
RESEARCH ARTICLE

Comparing distributions of polygenic risk

scores of type 2 diabetes and coronary heart

disease within different populations

Sulev Reisberg1,2,3*, Tatjana Iljasenko1, Kristi Läll4,5, Krista Fischer5☯, Jaak Vilo1,2,3☯

1 University of Tartu, Institute of Computer Science, Tartu, Estonia, 2 Software Technology and Applications

Competence Centre, Tartu, Estonia, 3 Quretec Ltd, Tartu, Estonia, 4 University of Tartu, Institute of

Mathematics and Statistics, Tartu, Estonia, 5 Estonian Genome Centre, University of Tartu, Tartu, Estonia

☯ These authors contributed equally to this work.

* sulevreisberg@gmail.com

Abstract

Polygenic risk scores are gaining more and more attention for estimating genetic risks for

liabilities, especially for noncommunicable diseases. They are now calculated using thou-

sands of DNA markers. In this paper, we compare the score distributions of two previously

published very large risk score models within different populations. We show that the risk

score model together with its risk stratification thresholds, built upon the data of one popula-

tion, cannot be applied to another population without taking into account the target popula-

tion’s structure. We also show that if an individual is classified to the wrong population, his/

her disease risk can be systematically incorrectly estimated.

Introduction

Noncommunicable diseases, also known as chronic diseases, are currently responsible for

more deaths than all other causes together [1]. Cardiovascular diseases (CVD), cancers,

chronic respiratory diseases, and diabetes in particular are responsible for the majority of

them [1]. The major cause of death among all CVDs is coronary heart disease (CHD) [1].

It is recognised that CVDs and the type 2 diabetes (T2D) are potentially preventable [1, 2].

For this reason, the early identification of individuals with a high risk of these diseases is most

important.

The cause of these diseases is considered to be complex, combining both genetic and envi-

ronmental factors [1–4]. While environmental factors have been thoroughly studied, it has

been a challenge to find the exact most important genetic markers that explain the occurrence

of such complex diseases. It is believed and supported by large-scale GWAS studies that

genetic risk depends on a large number of genetic markers, each one of them having relatively

small effect if taken separately [5].

For this reason, the polygenic risk score (PRS), the risk metric calculated on several single

nucleotide polymorphisms (SNP), weighted by their effect-size estimates (logistic/linear

regression coefficients from GWAS meta-analysis), can be seen as an approximation of the
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total genetic risk and is in the focus of the current research. Starting with a few dozens of

markers [3, 6], PRSs are now being calculated using hundreds, thousands [7] and even tens of

thousands [8] of SNPs.

Several authors have provided PRS models for indicating low and high risks for different

diseases or traits–e.g. CHD [8], T2D [7], schizophrenia [9], psychiatric disorders [10], but also

for predicting socioeconomic status [11].

Genetic risk estimation is mostly based on percentiles of the PRS distribution in the study

cohort [12] and many studies in this field have estimated the relative or absolute risk differ-

ences between highest and lowest deciles or quintiles. However, the long-term purpose is to

incorporate PRSs in the clinical risk stratification algorithms, to assess the risk levels of indi-

viduals outside the original study cohorts. For that reason, absolute thresholds are needed.

It is shown that PRSs, particularly those that consist of up to hundreds of SNPs, are depen-

dent on the discovery cohort [13]. Usually, the selection of SNPs and their corresponding

weights are based on previously published meta-analysis, conducted mainly in European-

ancestry populations [14, 15] that makes the PRS to be biased towards Europeans [13]. How-

ever, to the best of our knowledge it has not been investigated whether the risk estimates that

are based on PRS distribution in one cohort are accurate for individuals that do not belong to

the cohort.

In this study, we have used two previously published PRSs, both based on thousands of

SNPs and compared their distributions within different populations. The populations of inter-

est include Estonia, Europe, America, South-Asia, East-Asia and Africa.

Materials and methods

PRS is calculated as a sum of weighted effect alleles. The general mathematical formula of the

PRS is written as follows:

PRS ¼
Xn

i¼1

wi � Xi

where Xi denotes the effect allele count and wi the weight of the i-th SNP for a certain outcome,

accordingly. The number of SNPs included in PRS (denoted with n) varies, depending on the

trait/disease.

We used PRS calculation pipelines from two recently published articles. The first is PRS for

predicting the risk of CHD (PRSCHD), based on 49310 SNPs [8]. It is built on European popu-

lations–particularly on Finnish, Dutch and other Western and Southern European ancestries.

The second PRS is also built on samples of European descent for predicting T2D (PRST2D),

based on 7502 SNPs [7]. In both articles, the effect sizes (ß) for SNPs are estimated in the

meta-analyses which were performed using additive models. For PRSCHD, weights wi are taken

to be equal to the estimated effect sizes ßi. In T2D model, an additional parameter πi is used

for each SNP to determine the weight, so that wi = βi � πi. That kind of double-weighting of

SNPs helps to minimise the bias arising from the “winner’s curse”. For a better comparison,

both PRS are scaled over all samples.

In the CHD model, we omitted palindromic SNPs and the calculation was based on 46648

SNPs. According to the supplementary materials of Abraham et al. [8], this does not affect the

performance significantly. In addition, we left out 107 SNPs from T2D and 652 SNPs from

CHD calculation, due to the missing data (see below). As a result, our calculations were con-

ducted on 7395 and 45996 SNPs accordingly, sharing 5164 common SNPs by ID. To make

sure that omitted SNPs have negligible effect on the results, we fitted logistic regression model

for prevalent type 2 diabetes, including only PRST2D as a covariate (there were 1199 common
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samples with Läll et al. [7]). The odds ratios (OR) remain similar–our OR is 1.76 (95% confi-

dence interval 1.26..2.46) compared to 1.61 (1.16..2.24) in the original article.

In order to calculate the PRSCHD and PRST2D in different populations, we used 1000

Genomes Project data from Phase 3 (October 2014) release [16]. It contains samples of 2504

individuals from 5 super-populations (in this paper called populations): East-Asia (EAS, 504

individuals), South-Asia (SAS, 489), Europe (EUR, 503), America (AMR, 347) and Africa

(AMR, 661). In addition, to represent the Estonian population (EST), we added 2244 samples

having a full DNA sequence available, from the Estonian Biobank [17]–a population-based

biobank, holding samples of approximately 5% of the Estonian adult population [17]. SNPs

were extracted from both datasets either by their ID that was mentioned in the PRS model or

by their alias, found from dbSNP [18]. No imputation was performed. SNPs that were not

present in VCF, are listed in supplementary materials (S1 File) and were left out from the

analysis.

PRSs were calculated by using PLINK (v1.9) [19]. Output files are available in S2 File.

For the genetic risk estimation, individuals are divided into quintiles, based on the PRS val-

ues in each study cohort. In both models the risk is considered to be highest for individuals in

the top PRS quintile and lowest for the bottom PRS quintile.

Finally, the distributions of the scores in all populations were plotted, quintiles calculated

and compared by using R version 3.2.3.

As there is no phenotype data in 1000 Genome Project, we were unable to analyse the asso-

ciation between disease prevalence and the risk score within different populations.

In order to explore the genetic variability of the input data between populations and to bet-

ter interpret the outcomes, we also performed a Principal Component Analysis (PCA) of

SNPs.

Results

The observed distributions of PRSCHD and PRST2D are shown in Fig 1 and Fig 2 accordingly.

The corresponding quintiles are given in Table 1.

The order of PRSCHD and PRST2D distributions follow the same pattern: Europeans, includ-

ing Estonians, are getting lower scores than Americans and South-Asians on both plot. East-

Asians and Africans are getting the highest scores. However, when looking at the means of the

Fig 1. PRSCHD distributions in different populations.

https://doi.org/10.1371/journal.pone.0179238.g001
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distributions, the vast shifts between the populations can easily be observed. For instance, the

highest quintile of Europeans (people having the highest genetic risk of CHD) have values

ranging from -0.28 to 0.82. At the same time, this is approximately the range where Africans

have the lowest quintile (-0.45 to 1.39) and therefore should have a lower risk. A similar differ-

ence appears in T2D.

PCA plot of all samples, based on 7395 SNPs from T2D model, is shown in Fig 3. PCA plot

for CHD model is almost identical (available in S1 Fig).

For each population, the correlation between the first component of PCA, conducted only

on the SNP data of that population, and PRS is given in Table 1. The correlation is very strong

within American and African populations.

In order to illustrate the differences in effect allele frequencies of SNPs that have the stron-

gest effect in the model, we have taken 20 top SNPs from the T2D model and compared their

effect allele frequencies in African and European population in Fig 4. In this figure, effect allele

Fig 2. PRST2D distributions in different populations.

https://doi.org/10.1371/journal.pone.0179238.g002

Table 1. PRSCHD and PRST2D distribution means, mins, maxs and quintiles (20%, 40%, 60%, 80%) of SNPs in the model in different populations.

PRS

model

Popu-

lation

Mean PRS with 95% confidence

intervals

PRS quintiles Correlation between PRS and first component of

PCA (with p-value)

Min 20% 40% 60% 80% Max

CHD EST -0.73 (-0.74..-0.71) -2.31 -1.06 -0.83 -0.63 -0.4 0.63 -0.05 (1.2�10−2)

EUR -0.63 (-0.67..-0.59) -1.89 -0.97 -0.74 -0.52 -0.28 0.82 0.19 (13�10−5)

AMR -0.07 (-0.12..-0.03) -1.22 -0.45 -0.18 0.06 0.30 1.11 -0.40 (7.8�10−15)

SAS 0.65 (0.62..0.69) -0.60 0.32 0.58 0.75 0.98 1.95 -0.19 (2.0�10−5)

EAS 1.10 (1.07..1.13) 0.25 0.84 1.02 1.18 1.35 2.41 -0.01 (7.5�10−1)

AFR 1.66 (1.63..1.69) -0.45 1.39 1.60 1.76 1.96 2.73 -0.50 (1.5�10−42)

T2D EST -0.73 (-0.74..-0.71) -2.04 -1.07 -0.83 -0.63 -0.40 0.72 0.06 (7.6�10−3)

EUR -0.65 (-0.69..-0.61) -2.04 -1.02 -0.77 -0.55 -0.25 0.70 0.18 (6.8�10−5)

AMR 0.21 (0.15..0.26) -1.24 -0.22 0.07 0.35 0.65 1.58 -0.56 (1.2�10−29)

SAS 0.42 (0.38..0.46) -0.80 0.08 0.31 0.50 0.77 1.76 -0.29 (6.1�10−11)

EAS 1.27 (1.24..1.30) -0.32 0.98 1.18 1.37 1.58 2.52 0.12 (8.1�10−3)

AFR 1.57 (1.54..1.60) 0.28 1.24 1.46 1.68 1.94 2.83 -0.41 (2.2�10−28)

https://doi.org/10.1371/journal.pone.0179238.t001
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is the allele which increases the risk score (has positive weight). It can be observed that fre-

quencies tend to be higher in African than European population, which considerably is the

cause of getting higher PRS values.

Discussion

We calculated two polygenic risk scores PRSCHD and PRST2D, both containing large number

of SNPs, for the samples from different populations and compared their distributions. We

found that the distribution plots for both PRS models follow a similar pattern–the distribution

parameters are considerably different. Estonians, together with other Europeans, tend to get

the lowest and Africans the highest scores among considered demographic groups. Large shifts

mean that the absolute ranges of the quintiles can be very different in different populations.

The absolute score which in one population indicates the highest risk may mean the lowest

risk in the other. If we apply the genetic risk cut-offs from European ancestry in individuals of

African ancestry, then everyone would have an extremely high estimated risk level. Although

the prevalence of the disease in different populations is indeed slightly different [20], it does

not explain such a large variability in PRS distributions and stratifying the entire population to

a high risk group does not make sense.

One might argue that the importance of absolute cut-off values is questionable because usu-

ally relative PRS thresholds are used in research instead. This holds only for research domain,

where one is mainly interested in the strength of PRS-phenotype association and the absolute

values are not important. However, if a PRS is used for personalised risk prediction in clinical

practice, absolute thresholds are needed. Therefore, these PRS models together with their abso-

lute thresholds, which were designed to the data of European populations, cannot be applied

directly to other populations for risk estimation.

Fig 3. PCA plot of the samples, based on 7395 SNPs from PRST2D, indicates that SNP data is population-specific.

https://doi.org/10.1371/journal.pone.0179238.g003
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These findings are coherent with Martin et al. [13] who repeated PRS calculations for differ-

ent models up to several hundred SNPs. They also found that in different populations the dis-

tributions vary. We can see that by using thousands of SNPs, the distribution plots of large

PRS models are more likely to drift apart.

Carlson et al. provide an explanation for observing higher scores for non-European popula-

tions. They argue that because of the linkage disequilibrium in GWAS studies which are con-

ducted mainly on European ancestries, discovered rare disease-associated variants are often

not the true causal variants. As the linkage disequilibrium between causal and associated SNPs

varies in different populations, the effect size of the disease-associated variant tends to be over-

estimated in non-European ancestries for approximately a quarter of SNPs [15]. We also

observed that most contributing (largest z-score) SNPs in our models tend to have higher

effect allele frequencies in African populations compared to Europeans (Fig 4), consequently

leading to relatively higher scores.

As a result of different effect allele frequencies, SNP data that is used for PRS calculation

already includes the population information. The PCA plot in Fig 3 confirms that the popula-

tions are different when viewed from the 7395- (Fig 3) or the 45996-SNP perspective. That is,

even before applying any weighting in the PRS model, populations already differ considerably

from each other, making the starting point of using the model unequal. It is coherent with Lu

et al. [21] who used 7775 SNPs (different from our models) from an older release of 1000G

data for PCA plotting and found that African, European, and Asian ancestries are clearly dis-

tinguishable from each other, while the American population is admixed.

In order to overcome the PRS distribution shift problem the final score or SNP weights

individually have to be adjusted according to the particular population where the score is

applied.

Fig 4. Comparison of effect allele frequencies of 20 top SNPs from T2D model in European and African population.

https://doi.org/10.1371/journal.pone.0179238.g004
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So far, the large-scale GWAS studies have found relatively little between-cohort heterogene-

ity in the effects of individual SNPs. We cannot distinguish, whether it is so because there is

not enough power to detect that or whether the effect sizes are actually homogenous–research

so far supports the latter. Thus, there is no evidence to support differential weighting of indi-

vidual SNPs. As the differences in PRS distribution depend mainly on different allele frequen-

cies across populations, it seems justified to apply a population-specific correction to the entire

PRS (rather than individual SNPs), to make the correct decision on general genetic risk level of

any given individual.

One option is to simply recalculate the PRS distribution cut-offs for given target population

by using sample data from the same population as a reference. This would solve the problem

relatively easily for homogeneous populations. However, the problem still arises in admixed

populations, where an individual might have a mixed set of SNPs from several ancestries and

his/her individual cut-off thresholds do not match with the others. In such cases, first, we have

to detect all these ancestries and then apply corresponding score adjustments to these

populations.

However, even in a relatively homogeneous population or discovery-cohort, there is a

potential risk of misclassifying an individual into a wrong population which would lead

systematically to a wrong risk estimation. It can be observed from Table 1 that there is a

significant correlation between the PRS and the first component of PCA analysis, espe-

cially for Africans and Americans. Due to the correlation, a person who is misclassified

to a wrong population, will also get extreme PRS values and as risk score quintiles differ

in different populations, this will lead to wrong risk estimation. This highlights the

importance of correct population detection. Even in the discovery-population, in order

to apply personalised medicine approaches like PRS-based risk estimation for an indi-

vidual, he should always be tested beforehand to verify his descent from the same

population.

How to detect the true mixture of ancestries for an individual effectively and taking it into

account when adjusting PRS, remain an open question. We are getting incomparable scores

because of the differences of the effect allele frequencies between populations, and at the same

time, in order to suppress these differences, we have to know the descent of the individual.

That brings us back to the PCA plot where we saw that the sample already holds the informa-

tion about the ancestry. Can the same information be used for adjusting the score in-place?

For instance, by weighting SNPs accordingly, by using the characteristics of the sample. We

believe this issue deserves further investigation.

Adjusting the weights according to the descent require a trans-ethnic understanding of the

disease-associated SNPs. Gathering such information is a tremendous challenge and this

might be also the reason, why we did not find any such PRS models during the writing of this

paper that has at least thousand SNPs and is built on global GWAS data.

Supporting information

S1 File. List of missing SNPs that were left out from analysis.

(XLSX)

S2 File. PLINK output files.

(ZIP)

S1 Fig. PCA plot of the samples, based on 45996 SNPs from PRSCHD.

(TIF)
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9. Agerbo E, Sullivan PF, Vilhjálmsson BJ, Pedersen CB, Mors O, Børglum AD, et al. Polygenic risk score,

parental socioeconomic status, family history of psychiatric disorders, and the risk for schizophrenia: a

Danish population-based study and meta-analysis. JAMA psychiatry. 2015 Jul 1; 72(7):635–41. https://

doi.org/10.1001/jamapsychiatry.2015.0346 PMID: 25830477

10. Musliner KL, Seifuddin F, Judy JA, Pirooznia M, Goes FS, Zandi PP. Polygenic risk, stressful life events

and depressive symptoms in older adults: a polygenic score analysis. Psychological medicine. 2015

Jun 1; 45(08):1709–20.

11. Krapohl E, Plomin R. Genetic link between family socioeconomic status and children’s educational

achievement estimated from genome-wide SNPs. Molecular psychiatry. 2016 Mar 1; 21(3):437–43.

https://doi.org/10.1038/mp.2015.2 PMID: 25754083

Polygenic risk scores within different populations

PLOS ONE | https://doi.org/10.1371/journal.pone.0179238 July 5, 2017 8 / 9

https://doi.org/10.1038/nrg3457
http://www.ncbi.nlm.nih.gov/pubmed/23774735
https://doi.org/10.1016/j.diabres.2016.09.019
http://www.ncbi.nlm.nih.gov/pubmed/27744072
https://doi.org/10.1093/eurheartj/ehw450
https://doi.org/10.1093/eurheartj/ehw450
http://www.ncbi.nlm.nih.gov/pubmed/27655226
https://doi.org/10.1001/jamapsychiatry.2015.0346
https://doi.org/10.1001/jamapsychiatry.2015.0346
http://www.ncbi.nlm.nih.gov/pubmed/25830477
https://doi.org/10.1038/mp.2015.2
http://www.ncbi.nlm.nih.gov/pubmed/25754083
https://doi.org/10.1371/journal.pone.0179238


12. Belsky DW, Israel S. Integrating genetics and social science: Genetic risk scores. Biodemography and

social biology. 2014 Jul 3; 60(2):137–55. https://doi.org/10.1080/19485565.2014.946591 PMID:

25343363

13. Martin AR, Gignoux CR, Walters RK, Wojcik GL, Neale BM, Gravel S, et al. Human demographic his-

tory impacts genetic risk prediction across diverse populations. The American Journal of Human Genet-

ics. 2017 Mar 30.

14. Smith JA, Ware EB, Middha P, Beacher L, Kardia SL. Current applications of genetic risk scores to car-

diovascular outcomes and subclinical phenotypes. Current epidemiology reports. 2015 Sep 1; 2

(3):180–90. https://doi.org/10.1007/s40471-015-0046-4 PMID: 26269782

15. Carlson CS, Matise TC, North KE, Haiman CA, Fesinmeyer MD, Buyske S, et al. Generalization and

dilution of association results from European GWAS in populations of non-European ancestry: the

PAGE study. PLoS Biol. 2013 Sep 17; 11(9):e1001661. https://doi.org/10.1371/journal.pbio.1001661

PMID: 24068893

16. 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature. 2015 Oct

1; 526(7571):68–74. https://doi.org/10.1038/nature15393 PMID: 26432245

17. Leitsalu L, Haller T, Esko T, Tammesoo ML, Alavere H, Snieder H, et al. Cohort profile: Estonian bio-

bank of the Estonian Genome Center, University of Tartu. International journal of epidemiology. 2014

Feb 11:dyt268.

18. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, et al. dbSNP: the NCBI database of

genetic variation. Nucleic acids research. 2001 Jan 1; 29(1):308–11. PMID: 11125122

19. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-

genome association and population-based linkage analyses. The American Journal of Human Genet-

ics. 2007 Sep 30; 81(3):559–75. https://doi.org/10.1086/519795 PMID: 17701901

20. NCD Risk Factor Collaboration. Worldwide trends in diabetes since 1980: a pooled analysis of 751 pop-

ulation-based studies with 4� 4 million participants. The Lancet. 2016 Apr 15; 387(10027):1513–30.

21. Lu D, Xu S. Principal component analysis reveals the 1000 Genomes Project does not sufficiently cover

the human genetic diversity in Asia. Frontiers in genetics. 2013 Jul 4; 4:127. https://doi.org/10.3389/

fgene.2013.00127 PMID: 23847652

Polygenic risk scores within different populations

PLOS ONE | https://doi.org/10.1371/journal.pone.0179238 July 5, 2017 9 / 9

https://doi.org/10.1080/19485565.2014.946591
http://www.ncbi.nlm.nih.gov/pubmed/25343363
https://doi.org/10.1007/s40471-015-0046-4
http://www.ncbi.nlm.nih.gov/pubmed/26269782
https://doi.org/10.1371/journal.pbio.1001661
http://www.ncbi.nlm.nih.gov/pubmed/24068893
https://doi.org/10.1038/nature15393
http://www.ncbi.nlm.nih.gov/pubmed/26432245
http://www.ncbi.nlm.nih.gov/pubmed/11125122
https://doi.org/10.1086/519795
http://www.ncbi.nlm.nih.gov/pubmed/17701901
https://doi.org/10.3389/fgene.2013.00127
https://doi.org/10.3389/fgene.2013.00127
http://www.ncbi.nlm.nih.gov/pubmed/23847652
https://doi.org/10.1371/journal.pone.0179238

