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SUMMARY

While several studies link the cell-surface marker CD44 to cancer progression, conflicting results 

show both positive and negative correlations with increased CD44 levels. Here, we demonstrate 

that the survival outcomes of genetically induced glioma-bearing mice and of high-grade human 

glioma patients are biphasically correlated with CD44 level, with the poorest outcomes occurring 

at intermediate levels. Furthermore, the high-CD44-expressing mesenchymal subtype exhibited a 

positive trend of survival with increased CD44 level. Mouse cell migration rates in ex vivo brain 

slice cultures were also biphasically associated with CD44 level, with maximal migration 

corresponding to minimal survival. Cell simulations suggest that cell-substrate adhesiveness is 

sufficient to explain this biphasic migration. More generally, these results highlight the potential 
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importance of non-monotonic relationships between survival and biomarkers associated with 

cancer progression.

In Brief

Klank et al. describe a biphasic relationship between CD44 expression levels and survival/cell 

migration rates in glioma. Intermediate CD44 levels in glioblastoma are linked to high tumor cell 

migration rates and poor survival, while both low and high CD44 levels were a positive prognostic 

indicator. These results illustrate the potential importance of non-monotonic relationships between 

survival and biomarkers associated with cancer progression.

INTRODUCTION

At its most basic level, cancer progression is driven by aberrant cell proliferation and 

migration into previously healthy tissue. In the case of glioblastoma (grade IV glial brain 

cancer), even with standard treatment, median survival is approximately 15 months (Stupp et 

al., 2007) due to the invasiveness of the tumors (Hoelzinger et al., 2007; Lefranc et al., 

2005). The brain is relatively rich in hyaluronic acid (HA), rather than collagen and 

fibronectin (Novak and Kaye, 2000), suggesting that CD44, a major transmembrane cell 

surface receptor for HA (Culty et al., 1990), could be an important mediator of glioma cell 

migration into the brain parenchyma (Breyer et al., 2000; Merzak et al., 1994). More 

generally, CD44 is reported to contribute to cancer invasion and has been implicated in 

epithelial-to-mesenchymal transition (Toole, 2009). However, while CD44 has been linked 

to multiple cancers, the literature is mixed on the importance of CD44 (Naor et al., 2002; 

Toole, 2009). In the case of glioma, some studies identified CD44 as a negative prognostic 

indicator of survival (Anido et al., 2010; Bhat et al., 2013; Jijiwa et al., 2011; Pietras et al., 

2014), while others have found no correlation (Ranuncolo et al., 2002). Still others reported 

that, while CD44 concentration is positively correlated with glioma grade, within the highest 

malignancy grade, patients with expression above the median for that group experienced 
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longer survival than those below the median expression (Wei et al., 2010). At a mechanistic 

level, such apparently contradictory results are not surprising, due to the well-known 

biphasic dependence of cell migration on the strength of adhesion to the surrounding 

extracellular matrix (DiMilla et al., 1991, 1993; Palecek et al., 1997). More generally, 

biphasic relationships point toward optimality in the control of biological processes, such as 

the development of intestinal crypts (Itzkovitz et al., 2012) and the force transmission of 

filopodia (Chan and Odde, 2008). CD44 is a cell-adhesion molecule that extracellularly 

binds to HA and intracellularly is mechanically linked to the actin cytoskeleton through 

ezrin/radixin/moesin proteins (Ponta et al., 2003); therefore, cells would be expected to 

exhibit biphasic, not monotonic, migration behavior in response to increasing CD44 content. 

Since tumor dispersion can potentially contribute to overall tumor progression and mortality 

(Giese et al., 2003), we further hypothesized a biphasic relationship between CD44 

expression level and survival. However, such relationships have not been established in vivo, 

and their relevance to cancer progression is unclear. Here, we report that human and mouse 

survival, as well as mouse cell migration in brain slices, are all biphasically dependent on 

CD44 level, consistent with predictions from a biophysical model for cell migration.

RESULTS

Survival in a Preclinical Model of Glioblastoma Has a Biphasic Dependence on CD44 
Expression

To investigate the effects of CD44 on glioma progression, we used a de novo mouse glioma 

model that uses the Sleeping Beauty (SB) transposase system, which stably integrates 

oncogenic plasmid DNA into the host genome (Wiesner et al., 2009) and drives astrocytic 

tumors that are consistent with grade III and grade IV gliomas. Our SB-based model uses 

transforming plasmids encoding for constitutively active Nras (NrasG12V) and simian virus 

40 large T antigen (SV40LgT) to mimic common human mutations frequently disrupted in 

human gliomas (e.g., RAS/PI3K, p53, RB). Altogether, four conditions were investigated 

(Figure 1A): CD44-positive wild-type (WT) animals (+/+), genetically matched CD44 

knockout (KO) animals (−/−), KO animals with exogenous CD44 plasmid (KO+CD44), and 

WT animals with exogenous CD44 plasmid (WT+CD44) as models of CD44 

overexpression. Western blotting of glioma cell lines derived from these models (two per 

condition) was used to confirm loss of CD44 and to determine the relative CD44 

concentrations for each condition (Figure 1B). Quantification shows that injection of CD44 

plasmid (KO+CD44 and WT+CD44) results in higher CD44 levels than WT, indicating that 

the addition of the CD44 plasmid generates an exogenous overexpression model, regardless 

of the mouse genotype. Therefore, the primary difference between the KO+CD44 and WT

+CD44 conditions is the presence of endogenous levels of CD44 in the surrounding brain 

tissue cells in the latter case. Immunohistochemistry (IHC) analysis demonstrated that our 

mouse models are similar to human glioma (Figure 1C) and that CD44 was variably 

expressed by tumorigenic SV40LgT-expressing cells in our models (Figure 1D).

Survival was measured for each of the four conditions depicted in Figure 1A. As shown in 

Figure 2A, comparison of the Kaplan-Meier survival curves reveal that both KO mice and 

KO+CD44 mice exhibited a moderate yet significant survival increase compared to WT 
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animals (p = 0.0004 and p = 0.013, respectively, via log-rank test). The data presented in 

Figures 2A and 2B demonstrate that both KO and overexpression of CD44 improves 

survival (p = 0.001 for WT compared to WT+CD44 via log-rank test), a finding that would 

not be expected were survival to depend monotonically on CD44 levels. By plotting the 

median survival of each condition against the relative CD44 concentration, as shown in 

Figure 2B, our mouse model shows that survival is biphasic with respect to protein 

expression level of CD44 (as estimated via western blot in Figure 1B), with intermediate 

levels of CD44 exhibiting the worst outcome.

Survival of Patients with High-Grade Glioma Is Also Biphasic with CD44 Expression Level

We next investigated whether this biphasic relationship was present in the human disease. A 

recent study by Bhat et al. (2013) implicated CD44 as a negative prognosticator of survival 

in human glioblastoma patients. In their study, the authors compared the survival of newly 

diagnosed glioblastoma patients with high CD44 expression to that of patients with low 

CD44 expression, based on qualitative classification of stained histological sections. Using 

this high/low binning approach, they found a significant difference in the two survival 

curves, where higher CD44 expression correlated with worse survival outcomes. In our 

analysis, we utilized a slightly larger published dataset of human glioma survival from 

Phillips et al. (2006) that included quantifiable patient mRNA expression levels. Using 

categorical methods similar to those of Bhat et al., we pooled the data in two groups—one 

above the median CD44 expression level and one below—and found that the survival of the 

high-expressing group was statistically lower than that of the low-expressing group (p = 

0.02; data not shown). We also took a continuum approach to the analysis of the data, which 

does not require an arbitrary threshold to assign groups, and we plotted survival times as a 

function of CD44 expression level (Figure 2C). The implication of the two-group 

(categorical) analysis is that more CD44 is worse for patient outcome; however, when we fit 

a line to the continuum data, we found that, while there is a slight negative slope (slope = 

−0.02, not shown), the 95% confidence interval of this parameter includes the value zero, 

meaning that the linear trend is not statistically significant (Figure 2D, left). Given the 

results from the mouse experiments, we then tested to determine whether a biphasic model 

corresponding to the survival in our mouse model (Figure 2B) would be more appropriate. 

We accomplished this by fitting to a quadratic, and this approach proved to be statistically 

significant (p = 0.015 for the quadratic term), indicating that patient outcomes actually 

improve once CD44 levels are sufficiently high (Figure 2C, black curve). The 95% 

confidence intervals for all coefficients in the quadratic fit do not include zero, meaning that 

all of the coefficients are statistically significant (Figure 2D, right). Moreover, it should be 

noted that we did not constrain our quadratic fit to a positive quadratic term, yet both animal 

and human data showed biphasic relationships that are concave-up, demonstrating that there 

is a minimum in survival in both cases at relatively intermediate CD44 levels. Independent 

of the statistical analysis, it is evident from direct examination of the data that there are very 

few long-term survivors at the intermediate CD44 level and that all of the long-term 

survivors (>200 weeks) either had low CD44 (<1,500) or high CD44 (>3,500). Censoring 

patients who were IDH1 mutant (Lai et al., 2011), which is closely associated with GCIMP 

(glioma-CpG island methylator phenotype)-positive status, removed seven patients but did 

not affect the biphasic trend (p = 0.20 for the linear model and p = 0.02 for the quadratic 
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model; see Supplemental Experimental Procedures). A similar analysis was completed using 

data available through The Cancer Genome Atlas (TCGA; Brennan et al., 2013). Although 

the numerical values of CD44 expression differ between the two datasets, the results from 

TCGA show a similar concave-up biphasic trend (p = 0.025; Figure S1A), while the linear 

trend was, again, not statistically significant (p = 0.37). Thus, we find that survival is 

biphasically dependent on CD44 level for both human glioma patients and genetically 

induced glioma-bearing mice, with the poorest prognosis in both cases at the intermediate 

CD44 level.

Human Glioma Subtypes Have Distinct Monophasic Trends with CD44 Expression

The original genome-wide transcriptomic analyses by Phillips et al. (2006) were seminal to 

the field in terms of establishing at least three glioma subtypes. Although more recent 

subtype classifications have emerged (Verhaak et al., 2010), subsequent classification 

analyses have confirmed the robustness and consistency of the proneural and mesenchymal 

subtypes in particular (Bhat et al., 2013). Therefore, we used the original Phillips 

classification scheme to determine whether our continuum approach to expression-level 

analyses would elucidate any subtype-specific trends. As shown in Figure 2C, we found that 

pro-neural subtypes tended to be lower in CD44 expression, proliferative subtypes were 

intermediate, and mesenchymal subtypes tended to have the highest CD44 expression. This 

is, perhaps, not surprising, as CD44 was used as a marker for the mesenchymal subtype 

(Phillips et al., 2006) and has been shown to positively correlate with a transition to a 

mesenchymal signature in glioma (Cheng et al., 2012).

Linear correlation analysis for survival as a function of CD44 within these three subtypes 

showed distinct monophasic trends based on Rab-14-normalized CD44 expression: (1) the 

proneural subtype demonstrated a modest negative linear correlation between survival and 

CD44 level (p = 0.067), (2) the proliferative subtype demonstrated no correlation (p = 0.86), 

and (3) the mesenchymal subtype demonstrated a strong positive correlation (p = 0.00037). 

The latter result is particularly interesting, because it implies that, while the mesenchymal 

subtype uses CD44 as a marker and exhibits overall poor survival outcome (Phillips et al., 

2006), CD44 is actually a positive prognostic indicator within the mesenchymal subtype, 

with better survival observed at higher CD44 levels. In addition, it is worth noting that the 

three best fit linear correlations for the three subtypes (proneural, proliferative, and 

mesenchymal) all intersect at a point that nearly coincides with the quadratic fit to the 

overall data. This point, at a normalized CD44 level of 2,500, represents the worst case 

scenario for high-grade glioma outcome, where prognosis is poorest, a feature of the data 

that is evident even without statistical analysis. Overall, our analysis of the high-grade 

glioma subtypes is consistent with our analysis of the pooled continuum data, where low- 

and high-CD44 expressors have, on average, better survival outcomes and intermediate ex-

pressors have the worst average survival outcomes.

Net Proliferation Is Independent of CD44 Expression Level

Since CD44 has been linked to uncontrolled cell growth (Naor et al., 2002; Toole, 2009), we 

next examined the effects of CD44 on net tumor cell proliferation. BLI of the four 

conditions shows the relative progression of the tumors under different CD44 backgrounds 
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(Figure 3A). Integrated BLI signal at weeks 3 and 4 showed that initial tumor burden was 

greatest for KO animals (Figure 3B). More importantly, changes in integrated BLI signal 

between weeks 3 and 4 were not different between all cases (p = 0.88; Figure 3B, dashed 

lines). Growth rate calculations were not conducted after week 4 to avoid potential bias 

caused by substantial animal death (Figure 2A; Figure S2). To further assess net tumor cell 

proliferation, we also performed IHC staining of all four CD44 conditions for Ki67 and 

caspase-3 as indicators of proliferation and apoptosis, respectively. Staining for Ki67 and 

caspase-3 showed considerable variability in all four conditions and did not seem to 

correlate with survival or CD44 level (Figure 3C). Therefore, we conclude that inherent 

differences in net proliferation do not directly explain biphasic survival as a function of 

CD44 level. As others have found that antibody-mediated CD44 inhibition does not alter 

proliferation in vitro, but does affect migration (Yoshida et al., 2012), we instead focused on 

cell migration as an important driver of these cancers.

Simulated Whole-Cell Migration Is Biphasic with Increased Substrate Attachment

Cell migration is a dynamic physical process involving cell attachment to, and subsequent 

detachment from, the cell substratum (Lauffenburger and Horwitz, 1996). To test whether 

cell migration in a compliant environment predicts a biphasic migration rate, we developed a 

two-dimensional whole-cell model based on our “motor-clutch” stochastic model for cell 

protrusion and traction dynamics (Bangasser et al., 2013; Chan and Odde, 2008) (Figure S3; 

Table S1; Supplemental Experimental Procedures). Quantitative analyses of cell 

displacements (Figure 4A, upper row) allowed us to calculate the random-motility 

coefficient for each cell, a quantitative measure of dispersive capacity that is analogous to a 

diffusion coefficient (see Experimental Procedures) (Figure 4B). We found that maximal cell 

migration occurred when the clutch number was 250 (Movie S1), leading to a biphasic 

relationship between clutch number and motility. From these results, we predicted that 

changing CD44 concentration would predict a biphasic relationship between CD44 content 

and cell migration rates.

Cell Migration Is Biphasic with CD44 Expression Level and Anti-correlated to Animal 
Survival

To investigate the role of CD44 expression level on glioma cell migration in the mouse 

brains, we measured the motility of cells in ex vivo brain-slice cultures (Beadle et al., 2008). 

As shown in Figures 4C and 4D, WT cells exhibited the fastest migration overall and were 

found to exhibit statistically different migration than KO and WT+CD44 (p < 0.001 and p = 

0.03, respectively). Although both KO+CD44 and WT+CD44 models exhibited similar 

motility, KO+CD44 was not found to be different from WT (p = 0.17), likely due to the 

presence of a higher percentage of faster moving KO+CD44 cells compared to WT+CD44 

(Figure 4D, black boxes). However, when evaluated, instead, using a parametric one-way 

ANOVA, KO+CD44 was statistically different from WT (p = 0.033; see slopes on Figure 

4C). Moreover, when both overexpression cases are pooled together, they are statistically 

different from WT using a Kruskal-Wallis test (p < 0.02; data not shown). KO animals 

displayed the least motility of all cases but were not found to be statistically different from 

the high-CD44-content WT+CD44 condition. Together, these ex vivo single-cell analyses 

demonstrate a biphasic relationship between CD44 protein expression and glioma cell 
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motility, where intermediate CD44 content (i.e., WT expression levels) leads to the greatest 

overall motility (Figure 4E, gray curve). These biphasic migration results are qualitatively 

consistent with simulation predictions (Figure 4B). Notably, biphasic migration outcomes 

are anti-correlated with biphasic survival outcomes, where maximal migration corresponds 

with minimal survival (Figure 4E, black curve), suggesting that CD44 may ultimately 

control survival by controlling cell migration and invasion in a non-monotonic manner.

DISCUSSION

In this study, we found that a simple high/low (monotonic) description of the role of CD44 

in glioma progression masks important aspects of CD44 gene function; instead, a non-

monotonic description reveals a previously unappreciated biphasic dependence of both 

survival and migration on CD44 expression level. Furthermore, we implicate CD44 as a 

potential molecular “clutch” in mediating migration and demonstrate that biphasic migration 

with respect to cell-substrate adhesiveness is sufficient to explain CD44’s role in glioma.

Implications for Bioinformatics, Biomarker Discovery, Genetic Analysis, and Therapeutic 
Strategy

Although CD44 inhibition was not tested in this study, this biphasic interpretation has 

important implications for clinical therapy. CD44 inhibition has been suggested by many as 

a therapeutic strategy for cancer (Breyer et al., 2000; Okada et al., 1996; Xu et al., 2010; 

Yoshida et al., 2012) and has recently been tested in clinical trials (Hoffman-LaRoche, n.d.); 

however, specifically in glioma but perhaps in other cancers as well, given the biphasic trend 

in survival, partial inhibition of CD44 in patients who are highly overexpressing could 

potentially drive tumors into a hyper-migratory state, thus promoting progression. Therefore, 

our results suggest a clinical strategy for glioma patient stratification based on CD44 

expression level where patients are separated into high, intermediate, and low categories, 

rather than high and low categories as is typical in the literature. In this approach, 

intermediate-CD44-expressing patients (with an approximately normalized CD44 level 

between ~1,500 and ~3,500; Figure 2C) would be best suited for anti-CD44 therapy. By 

contrast, low-CD44-expressing patients would not expect to benefit, and high-CD44-

expressing patients risk a worsened condition if only partial inhibition is achieved clinically.

EXPERIMENTAL PROCEDURES

Animals and Tumor Models

C57BL/6J (CD44+/+, WT) and B6.129(Cg)-CD44tm1Hbg/J (CD44−/−, KO) mice were 

purchased from Jackson Laboratory and used as described in the Supplemental Experimental 

Procedures. The mouse studies were performed under the oversight of the University of 

Minnesota IACUC.

Primary Cell Lines

Cell lines were established from the four mouse cohorts as described in the Supplemental 

Experimental Procedures.
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Western Blotting

Cells were lysed and prepared for western blotting as described in the Supplemental 

Experimental Procedures.

Analysis of Published Human Data

CD44 expression data (Phillips et al., 2006) were analyzed as described in the Supplemental 

Experimental Procedures.

Bioluminescence

Animals were monitored for tumor progression using bioluminescence imaging (BLI) as 

described in the Supplemental Experimental Procedures.

Immunohistochemistry

Brain tumor sections were prepared for immunohistochemistry as described in the 

Supplemental Experimental Procedures.

Stochastic Whole-Cell Model

The stochastic whole-cell migration model was developed based on previously published 

motor-clutch models from our group (Bangasser and Odde, 2013; Bangasser et al., 2013; 

Chan and Odde, 2008). Our whole-cell model uses the Gillespie Stochastic Simulation 

Algorithm (Gillespie, 1977) to simulate an entire cell by connecting several motor-clutch 

modules together at a central cell body node and then balancing the forces at this node 

(Figure S3). Details are given in the Supplemental Experimental Procedures.

Single-Cell Migration Dynamics in Brain Slice Preparations

The four cohorts of mice were prepared for single-cell migration imaging using a 

modification of our previously described method (Beadle et al., 2008). Additional details are 

provided in the Supplemental Experimental Procedures.

Statistical Analysis

For mouse survival, log-rank statistical analyses were generated using GraphPad Prism 

software. Regression analyses for linear and quadratic fits of the human survival data were 

completed using R statistical software. Integrated bioluminescence intensity signals across 

conditions were analyzed by one-way ANOVA. For statistics on tumor growth rates, signal 

changes between weeks 3 and 4 were calculated for each animal, and the distributions of 

delta values were compared by one-way ANOVA. Distributions of cell random-motility 

coefficients for the different conditions were compared using a non-parametric, rank-based 

Kruskal-Wallis test with Bonferroni post hoc correction for multiple comparisons.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Glioblastoma survival in mice and humans depends biphasically on CD44 

levels

• Intermediate CD44 levels are linked to high cell migration rates and poor 

survival

• High levels of CD44 correlate with better patient outcomes

• Net proliferation rates are independent of CD44, consistent with a biophysical 

theory
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Figure 1. Control of CD44 Level in the Sleeping Beauty De Novo Mouse Glioma Model and 
Recapitulation of Human Glioma
(A) Schematic of mouse glioma models. Plasmids encoding for Sleeping Beauty transposase 

(SB100, light blue), oncogenes (orange), and Firefly Luciferase (yellow) were injected into 

CD44-competent (red) or matched CD44-deficient (blue) mice. Exogenous CD44 (pink) was 

included in KO+CD44 (green) and WT+CD44 (magenta) overexpression cohorts. For brain-

slice migration studies, a fourth plasmid encoding EGFP-actin was included in each of the 

four conditions. Double arrows on the plasmids represent the SB100 binding sites.

(B) Left: western blot of CD44 expression for glioma cell lines derived from each of the four 

conditions (two per condition). Right: densitometry quantification of CD44 expression 

relative to WT line 2.

(C) Histological comparison of SV40LgT/Nras constructs in an WT mouse model to a 

human high-grade glioma shows similarities in CD44 staining. Top: low magnification 

shows homogeneous staining patterns in human and mouse tissues. Scale bars, 200 μm. 
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Bottom: higher magnification shows cell-to-cell variability and strong CD44 staining in the 

perivascular region. Scale bars, 60 μm.

(D) Two-color IHC for CD44 (brown, membrane) and SV40LgT (pink, nuclear) in WT 

mouse models confirms that CD44 expression is from SV40LgT-expressing glioma cells in 

the perivascular region (arrowhead). Arrow shows endothelial cells forming the vascular 

lumen.
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Figure 2. Mouse and Human Glioma Survival Are Biphasic with Respect to CD44 Expression 
Level
(A) Kaplan-Meier plot of animal survival for each of the four model conditions. The table 

below lists the p values for each pairwise comparison within an overall multiple 

comparisons statistical framework: *p < 0.05; **p < 0.01; ***p < 0.001.

(B) Biphasic dependence of survival on CD44 protein expression level, as measured in 

Figure 1B. Large colored markers indicate the median survival. Dots corresponding to each 

color indicate the survival times of individual animals. Horizontal error bars show the 

median ± coefficient of variation/√2. Vertical error bars correspond to ±SEM for survival.

(C) Biphasic dependence of human glioma patient survival on CD44 mRNA expression 

(Rab14 normalized) from data published in Phillips et al. (2006). Individual data points are 

color coded by subtype, as determined by Phillips et al. (2006). Quadratic fitting of all the 
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data (black curve) reveals a statistically significant non-monotonic/biphasic fit (p = 0.015) 

with upward concavity. A linear correlation analysis was conducted on each subtype 

separately to determine subtype-specific linear trends (right table). Notably, the 

mesenchymal subtype exhibited a strong positive linear correlation with CD44 level. Gray 

arrow indicates the point where the three linear fits approximately converge, closely 

coinciding with the minimum in the biphasic fit. Error bars correspond to ± SEM.

(D) Left: Values of each of the coefficients in the linear fit of all the human survival data are 

plotted with error bars indicating the 95% confidence intervals. While the data overall 

exhibit a slight downward linear trend, the slope is not statistically different from zero (p = 

0.15). Right: values of each of the coefficients in the quadratic (biphasic) fit are plotted with 

error bars indicating the 95% confidence intervals. All coefficients in the quadratic fit are 

statistically significant, confirming a biphasic dependence of survival on CD44 level, with 

intermediate levels exhibiting the worst outcomes. n.s., not significant.
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Figure 3. Net Proliferation Rate in the Mouse Gliomas Is Independent of CD44 Expression Level
(A) Bioluminescence imaging (BLI) of the four CD44 expression conditions showing 

glioma progression over time.

(B) Quantification of BLI integrated intensity. Mean integrated intensities at weeks 3 and 4 

(days 19–25 and 26–32) are plotted ±SEM. At early time points, KO values are highest 

between all groups: **p < 0.01; ***p < 0.001. Slopes between weeks 3 and 4 (dashed lines) 

are not statistically different between all conditions (p = 0.88), indicating similar net growth 

rates.

(C) Immunohistology confirmed CD44 status and showed no discernable differences in Ki67 

or caspase-3 staining across the four conditions. Left: CD44-positive cells are labeled in 

brown. Middle: brown indicates Ki67-positive (proliferating) cells for each of the 

conditions. Right: brown indicates caspase-3-positive (apoptotic) cells for each of the 

conditions. All slides are counter-stained with hematoxylin.
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Figure 4. Single-Cell Motility in Biophysical Simulation and in Ex Vivo Brain Slices Is Biphasic 
with Respect to CD44 Expression Level
(A) Upper panels: wind rose plots of a representative subset of simulated motor-clutch 

model single-cell trajectories with increasing clutch number (representing CD44 level) over 

10 hr of simulated time. Motor number is held constant at 1,000 per cell. Lower panels: 

wind rose plots of 20 randomly selected experimental cell trajectories for each animal 

condition over 1.5 hr.

(B) Simulation results demonstrating a biphasic, concave-down dependence of random-

motility coefficient with respect to numbers of clutches (mean ± SEM).

(C) A mean squared displacement (MSD) as a function of time for each of the animal 

conditions. Error bars correspond to ± SEM.

(D) Histogram of random-motility coefficients for each tracked cell calculated from single-

cell MSDs over 1.5 hr. The table below shows the pairwise comparisons of distributions for 

each condition using the non-parametric, rank-based Kruskal-Wallis test: *p < 0.05; **p < 

0.01; ***p < 0.001, all with Bonferroni adjustment. Wild-type migration is statistically 

faster than both KO and WT+CD44, but not KO+CD44.

(E) Both animal survival (black, left axis) and cell motility (gray, right axis) are biphasic 

with respect to CD44 expression and anti-correlated with each other such that survival is 

poorest where migration is fastest. Horizontal error bars show the median ± coefficient of 

variation/√2. Vertical error bars correspond to ± SEM.
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