There is reasonable concern about clinical evaluation of BET  
inhibitors without a more detailed understanding of the biologi-
cal functions and mechanisms of action of distinct BET family  
members39. We acknowledge that a significant amount of addi-
tional research is needed in this regard. However, given the  
extremely high mortality rate caused by organ fibrosis and the 
limited therapeutic options, we advocate for advancement of BET 
inhibitors into clinical trials for deadly fibrotic diseases, such as 
IPF. Furthermore, given the central role of BRD4 in the control 
of fibrosis across organ systems, BET inhibition is ideally suited 
to treat concomitant multi-organ fibrosis, such as occurs in car-
diorenal syndrome, cardiopulmonary disease, and liver fibrosis  
resulting from the Fontan operation for single-ventricle congenital 
heart disease.

BRD4 was recently shown to regulate dermal myofibroblast  
differentiation, and BRD4 inhibition was found to suppress 
contracture of myofibroblasts isolated from humans with burn  
injury40. Thus, it may be possible to establish proof-of-concept 
of anti-fibrotic action of BET inhibitors in humans by localized 

administration of compounds to skin to target hypertrophic  
scarring, prior to systemic delivery of the inhibitors for treatment 
of internal organ fibrosis. Nonetheless, more than 20 clinical trials 
with BET inhibitors for cancer applications are active or have 
been completed, and data from these trials should guide future  
evaluation of this compound class for the treatment of internal 
organ fibrosis. Furthermore, the feasibility of targeting global 
epigenetic regulators such as BET proteins for the treat-
ment of human disease is bolstered by the fact that four histone  
deacetylase (HDAC) inhibitors are FDA-approved for the treat-
ment of cancer41,42, that HDAC inhibitors have also shown prom-
ise in treating non-oncologic diseases such as Duchenne muscular 
dystrophy43, and that HDAC inhibitors are fairly well tolerated in 
humans1.

What is the mechanism? It is likely that BRD4 and BET inhibi-
tors control organ fibrosis by regulating multiple gene programs 
and biochemical pathways in diverse cell types. We favor a model 
in which BET inhibitors block dynamic BRD4 association with 
subsets of specific enhancers and promoters that regulate transcrip-
tion of downstream genes encoding ECM proteins and factors that 
stimulate myofibroblast differentiation (Figure 1). Furthermore, it 
is probable that BET inhibitors indirectly suppress pro-fibrotic sig-
naling networks, as was observed for ERK and SMAD in the kid-
ney14,15. It is also highly likely that BET inhibition extends beyond 
fibroblasts/myofibroblasts to control fibrosis. For example, BET 
inhibitors have potent anti-inflammatory activity2,44, and inflam-
mation is thought to be a key driver of fibrosis16. Regardless of 
the precise mechanism(s) by which these epigenetic factors regu-
late fibrosis, the compelling in vivo validation data obtained with  
BET inhibitors in models of organ fibrosis leads us to conclude that 
the field should double down on BETs for the treatment of fibrotic 
diseases in humans. 
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