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Purpose: Sequential same-patient CT images may involve deformation-induced and non-
deformation-induced voxel intensity changes. An adaptive deformation recovery and intensity correc-
tion (ADRIC) technique was developed to improve the CT reconstruction accuracy, and to separate
deformation from non-deformation-induced voxel intensity changes between sequential CT images.
Materials and methods: ADRIC views the new CT volume as a deformation of a prior high-quality
CT volume, but with additional non-deformation-induced voxel intensity changes. ADRIC first
applies the 2D-3D deformation technique to recover the deformation field between the prior CT vol-
ume and the new, to-be-reconstructed CT volume. Using the deformation-recovered new CT volume,
ADRIC further corrects the non-deformation-induced voxel intensity changes with an updated alge-
braic reconstruction technique (“ART-dTV”). The resulting intensity-corrected new CT volume is
subsequently fed back into the 2D-3D deformation process to further correct the residual deformation
errors, which forms an iterative loop. By ADRIC, the deformation field and the non-deformation
voxel intensity corrections are optimized separately and alternately to reconstruct the final CT.
CT myocardial perfusion imaging scenarios were employed to evaluate the efficacy of ADRIC,

using both simulated data of the extended-cardiac-torso (XCAT) digital phantom and experimentally
acquired porcine data. The reconstruction accuracy of the ADRIC technique was compared to the
technique using ART-dTV alone, and to the technique using 2D-3D deformation alone. The relative
error metric and the universal quality index metric are calculated between the images for quantitative
analysis. The relative error is defined as the square root of the sum of squared voxel intensity differ-
ences between the reconstructed volume and the “ground-truth” volume, normalized by the square
root of the sum of squared “ground-truth” voxel intensities. In addition to the XCAT and porcine
studies, a physical lung phantom measurement study was also conducted. Water-filled balloons with
various shapes/volumes and concentrations of iodinated contrasts were put inside the phantom to
simulate both deformations and non-deformation-induced intensity changes for ADRIC reconstruc-
tion. The ADRIC-solved deformations and intensity changes from limited-view projections were
compared to those of the “gold-standard” volumes reconstructed from fully sampled projections.
Results: For the XCAT simulation study, the relative errors of the reconstructed CT volume by the
2D-3D deformation technique, the ART-dTV technique, and the ADRIC technique were 14.64%,
19.21%, and 11.90% respectively, by using 20 projections for reconstruction. Using 60 projections
for reconstruction reduced the relative errors to 12.33%, 11.04%, and 7.92% for the three techniques,
respectively. For the porcine study, the corresponding results were 13.61%, 8.78%, and 6.80% by
using 20 projections; and 12.14%, 6.91%, and 5.29% by using 60 projections. The ADRIC technique
also demonstrated robustness to varying projection exposure levels. For the physical phantom study,
the average DICE coefficient between the initial prior balloon volume and the new “gold-standard”
balloon volumes was 0.460. ADRIC reconstruction by 21 projections increased the average DICE
coefficient to 0.954.
Conclusion: The ADRIC technique outperformed both the 2D-3D deformation technique and the
ART-dTV technique in reconstruction accuracy. The alternately solved deformation field and non-
deformation voxel intensity corrections can benefit multiple clinical applications, including tumor
tracking, radiotherapy dose accumulation, and treatment outcome analysis. © 2017 American Associ-
ation of Physicists in Medicine [https://doi.org/10.1002/mp.12259]

Key words: CT reconstruction, deformation recovery, intensity correction, myocardial perfusion,
total variation

2223 Med. Phys. 44 (6), June 2017 0094-2405/2017/44(6)/2223/19 © 2017 American Association of Physicists in Medicine 2223

https://doi.org/10.1002/mp.12259


1. INTRODUCTION

With three-dimensional volumetric rendering, high spatial
resolution, and relatively short imaging time, computed
tomography (CT) has become a standard, multipurpose clini-
cal tool for disease diagnosis,1 treatment planning and guid-
ance,2,3 treatment verification,4 and outcome analysis.5

Recent advancements in multislice, cone-beam geometry-
based CT systems6 have further enabled more accurate and
timely imaging of fast-moving organs such as the heart with
reduced motion artifacts. However, as CT is based on the use
of x-rays for imaging, radiation exposure poses additional
risks to the patients. CT imaging may increase the risk of sec-
ondary cancers,7 especially when repetitive imaging is
required. Such scenarios include dynamic myocardial perfu-
sion imaging8 and daily on-board cone-beam CT imaging for
radiation therapy patients.4

The current clinical CT imaging protocol needs to acquire
a considerable amount (>>100) of projections across a full
scan angle to reconstruct the CT volume. To reduce the CT
imaging dose, there are proposals to reduce the dose per pro-
jection, or to reduce the number of projections by acquiring
sparse-view projections. However, the increased noise from
lower dose acquisition, or the limited sampling from sparse-
view acquisition, leads to amplified image noises/artifacts in
the reconstructed images by filtered back-projection (FBP),9

the standard reconstruction algorithm used in current CT sys-
tems. To address this problem, multiple iterative reconstruc-
tion techniques10–18 have been proposed to improve
reconstruction accuracy. These techniques, including the
algebraic reconstruction technique (ART),10 iteratively opti-
mize data fidelity through matching the acquired projections
with the simulated projections from the reconstructed CTvol-
umes. In addition to data fidelity optimization, many tech-
niques also use preassumed CT image features like piecewise
constancy and intensity gradient sparsity12–14 to further regu-
larize the reconstructed image. The minimization of the total
variation (TV),19 a metric effective for data de-noising, has
shown prominent benefits in CT reconstruction. All these
methods may lead to substantial improvements in CT image
quality as compared to the traditional FBP algorithm. How-
ever, the reconstructed CT often suffers from feature changes
and fine structure loss due to oversmoothing,20 as the piece-
wise constancy and intensity gradient sparsity assumptions
may not hold for complicated anatomical structures.

In addition to the previously mentioned techniques, a new
CT reconstruction approach was recently investigated.21–30

Instead of directly reconstructing the CT volume from
acquired projections, the new approach estimates it by
deforming a previously acquired high-quality CT volume
using a deformation field. The image reconstruction thus
turns into the optimization of the deformation field to match
the acquired projections with the projected ones from the
deformed CT volume,28 which is a 2D-3D deformation pro-
cess. The deformation field can be solved as B-splines,23,24

solved with free-form deformation models,25,27,28,31 or solved
by using dimensional reduction techniques like principal

component analysis.22,26 The efficacy of the 2D-3D deforma-
tion approach has been validated in multiple studies. The suc-
cessful incorporation of the prior CTvolume enables accurate
image reconstruction with limited-view projections. This
incorporation also passes along image features and fine struc-
tures from the high-quality prior CT volume to the new CT
volume to reduce potential oversmoothing effects. Recent
studies32 also demonstrated that the CTvolumes generated by
2D-3D deformation enable more accurate dose calculation
than CT volumes reconstructed by FBP-based algorithm for
radiation therapy due to the accurate Hounsfield unit (HU)
information inherited from the high-quality prior CT volume.
However, the 2D-3D deformation approach is based on the
assumption that the voxel variations between prior and new
CT volumes are induced by deformation alone, which does
not apply to many clinical scenarios. Anatomical and physio-
logical variations between prior and new CT acquisitions,
such as tissue calcification,33 inflammation,34 fibrosis/necro-
sis,35 and transit of contrast agent in perfusion imaging,8 can
all result in non-deformation-induced voxel intensity changes.
These non-deformation intensity changes cannot be corrected
even with the true deformation fields. In contrast, they may
adversely affect deformation field optimization by introduc-
ing false signals.

To address the problems described above, this study aimed
to develop a new CT reconstruction method to integrate the
TV-constrained algebraic reconstruction technique with the
2D-3D deformation method. The new reconstruction method,
named adaptive deformation recovery and intensity correction
(ADRIC), was able to recover both deformation and non-
deformation-induced voxel intensity changes between prior
and new CT volumes. Prior to this work, there are some pre-
vious studies trying to solve jointly the motion and the image
intensity, including the motion-compensated prior image con-
strained compressed sensing technique (PICCS) and the
deformable prior image registration, penalized-likelihood
estimation technique (dPIRPLE).36,37 However, the motion-
compensated PICCS technique only considers the rigid
motion correction from prior to new images, which can
potentially be less applicable to imaging sites that involve a
large extent of deformation. On the other hand, the dPIRPLE
technique proposes to solve deformation and image recon-
struction jointly, which generates promising results in cadaver
experiments. However, the deformation field of dPIRPLE is
iteratively solved by deforming a fixed prior image to the
gradually reconstructed new image. The non-deformation-
induced image voxel intensity changes from prior to new
images may introduce false signals that affect the accuracy of
the solved deformation fields. In this study, we proposed the
ADRIC technique to solve the deformation field and the non-
deformation-induced intensity variations in an adaptive and
alternating fashion. The deformation field will be updated,
based on an adaptive prior image being continuously cor-
rected for the non-deformation-induced intensity changes.
Thus, the solved DVFs will potentially be less affected by the
false signals introduced from non-deformation-induced inten-
sity changes.
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We evaluated the accuracy of the proposed method using
the CT myocardial perfusion imaging scenario. In myocardial
perfusion imaging, the spatial misalignments and contrast-
agent-induced voxel intensity mismatches between prior and
new CT volumes provided a good scenario to examine the
efficacy of the ADRIC framework. Both simulation studies
using the extended cardiac torso (XCAT)38 digital phantom
and experimental studies using porcine data were performed.
The effects of sampling sparseness and exposure per projec-
tion (simulated as different noise levels) were also evaluated
in the study. In addition to the XCAT and the porcine studies,
a physical lung phantom measurement study was also per-
formed to further evaluate the accuracy of ADRIC using pro-
jections acquired on a real system.

2. MATERIALS AND METHODS

ADRIC is a technique that integrates and alternates
between the 2D-3D deformation technique and the TV-con-
strained algebraic reconstruction technique (ART) (Fig. 1).

2.A. 2D-3D deformation technique

For the 2D-3D deformation technique, the new CTvolume
(l xð Þ; x 2 R3) was deformed from the prior, already-known
CT volume (lprior xð Þ; x 2 R3) using the deformation vector
field (DVF, denoted by v,v 2 R3):

l xð Þ ¼ lprior xþ vð Þ (1)

Using Eq. 1, the problem of solving l xð Þ turns into that of
solving v. The solution of v was subject to the data fidelity
constraint, which enforced the equality between the acquired
projections and the projected ones from the deformed CTvol-
ume:

P ¼ Al xð Þ ¼ Alprior xþ vð Þ (2)

The P symbol denotes the acquired projections. The A
symbol denotes the projecting matrices corresponding to P.
As shown in Eqs. 1 and 2, the deformation of the 3D CT vol-
ume (Eq. 1) was constrained and guided by the 2D projection

matching (Eq. 2), from which the name “2D-3D deforma-
tion” originates.

Enforcing the data fidelity constraint in Eq. 2 translated
into minimizing an objective function to solve v, as shown in
Eq. 3:

v ¼ argminvf vð Þ ¼ argminv kAl xð Þ � Pk2‘2
h i

(3)

The objective function was defined as the data fidelity
error, a unitless quantity calculated as the sum of squared dif-
ferences between the acquired projections and the projected
ones from the deformed/reconstructed CT volume. The opti-
mization of Eq. 3 was an ill-posed problem for limited-view
projections P. To regularize the DVF v for a stable solution,
an additional deformation energy term27,28 was defined as:

DE vð Þ ¼
Xni
x¼1

Xnj
y¼1

Xnk
z¼1

X
m¼x;y;z

@vm
@x

� �2

þ @vm
@y

� �2

þ @vm
@z

� �2
 ! (4)

The m parameter separates v into deformation fields along
the three canonical directions (x; y; zÞ, respectively. The ni; nj
and nk parameters denote the DVF size along x; y and z direc-
tions, respectively. The deformation energy works as a pen-
alty term that applies large penalties for greater variations in
the DVF. Minimization of the deformation energy not only
preserves the DVF smoothness but also reduces the DVF
solution space for faster convergence.

Adding the deformation energy term to the original objec-
tive function of Eq. 3 yields the final objective function for
the 2D-3D deformation technique:

v ¼ argminvf vð Þ
¼ argminv kAlprior xþ vð Þ � Pk2‘2 þ x � DEðvÞ

h i
(5)

The x parameter denotes the weighting factor, which was
applied to balance the data fidelity constraint and the defor-
mation energy penalty. It was empirically set as 0.05 in this
study based on previous trial-and-error studies.27,39,40 The
gradient of the objective function in Eq. 5 can be explicitly
computed,28 which enables the objective function to be con-
veniently minimized through the nonlinear conjugate gradi-
ent algorithm. For implementation details of the algorithm,
please refer to our previous publication.27

The minimization of the objective function in Eq. 5, or in
other words, the enforcement of the 2D-3D deformation, out-
put a DVF along with the deformed CT volume (Eq. 1). The
deformation assumption explicitly made in Eq. 1, however,
failed to address the potential non-deformation-induced voxel
intensity changes. Further intensity corrections were neces-
sary to address this non-deformation component. The output
DVF after the 2D-3D deformation was then viewed as an
intermediate DVF (vinterÞ. Correspondingly, the resulting CT
volume was an intermediate deformation-recovered CT vol-
ume (linter�DR), which was subject to further intensity correc-
tions via the TV-constrained ART technique.FIG. 1. The general scheme of the ADRIC technique.
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2.B. TV-constrained ART

Following the 2D-3D deformation, the TV-constrained
ART updated the CT voxel intensities directly to minimize
the mismatches between the acquired projections and the pro-
jected ones.14 Specifically, ART updated the intermediate
deformation-recovered CT volume linter�DR passed down
from the 2D-3D deformation step via Eq. 6:

lART ;i ¼ linter�DR;i þ kaij
pj �

P
i aijlinter�DR;iP

i a
2
ij

" #
(6)

The i parameter denotes the CT voxels. The pj parameter
denotes the line integral at pixel j of the acquired projections
P (Eq. 2). The aij parameter denotes the intersection length
of projection ray j with CT voxels for the projection matrix
A (Eq. 2). The k parameter denotes the relaxation factor,
which was empirically set as 0.05 in this study based on a
parameterized study evaluating relaxation factors ranging
from 0.005 to 0.5 (see details in Fig S1). The image lART
was continuously updated after looping through each
projection ray j.

After ART updates, TV-minimization-based correction
was further applied to regularize the image. Traditionally, TV
was calculated on the ART-updated CT (lART in Eq. 6). In
this study we calculated the isotropic TV seminorm on the
difference image (dlÞ. dl was calculated as the difference
between the lART and the deformation-recovered CT by the
composite DVF (lcomp�DR):

dl ¼ lART � lcomp�DR;

kdlkTV ¼
X
x;y;z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dlx;y;z � dlx�1;y;z

� �2 þ dlx;y;z � dlx;y�1;z

� �2
þðdlx;y;z � dlx;y;z�1Þ2

vuut
(7)

Note that lcomp�DR is different from linter�DR. linter�DR
denotes the CT volume passed down from the 2D-3D defor-
mation step that proceeds the ART update. In contrast,
lcomp�DR denotes the pure deformation-recovered CT volume
without intensity correction. It was generated by deforming
the very-first, initial prior CT volume (to differentiate it from
the lprior in Eq. 1, we denoted it as liniprior) using the compos-
ite DVF (vcompÞ. vcomp was accumulated from all the vinter
solved by prior 2D-3D deformation steps (Eq. 8), represent-
ing the total deformation between the initial prior CT and the
new CT solved thus far:

vcomp ¼ vinter�1 � vinter�2 � . . .� vinter�k;

lcomp�DR xð Þ ¼ liniprior xþ vcomp
� �

(8)

vinter�i denotes the intermediate DVF solved by each prior
2D-3D deformation step, indexed by i. The k parameter
denotes the total number of precedent iterations. The � sym-
bol denotes the deformation field composition operator.

This TV regularization approach was mainly deployed to
achieve two objectives. The first objective was to avoid the

strong assumption that the whole lART was sparse in intensity
gradient. Instead, only the intensity gradient sparsity of dl ,
the difference volume between the lART volume and the
lcomp�DR volume was assumed. The dl volume, which
equaled the correction applied toward non-deformation-
induced voxel intensity changes, was more likely to be sparse
in the intensity gradient. Thus, the new TV term can better
preserve the information of lcomp�DR and reduce the effects
of oversmoothing. The concept of using the difference image
for TV regularization was first proposed by the PICCS tech-
nique13 and achieved encouraging results. The second objec-
tive of using this TV approach was to reduce the intensity
corrections applied toward deformation-induced voxel inten-
sity changes. Some deformation-induced voxel intensity
changes might not be fully recovered through the previous
2D-3D deformation steps. Reductions in intensity corrections
applied toward these deformation-induced changes would
allow the following 2D-3D deformation step to further update
the composite DVF. In this study, we named the whole inten-
sity correction approach “ART-dTV”, to differentiate it from
the traditional “ART-TV” approach that regularizes the TV
using lART . In general, the ART-dTV algorithm is very simi-
lar to the PICCS algorithm, only without the conventional
TV regularization term imposed on the intensity gradient of
the full lART image. The conventional TV term, as explained
in the PICCS reference,13 was introduced to mitigate the
effects of potential artifacts in the prior image on the recon-
structed new image. As we proposed to use high-quality prior
image with few artifacts in this study, we did not use this term
to simplify the ADRIC workflow. However, such a term can
still be implemented if prior image with lower quality is to be
used. The ART-dTV technique was employed using a con-
strained optimization approach. First, the ARTupdate (Eq. 6)
was implemented. Second, the TV (Eq. 7) minimization was
enforced, by using the standard steepest descent method.14

The number of steepest descent iterations was set to 20 in this
study. Only one ART update and 20 TV steepest descent
updates were applied in the intensity correction step. The
ART-dTV generated an intermediate intensity-corrected CT
volume (linter�IC) after each optimization, which was then
fed back into the 2D-3D deformation step for the next itera-
tion (Fig. 1). The following 2D-3D deformation step would
continue to correct the deformation-induced residual errors,
and the reduction in false signals from non-deformation
intensity changes further benefits the correction and fine-tun-
ing of the composite DVF.

2.C. Detailed framework of the ADRIC technique

The detailed framework of the ADRIC technique was pro-
vided in Fig. 2. As shown, the ADRIC technique can be sep-
arated into two stages: the ADRIC-initialization stage and the
ADRIC-main stage. Although a high-quality initial prior CT
image (linipriorÞ was incorporated into the 2D-3D deformation
algorithm, the optimization problem was still ill-conditioned,
as the number of unknown DVF variables far exceeded the
information provided by limited-view projections. The
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ADRIC-initialization stage provided a rough DVF (vinitial) to
feed into the initial implementation of the 2D-3D deforma-
tion algorithm, to prevent it from being trapped at local
optima during optimization. Using vinitial instead of zero-
valued initial DVF enables faster convergence and generates
better final CT images for the 2D-3D deformation algorithm,
as evidenced in our previous publication.27 To generate
vinitial, a coarse CT volume (lcoarseÞ was first reconstructed
from the limited-view projections.14 Then it was registered
with liniprior using the Demons registration algorithm41 to
obtain the vinitial. After the ADRIC-initialization stage, the
implementation of the following ADRIC-main stage was
detailed below:

1. Feed the vinitial, the liniprior (used as lprior in Eq. 5) and
the limited-view projections P simultaneously into the
2D-3D deformation algorithm. The algorithm will gen-
erate linter�DR and the corresponding vinter according to
Eq. 5;

2. Compose the vinter with intermediate DVFs solved in
previous iterations (if any) to vcomp, and deform liniprior
using the vcomp to lcomp�DR according to Eq. 8;

3. Feed the linter�DR (as the starting volume), the
lcomp�DR, and the limited-view projections P simulta-
neously into the ART-dTV algorithm to generate the
intermediate intensity-corrected volume linter�IC after
ARTupdates (Eq. 6) and TV (Eq. 7) minimization;

4. Evaluate the stopping criterion based on data fidelity of
projections. If it is satisfied, exit the loop. If not, con-
tinue to step (5);

5. Feed a zero-valued initial DVF, the linter�IC (used as
lprior in Eq. 5), and the limited-view projections P
simultaneously into the 2D-3D deformation algorithm.
Similar to step (1), the algorithm will generate linter�DR
and the corresponding vinter according to Eq. 5; Con-
tinue back to step (2).

In summary, starting from an intermediate intensity-cor-
rected CT volume (or the initial prior CT volume for the first
iteration), the ADRIC technique used 2D-3D deformation to
generate an intermediate DVF, and accumulated it with previ-
ously solved ones into the composite DVF. The composite
DVF represents the total deformation between the initial prior
CT and the new CT. After implementing the 2D-3D deforma-
tion step, ADRIC further applied ART-dTV to adaptively cor-
rect the non-deformation-induced voxel intensity changes.
The resulting intermediate intensity-corrected CT volume
was iteratively fed back into the 2D-3D deformation step
again, to generate a new intermediate DVF and further update
the composite DVF. The cumulatively updated composite
DVF and the adaptively updated nondeformation voxel inten-
sity corrections were optimized separately and alternately to
reconstruct the final CT volume. The reconstructed final CT
volume could then be conveniently separated into two com-
ponents: the final lcomp�DR (ADRIC deformation-recovered
CT) and the additional, non-deformation intensity correction
based on it (ADRIC intensity correction, equal to the

difference volume between the final reconstructed CT and the
final lcomp�DR).

2.D. Simulation using the XCAT phantom

To evaluate the efficacy of the ADRIC algorithm, we used
the anthropomorphic XCAT digital phantom to simulate a
patient undergoing CT myocardial perfusion imaging. An ini-
tial prior CT volume covering the heart and part of the lung
region was simulated to have 256 * 256 * 60 voxels, with
each voxel measuring 2 mm � 2 mm � 2 mm. The volume
was simulated using a nominal imaging energy of 80 keV, to
approach the clinically used polychromatic spectrum of
120 kV peak energy. Based on the initial prior CT volume, a
new CT volume was simulated. Spatial misalignments
were simulated between the initial prior CT and the new
CT, including both respiratory-motion- and cardiac-
motion-induced deformation. Non-deformation-induced
voxel intensity changes were also added to the new CT vol-
ume to simulate the transit of perfusion contrast agent in the
new CT scan. The attenuation coefficient of the perfusion
contrast was set to 0.0055/mm.

Limited-view cone-beam projections were simulated using
the new CT volume and spread evenly across a 360° scan
angle. The projections were simulated to have 300 * 100 pix-
els, with each pixel measuring 2 mm � 2 mm. Different num-
bers of projections were simulated, ranging from 10, 20, 40,
to 60, representing different angular sampling sparseness. In
addition to the angular sampling sparseness, we also evalu-
ated the effects of different projection exposure levels (in the
forms of different noise levels) on image reconstruction accu-
racy. Different levels of noise were added to the noise-free
projection data through Eq. 9:

P0
i ¼ �logeðPoisson I0e�Pið Þ þ Normal 0; r2ð Þ

I0
Þ (9)

The Pi parameter denotes the noise-free line integral value
at pixel i. The I0 parameter denotes simulated incident photon
counts for each pixel. Different values of I0 were used, rang-
ing from 104; 5� 104; 105 to infinity (for the noise-free sce-
nario), to represent different exposure levels (higher exposure
level corresponds to lower noise level). The Poisson term
adds quantum noise with Poisson nature. The Normal term
adds background electronic noise with Gaussian nature. The
r2 of Gaussian noise was set to 10 according to previous
studies.42,43 For the noise-free scenario, the Gaussian noise
was not added. Examples of simulated projections with dif-
ferent exposure levels are shown in Fig. 3.

2.E. Experimental evaluation using the porcine data

In addition to the XCAT study, we used experimentally
acquired porcine myocardial perfusion imaging data to fur-
ther evaluate the efficacy of the ADRIC algorithm. The por-
cine data acquisition was originally conducted for an
unrelated study at the Tianjin Medical University General
Hospital (Tianjin, China) and approved by the hospital
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animal care committee. As our animal study is a retrospective
study using porcine images that are already available, it is
exempt from the approval by the institutional animal care and
use committee.

The porcine data were acquired using a 64-slice GE Dis-
covery CT750 HD scanner (GE Healthcare, Waukesha, Wis-
consin). An initial prior CT volume of the pig was acquired
using 120 kV peak energy, 100 mA tube current, and 0.4 s
gantry rotation time. The CT was centered on the 75% R-R
phase of the cardiac cycle through electrocardiography
(ECG) gating. Similar to the initial prior CT acquisition, a
new CT of the 75% R-R phase was later acquired on the same
day with the same scanner following injection of an iodinated
contrast agent. The new CT volume was acquired using
120 kV peak energy, 15 mA tube current, and 0.4 s gantry
rotation time to reduce imaging dose. The difference in
acquisition time and the administration of contrast agent
introduced both spatial misalignments and non-deformation-
induced voxel intensity changes between the initial prior CT
and the new CT. Both CTvolumes were acquired with a reso-
lution of 0.6 mm * 0.6 mm * 5 mm. They were then both

resampled to 256 � 256 � 60 voxels, with each voxel measur-
ing 1:2 mm � 1:2 mm � 1:2 mm.

Similar to the XCAT study, limited-view cone-beam pro-
jections were simulated using the new CT volume and spread
across a 360° scan angle. The projections were simulated to
contain 300 * 100 pixels, with each pixel measuring
1:2 mm � 1:2 mm. Different sparseness levels were evaluated
with total numbers of simulated projections ranging from 10,
20, 40, to 60. As the CT image acquisition inherently con-
tained noise and the new CT acquisition used a lower mA that
added extra noise, no additional noise was introduced into
the projections of the porcine study.

2.F. Experimental evaluation using a physical
phantom

In addition to the XCAT and the porcine studies, we fur-
ther evaluated the accuracy of ADRIC using acquired projec-
tions of a physical anthropomorphic lung phantom
(Radiology Support Devices, Long Beach, CA, USA). In
general, we inserted water-filled balloons with different

FIG. 2. The detailed framework of the ADRIC technique. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 3. XCAT projections simulated with different exposure levels. The number under each subfigure shows the simulated incident photon counts for each pixel.
The r2 of Gaussian noise (Eq. 9) was set to 10. For the noise-free scenario, the Gaussian noise was not added.
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volumes and concentrations of iodinated contrasts into a cav-
ity of the lung phantom, to create different scenarios that sim-
ulate both deformations (by balloon shape/volume
differences) and intensity changes (by different concentra-
tions of the iodinated contrast) for ADRIC reconstruction.

In detail, a balloon filled only with water was first inserted
into the phantom, and scanned by the on-board imager of a
Varian LINAC (TrueBeam, Varian Medical Systems, Palo
Alto, CA, USA) to obtain cone-beam projections covering a
whole 200° scan angle. The projections were subsequently
reconstructed by the ART-TV algorithm14 to serve as the ini-
tial prior image for ADRIC reconstruction. Based on this
prior scenario, we added water into the balloon to change its
shape/volume and added iodinated contrast to increase its
intensity. A total of four different scenarios were created,
including one scenario with only additional water and three
scenarios with additional water and iodinated contrasts (three
different levels). The contrast concentration increases gradu-
ally from level 1 to 3. For each scenario, we acquired 201
cone-beam projections covering a whole 200° scan angle with
1° angular spacing. The reconstructed images by ART-TV
using the full projection sets were used as the “gold-standard”
for reference. We then down-sampled the full projection sets
by a factor of 10 to 21 projections, and used ADRIC to recon-
struct CT images for each scenario. The ADRIC-solved
deformations and intensity changes were then evaluated
against the “gold-standard” CTs reconstructed from the full
projection sets.

2.G. Evaluation metrics

Visual and quantitative comparisons were performed
between the reconstructed CT volumes and the “gold-stan-
dard” CT volumes. For the XCAT study, the “gold-standard”
volume was the simulated new CT volume. For the porcine
study, the “gold-standard” volume was the newly acquired
CT volume. The quantitative comparisons used the relative
error (RE) metric defined in Eq. 10 and the universal quality
index (UQI)44 metric defined in Eq. 11:

RE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i2R3 ðlrecon;i � lgs;iÞ2P
i2R3 lgs;i2

s
� 100% (10)

UQI ¼ 4cov ðlrecon; lgs
� � � lrecon � lgs

varððlreconð Þ þ varððlgsÞÞ � ðl2recon þ l2gsÞ
(11)

lrecon;i denotes the voxel-wise attenuation coefficient of the
reconstructed volume and lgs;i denotes the voxel-wise attenu-
ation coefficient of the “gold-standard” volume. The covð�Þ
symbol denotes the covariance calculator and the varð�Þ
symbol denotes the variance calculator. The RE metric was
calculated on the whole 3D image. It reflected the overall
voxel value difference, which can measure the intensity distri-
bution similarity of two images as a whole. The UQI metric
was calculated on three 2D regions of interests (ROIs). The
three ROIs are in axial, coronal, and sagittal views, respec-
tively. UQI compared the luminance, contrast, and correlation

(structure similarity) between two images, with the optimal
value being 1. However, the UQI value is dependent on the
selected ROI and the sliding window used for calculation.44

In this study, we selected the ROIs to cover contrast-enhanced
chest regions to evaluate the accuracy of solved deformation
and intensity change. We set the sliding window to 20 for all
the calculations for consistency and fair comparison. To eval-
uate the efficacy and advantages of the ADRIC technique
more comprehensively, reconstructions were also performed
using the standard 2D-3D deformation technique and the
ART-dTV technique individually. The reconstruction accu-
racy of the three techniques was compared.

For the physical phantom measurement study, we con-
toured the balloon volume out from each image, and evalu-
ated the shape/volume similarity using the DICE
coefficient:45

DICE ¼ 2 � V \VGS

V þ VGS
(12)

The symbol V denotes the prior balloon volume or the
deformed balloon volume. The symbol VGS denotes the
“gold-standard” balloon volume contoured from the “gold-
standard” reference image. The DICE coefficient ranges from
0 to 1, with a higher value indicating better volume match.
By the DICE coefficient we can evaluate the accuracy of
ADRIC deformation recovery. In addition, we calculated the
average attenuation coefficient within the contoured balloon
volume on each image, and defined the intensity difference
metric as:

Intensity difference ¼
lavggs � lavg
��� ���

lavggs
� 100% (13)

The symbol lavggs denotes the average attenuation coeffi-
cient calculated within the “gold-standard” balloon volume.
The symbol lavg denotes the average attenuation coefficient
calculated within the balloon contour on the initial prior
image or the ADRIC image. The intensity difference metric
evaluates the accuracy of ADRIC intensity correction.

3. RESULTS

3.A. Simulation using the XCAT phantom

Figure 4 shows the projection data fidelity error versus
iteration number for the three reconstruction techniques.
Among the three methods, the ADRIC technique converged
fast with the smallest data fidelity error. According to the def-
inition of data fidelity error in Eq. 3, the smallest data fidelity
error will correspond to the most accurately reconstructed CT
image.

Figure 5 shows the ADRIC deformation-recovered CT
volume by the composite DVF (Eq. 8) accumulated after
different numbers of iterations. Most of the major defor-
mations were solved in the first 10 iterations, with fine
adjustments observed between the 10th iteration and the
50th iteration.
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Figure 6 shows a comparison between the initial prior CT
volume (column 1), the “gold-standard” new CTvolume (col-
umn 2), and the ADRIC-reconstructed CT volume (column
3) for the XCAT simulation study. The ADRIC-reconstructed
CT was also separated into two components—the ADRIC
deformation-recovered CT volume (column 4), and the inten-
sity correction (column 5) besides the deformation recovery.
The ADRIC deformation-recovered CT volume matched the
“gold-standard” CT volume in regions deformed by respira-
tory motion and cardiac motion, as compared to the prior CT
volume. The ADRIC intensity correction, on the other hand,
was mostly confined to the cardiac region to correct the non-
deformation-induced voxel intensity changes, although

additional corrections were observed along structure bound-
aries and the bony regions.

As shown in Fig. 7, the ART-dTV, the 2D-3D deforma-
tion, and the ADRIC techniques successfully reconstructed
CT volumes to better match with the “gold-standard” new
CT volume, as compared to the initial prior CT volume.
However, the ART-dTV technique failed to correct multiple
remaining intensity mismatches (indicated by the arrows in
the ART-dTV column) caused by the deformation from the
initial prior CT volume to the new CT volume. The 2D-3D
deformation technique successfully corrected major defor-
mation-induced mismatches. However, the non-deformation-
induced voxel intensity changes in the cardiac region were
not corrected (indicated by the arrow in the 2D-3D defor-
mation column: coronal view). There also existed intensity
mismatches due to incorrect deformation fields (indicated
by the arrows in the 2D-3D deformation column: axial
view and sagittal view). In comparison, the ADRIC tech-
nique not only corrected deformation-induced mismatches
but also corrected non-deformation-induced voxel intensity
changes in the cardiac region.

Table I shows reconstruction results using different levels
of angular sampling sparseness for the XCAT study. As
expected, increasing the number of acquired projections led
to better reconstruction accuracy. The ADRIC technique con-
sistently generated the smallest RE and the highest UQI val-
ues among the three techniques, showing the highest
reconstruction accuracy.

As shown in Fig. 8, the ADRIC-reconstructed image by
using 40 projections matches well with the “gold-standard”
image, which corresponds to a RE value of 9.06% and UQIs
of 0.93/0.93/0.92 (Table I). Reducing the projection number
yields images of more blurred contrast-enhancement area,
especially for the case that used 10 projections for reconstruc-
tion.

FIG. 4. XCAT study: projection data fidelity errors (defined as the objective
function in Eq. 3) after different numbers of iterations, for different recon-
struction methods. The reconstruction used 10 projections simulated with
105 incident photon counts (Eq. 9) for each pixel. [Color figure can be
viewed at wileyonlinelibrary.com]

FIG. 5. XCAT study: evolution of the ADRIC deformation-recovered CT volume (lcomp-DR) with different iteration numbers. The reconstruction used 40 projec-
tions simulated with 105 incident photon counts for each pixel. The first column displays the axial slice cuts of the initial prior CT volume ðlinipriorÞ. The four col-
umns in the middle show the axial slice cuts of the ADRIC deformation-recovered CTvolume after 1st, 5th, 10th, and 50th iterations, respectively. The last column
displays the axial slice cuts of the “gold-standard” new CTvolume (note that the perfusion signal was removed from the images to facilitate comparisons). Differ-
ent rows display axial slice cuts at different locations. The display window is [0.015, 0.05] mm�1. [Color figure can be viewed at wileyonlinelibrary.com]
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Table II reports the XCAT reconstruction results using
projections with different exposure levels. The ADRIC tech-
nique consistently outperformed the ART-dTV and the
2D-3D deformation techniques for all exposure levels. The
reconstruction accuracy of the ADRIC technique was only
slightly reduced when the exposure decreased, except for the
104 incident photon counts case where the simulated projec-
tions were much noisier than real clinical projections (Fig. 3).

3.B. Experimental evaluation using the porcine data

Figure 9 shows the ADRIC deformation-recovered CT
volume (column 4) and the ADRIC intensity correction (col-
umn 5) for the porcine study. Similar to the XCAT study, the
ADRIC successfully recovered the deformation and corrected

the intensity changes induced by the transit of the myocardial
contrast agent. Using more projections for reconstruction
revealed more fine details in the intensity correction image
[Fig. 9(a) vs. Fig. 9(b)].

The difference image evaluation in Fig. 10 also shows that
the ADRIC technique achieved the best reconstruction accu-
racy among the three techniques.

Table III shows the reconstruction results for the porcine
study, by using different sparsity levels of projection view
sampling. The ADRIC technique consistently outperformed
the other two techniques in offering the lowest RE values and
the highest UQI values, demonstrating the highest reconstruc-
tion accuracy. Note that for the porcine study, the deforma-
tion between the initial prior CT volume and the new CT
volume was less significant as compared to the XCAT study

FIG. 6. XCAT study: three-view slice cuts of the initial prior CTvolume, the “gold-standard” new CTvolume, the ADRIC-reconstructed CTvolume, the ADRIC
deformation-recovered CTvolume (the final lcomp-DR), and the ADRIC intensity correction besides deformation recovery. The reconstruction used 40 projections
simulated with 105 incident photon counts for each pixel. The display window for the initial prior CT volume, the “gold-standard” new CT volume, the ADRIC-
reconstructed CT volume, and the ADRIC deformation-recovered CT volume is [0.015, 0.05] mm�1. The display window for the ADRIC intensity correction is
[�0.015, 0.015] mm�1. The dashed line was added to indicate the deformation from the initial prior image to the gold-standard image. The boxes shown in the
axial, coronal, and sagittal views of the “gold-standard” new CT volume indicate the three ROIs used for UQI calculation and comparison. [Color figure can be
viewed at wileyonlinelibrary.com]

FIG. 7. XCAT study: three-view slice cuts of the difference images between the “gold-standard” new CT volume and the initial prior CT/reconstructed CT vol-
umes. The reconstruction used 40 projections simulated with 105 incident photon counts for each pixel. The first column shows the difference images between
the “gold-standard” new CT volume and the initial prior CT volume. The second, third, and fourth columns show the difference images between the “gold-stan-
dard” new CTvolume and the CTvolumes reconstructed by the ART-dTV, the 2D-3D deformation, and the ADRIC techniques, respectively. The display window
is [�0.015, 0.015] mm�1. [Color figure can be viewed at wileyonlinelibrary.com]
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TABLE I. XCAT study: RE and UQI values of different reconstruction techniques using different levels of angular sampling sparseness (varied by numbers of pro-
jections). The projections were simulated with 105 incident photon counts for each pixel. The “Initial Prior” column shows the RE and UQIs between the “gold-
standard” new CTvolume and the initial prior CT volume. Other columns show the RE and UQI values between the “gold-standard” new CTvolume and the CT
volumes reconstructed by different techniques. The UQI values were calculated based on the three 2D ROIs enclosed in the boxes of Fig. 6, evaluating axial,
coronal, and sagittal views, respectively.

No. of projections Initial prior ART-dTV 2D-3D Deformation ADRIC

RE

10 39.75% 25.45% 18.85% 17.32%

20 19.21% 14.64% 11.90%

40 13.38% 12.80% 9.06%

60 11.04% 12.33% 7.92%

UQI (axial ROI/coronal ROI/sagittal ROI)

10 0.15/ 0.13/ �0.09 0.54/ 0.65/ 0.44 0.34/ 0.32/ �0.04 0.62/ 0.68/ 0.66

20 0.75/ 0.79/ 0.71 0.37/ 0.31/ 0.03 0.82/ 0.84/ 0.83

40 0.90/ 0.92/ 0.85 0.38/ 0.31/ 0.04 0.93/ 0.93/ 0.92

60 0.93/ 0.95/ 0.87 0.38/ 0.31/ 0.03 0.95/ 0.96/ 0.93

FIG. 8. Visual comparison between reconstructed ADRIC images (by using different numbers of projections) and the “gold-standard” image for the XCAT study.
The projections used for reconstruction were simulated with 105 incident photon counts for each pixel.

TABLE II. XCAT study: RE and UQI values of different reconstruction techniques with different exposure levels (varied by simulated incident photon counts for
each pixel). Forty projections were used for reconstruction. The “Initial Prior” column shows the RE and UQIs between the “gold-standard” new CTvolume and
the initial prior CT volume. Other columns show the RE and UQI values between the “gold-standard” new CTvolume and the CT volumes reconstructed by dif-
ferent techniques. The UQI values were calculated based on the three 2D ROIs enclosed in the boxes of Fig. 6, evaluating axial, coronal, and sagittal views,
respectively.

Incident photon counts Initial prior ART-dTV 2D-3D Deformation ADRIC

RE

104 39.75% 17.25% 14.88% 13.47%

5 9 104 13.71% 13.03% 9.50%

105 13.38% 12.80% 9.06%

∞ (Noise-free) 13.63% 12.66% 8.31%

UQI (axial ROI/coronal ROI/sagittal ROI)

104 0.15/ 0.13/ �0.09 0.85/ 0.85/ 0.76 0.39/ 0.30/ 0.04 0.87/ 0.86/ 0.84

5 9 104 0.90/ 0.92/ 0.84 0.38/ 0.31/ 0.04 0.92/ 0.93/ 0.91

105 0.90/ 0.92/ 0.85 0.38/ 0.31/ 0.04 0.93/ 0.93/ 0.92

∞ (Noise-free) 0.90/ 0.92/ 0.84 0.38/ 0.31/ 0.04 0.94/ 0.95/ 0.93
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(Fig. 7 vs. Fig. 10), which led to smaller differences between
the ART-dTV and the ADRIC results.

As shown in Fig. 11, the ADRIC-reconstructed image by
using 40 projections matches well with the “gold-standard”
image, which corresponds to a RE of 5.82% and UQIs of
0.90/0.94/0.95 (Table III).

3.C. Experimental evaluation using the physical
phantom

The reconstructed images for two scenarios were shown in
Fig. 12. For Fig. 12(a), only deformation existed between the
water-filled balloons in the prior and the new images. For

(a)

(b)

FIG. 9. Porcine study: three-view slice cuts of the initial prior CT volume, the “gold-standard” new CT volume, the ADRIC-reconstructed CT volume, the
ADRIC deformation-recovered CT volume, and the ADRIC intensity correction besides deformation recovery. The reconstruction used 20 projections for (A)
and 60 projections for (B). The display window for the initial prior CT volume, the “gold-standard” new CT volume, the ADRIC-reconstructed CT volume, and
the ADRIC deformation-recovered CT volume is [0.015, 0.05] mm�1. The display window for the ADRIC intensity correction is [�0.015, 0.015] mm�1. The
boxes shown in the axial, coronal, and sagittal views of the “gold-standard” new CT volume indicate the three ROIs used for UQI calculation and comparison.
[Color figure can be viewed at wileyonlinelibrary.com]
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Fig. 12(b), both deformation and non-deformation-induced
intensity changes (from added iodinated contrast) existed
between the balloons in the prior and the new images. As
shown, the deformations were successfully recovered for both
scenarios by ADRIC. The non-deformation-induced intensity
changes from the added iodinated contrast were also success-
fully solved by intensity correction in Fig. 12(b). Note that
the ADRIC balloon boundary in Fig. 12(a) appears fuzzier
than the ground-truth, which is caused by a combined effect

of the sparse-view sampling and the smoothing/regularization
from the deformation model.

Table IV shows the DICE coefficients and the inten-
sity differences for both the initial prior balloon volume
and the ADRIC-reconstructed balloon volumes. As
shown, ADRIC substantially improves the accuracy of the
balloon volumes in the reconstructed image, for both the
deformation (DICE coefficient) and the intensity correc-
tion (intensity difference).

FIG. 10. Porcine study: three-view slice cuts of the difference images between the “gold-standard” new CTvolume and the initial prior CT/reconstructed CTvol-
umes. The reconstruction used 20 projections. The first column shows the difference images between the “gold-standard” new CTvolume and the initial prior CT
volume. The second, third, and fourth columns show the difference images between the “gold-standard” new CT volume and the CT volumes reconstructed by
the ART-dTV, the 2D-3D deformation, and the ADRIC techniques, respectively. The display window is [�0.015, 0.015] mm�1. [Color figure can be viewed at
wileyonlinelibrary.com]

TABLE III. Porcine study: RE and UQI values of different reconstruction techniques with different levels of angular sampling sparseness (varied by numbers of
projections). The “Initial Prior” column shows the RE and UQIs between the “gold-standard” new CT volume and the initial prior CT volume. Other columns
show the RE and UQI values between the “gold-standard” new CTvolume and the CTvolumes reconstructed by different techniques. The UQI values were calcu-
lated based on the three 2D ROIs enclosed in the boxes of Fig. 9(a), evaluating axial, coronal, and sagittal views, respectively.

No. of projections Initial prior ART-dTV 2D-3D Deformation ADRIC

RE

10 15.66% 10.70% 14.91% 8.98%

20 8.78% 13.61% 6.80%

40 7.97% 12.58% 5.82%

60 6.91% 12.14% 5.29%

UQI (axial ROI/coronal ROI/sagittal ROI)

10 0.37/ 0.65/ 0.69 0.65/ 0.78/ 0.78 0.13/ 0.39/ 0.69 0.68/ 0.82/ 0.84

20 0.82/ 0.90/ 0.86 0.19/ 0.47/ 0.78 0.84/ 0.91/ 0.91

40 0.88/ 0.92/ 0.90 0.24/ 0.49/ 0.85 0.90/ 0.94/ 0.95

60 0.91/ 0.95/ 0.94 0.25/ 0.50/ 0.85 0.93/ 0.96/ 0.96
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4. DISCUSSION

4.A. Comparison among the ART-dTV, the 2D-3D
deformation, and the ADRIC techniques

The ADRIC technique developed in this study outper-
formed both the ART-dTV and the 2D-3D deformation tech-
niques, as evidenced by the XCAT simulation study (Fig. 7
and Tables I and II) and the experimental porcine study
(Fig. 10 and Table III). Among the three techniques, the 2D-
3D deformation technique could only recover the deforma-
tion. The residual non-deformation-induced voxel intensity
mismatches were not only uncorrected but also provided false
signals that affected the accuracy of the solved DVFs (Figs. 7
and 10). A more illustrative example is shown in Fig. 13,
where the 2D-3D deformation algorithm deformed the high
density bony region (indicated by the arrow) to cover the mis-
matches caused by the contrast agent. Such inadequate defor-
mation not only failed to recover the true new CT intensities
but also generated a DVF deviated from the truth. The appli-
cation of this DVF for further clinical practices, including
structure contour propagation and dose tracking/accumula-
tion, would be error-prone. The same issue applied to other
variants of 2D-3D deformation-based techniques21–29,31 as
well.

In contrast to the 2D-3D deformation technique, the ART-
dTV technique viewed all voxel variations as intensity
changes and did not explicitly consider the deformation that
occurred in between the prior and new CT volumes. These
pure intensity-correction-based reconstruction tech-
niques12,13,15 thus cannot recover the DVF during the

reconstruction. Although a subsequent 3D-3D deformable
registration can still be performed to solve the DVF, its accu-
racy can be potentially affected by the artifacts presented in
the reconstructed image and mixed deformation-induced and
non-deformation-induced intensity variations. The dPIRPLE
algorithm is an advanced technique different from the tradi-
tional 3D image reconstruction + 3D-3D registration
approach, as dPIRPLE also alternates between the image
reconstruction and deformable registration steps, which grad-
ually improves the reconstructed image’s quality to help fine-
tune the deformation results. However, as being mentioned in
the introduction, dPIRPLE always uses the same uncorrected
prior to register to the reconstructed image. The non-
deformation-induced intensity variations on the reconstructed
image may introduce false signals that affect the accuracy of
the resulting DVFs. In contrast, ADRIC adaptively updates
the prior image to include these non-deformation intensity
variations to reduce their effects on the accuracy of deform-
able registration.

In this study, the ART-dTV technique regularized the
“dTV” instead of the traditional TV on the difference image
between the initial prior CT volume and the new CT volume.
This approach better preserved image features and fine struc-
tures that could be easily smoothed out during large-scale TV
regularization. However, when complex anatomical variations
including deformation exist between initial prior and new CT
images, the difference image may not be sufficiently sparse in
terms of the intensity gradient. The TV regularization will
smooth out the difference and blend the information from the
initial prior CT image into the new CT image, leading to

FIG. 11. Visual comparison between reconstructed ADRIC images (by using different numbers of projections) and the “gold-standard” image for the porcine
study.
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intensity mismatches (Figs. 7 and 10). Under this circum-
stance, deformation-based correction became critical to cor-
rect the initial prior volume.

In contrast to the ART-dTV and the 2D-3D deformation
techniques, the ADRIC technique successfully recovered
deformation and corrected non-deformation-induced voxel

intensity changes (Figs. 5, 6, 9, and 12). The deformation
recovery component of ADRIC is unique from two features:
first, it uses 2D-3D deformation to directly compute the DVF
by matching 2D projections. Compared with the traditional
3D-3D deformation approach, which needs to reconstruct the
projections to a 3D volume before registration, the 2D-3D

(a)

(b)

FIG. 12. Physical phantom study: three-view slice cuts of the initial prior CTvolume, the “gold-standard” new CTvolume, the ADRIC-reconstructed CTvolume,
the ADRIC deformation-recovered CT volume, and the ADRIC intensity correction besides deformation recovery. The ADRIC reconstruction used 21 projec-
tions. The display window for the initial prior CT volume, the “gold-standard” new CT volume, the ADRIC-reconstructed CT volume, and the ADRIC deforma-
tion-recovered CT volume is [0, 0.04] mm�1. The display window for the ADRIC intensity correction is [�0.015, 0.015] mm�1. For subfigure (a), more water
was added to the balloon in the new image without adding iodinated contrast. For subfigure (b), both water and iodinated contrast were added to the balloon in
the new image to introduce both deformation and non-deformation-induced intensity changes.

Medical Physics, 44 (6), June 2017

2236 Zhang et al.: CT reconstruction by ADRIC 2236



deformation approach is potentially less prone to the errors
and artifacts originate from image reconstruction. It is also
less affected by the errors associated with registering two 3D
images of apparently different quality, i.e., the high-quality
prior image and the low-quality new image reconstructed
from limited-view projections. Second, the DVF solved by
ADRIC is cumulatively updated throughout the iterations to
achieve higher accuracy. With the non-deformation-induced
voxel intensity changes being gradually corrected, the cumu-
lative DVF was simultaneously updated (Fig. 5) to correct its
errors caused by the false signals from these intensity changes
(Figs. 7 and 10). The intensity correction component of
ADRIC, on the other hand, adopts the dTV approach to pre-
serve the deformation recovery information, while at the
same time regularizing the intensity correction signal and
removing the intensity corrections applied toward deforma-
tion-induced voxel changes.

Note that in this study, the intensity correction images
solved by ADRIC for the XCAT study (Fig. 6) look patchy
and piecewise constant. It is due to the inherent piecewise-
constant feature of the XCAT phantom, which is a simplified
model of the human anatomy. For the porcine study, the

intensity correction image looks patchy by using only 20 pro-
jections for reconstruction [Fig. 9(a)]. Increasing the number
of projections to 60 introduces more fine details to the inten-
sity correction image [Fig. 9(b)]. The patchiness of the inten-
sity correction image in the coronal and sagittal views for the
porcine study is also contributed by the low resolution in the
slice-to-slice direction (5 mm) from the original image.
Although we up-sampled the original CT volumes to a
1.2 mm plane-to-plane resolution by interpolation, the image
appearance is still patchy, as being limited by its natural reso-
lution. Note that for the porcine study, the reference image
used as “gold-standard” was acquired with a reduced tube
current (15 mA) as compared to the prior image (100 mA).
The reconstructed images by ADRIC thus appear less noisy
as compared to the “gold-standard” image (Fig. 9).

In this study, we majorly focused on evaluating the recon-
struction accuracy from projections acquired under different
sparse-view sampling scenarios. The sparse-view reconstruc-
tion is most adequate for reconstructing projections binned
from retrospective/prospective gating, especially for scenarios
where the gantry rotation speed is limited in applications like
cone-beam CT used in radiotherapy,46 or cone-beam C-arm
interventional x-ray systems.47 In other scenarios, the dose
reduction may be better achieved by using normal view sam-
pling and reduced dose per projection. Our results shown in
Table I (different sparsity levels of projection view sampling)
versus Table II (different levels of dose per projection with
the same projection view sampling) also suggest that the lat-
ter will be a better strategy when applicable, which generates
more accurate reconstruction results. However, for this study,
the two scenarios we investigated (heart: XCAT study and
porcine study; lung: physical phantom study) are associated
with anatomical sites both usually involve periodic motion,
where phase gating/sorting is desired to reconstruct images
with motion blurriness suppressed. The reconstructions are
also based on cone-beam projections, the acquisition of
which may often be limited by the gantry rotation speed in
current clinical practice. Thus, the sparse-view reconstruction
has its merit in the ADRIC application for these two scenar-
ios. The ADRIC reconstruction, however, is not limited to the
sparse-view reconstruction. It is also readily applicable to
reconstructions using projections of normal view sampling
but low dose per projection (Table II), which is a better dose
reduction strategy than sparse-view sampling.

4.B. Clinical applications of the ADRIC technique

Our newly developed ADRIC method can separate defor-
mation from non-deformation-induced voxel intensity
changes between sequential CT images, which may poten-
tially benefit multiple clinical practices. The derived DVF
can be used toward many clinical applications, including
structure contour propagation, organ motion analysis, and
disease progression monitoring. In addition, in CT myocar-
dial perfusion imaging, the intensity corrections can be corre-
lated with the transit of iodinated contrast agents to evaluate
cardiac functions. For other imaging scenarios, intensity

TABLE IV. Physical phantom study: DICE coefficients and intensity differ-
ence values for the four different scenarios described in 2.F. The “Initial
Prior” section shows the DICE coefficients and the intensity differences
between the “gold-standard” new balloon volumes and the initial prior bal-
loon volume. The “ADRIC” section shows the DICE coefficients and the
intensity differences between the “gold-standard” new balloon volumes and
the balloon volumes reconstructed by the ADRIC technique.

Similarity metric
Without
contrast

With
contrast
level 1

With
contrast
level 2

With
contrast
level 3

Initial prior

DICE coefficient 0.421 0.411 0.509 0.497

Intensity difference 8.87% 32.16% 47.86% 63.76%

ADRIC

DICE coefficient 0.951 0.966 0.945 0.955

Intensity difference 4.09% 5.40% 9.53% 9.11%

FIG. 13. An axial slice cut of the CT volume reconstructed by the 2D-3D
deformation technique. The arrow points to an area where the bony structures
were inadequately deformed to compensate for the voxel intensity mis-
matches caused by transit of the simulated iodinated contrast agent. [Colour
figure can be viewed at wileyonlinelibrary.com]
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corrections can be correlated with case-specific anatomical
and physiological changes, including tissue inflammation,
calcification, and fibrosis, to perform treatment outcome and
side-effect analysis.

Another promising application of the ADRIC algorithm is
in radiation therapy. Cone-beam CT imaging has become a
routine image-guidance tool in today’s radiation therapy prac-
tice. High-quality cone-beam CT imaging in radiation ther-
apy not only facilitates accurate tumor localization48 for
patient setup correction but also enables treatment dose cal-
culation,49 dose tracking,50 and adaptive radiation therapy.51

The DVF derived between prior and new cone-beam CT vol-
umes, on the other hand, could be used for fast tumor track-
ing, fast structure recontouring, and dose accumulation,
which are all core components that facilitate adaptive radia-
tion therapy.

4.C. Limitations of the current ADRIC technique

The developed ADRIC technique achieved encouraging
results in the XCAT simulation study, the porcine study, and
the physical phantom measurement study. Nonetheless, future
investigations are warranted for further improvement. One
remaining issue of the current ADRIC technique is that the
solved intensity corrections may not be fully confined to the
voxels with non-deformation-induced intensity changes
(Figs. 6 and 12). In Fig. 6, the intensity correction signals
not only appeared in the heart region but also along some
structure boundaries, especially around the bony region. In
Fig. 12, the intensity correction signals appeared along the
phantom cavity edge, in addition to the balloon region. These
additional corrections were introduced to compensate for the
inaccuracy occurred in 2D-3D deformation. Inaccurate defor-
mation, especially around the bony regions or structure
boundaries with sharp intensity gradients, has been widely
observed in the reconstructed images of different 2D-3D
deformation-based techniques.27,28 The discrepancy is intro-
duced by three factors:

1. The deformation energy penalty (smoothness regular-
ization) enforced on the DVFs (Eq. 4) usually does not
apply to structure boundaries, where sliding motion
prevails.52,53

2. In this study, the deformation of images was performed
by trilinear interpolation, which has limited accuracy.
Interpolation inaccuracy in high gradient regions like
bony areas and structure boundaries may result in sig-
nificant voxel intensity mismatches.

3. The intensity-driven 2D-3D deformation model is
potentially limited in accuracy, as it fails to consider
the biomechanical properties of different tissues,54

including elasticity differences between soft tissues and
bones.

To further verify the potential sources of the deformation
error, we directly registered the XCAT initial prior CTvolume
to the XCAT “gold-standard” new CT volume using the

Demons registration algorithm. The difference image between
the “gold-standard” new CTvolume and the deformed CTvol-
ume was computed and is shown in Fig. 14. Similarly, promi-
nent residual differences were observed around the
boundaries and bony areas (the residual intensity difference in
the heart region was due to contrast agent). The intensity-
based Demons registration algorithm41 applies a similar glo-
bal DVF smoothing regime (whole-field Gaussian smoothing
without considering regional differences like the sliding
motion and the rigidity variation) as our 2D-3D deformation
technique. It also uses the trilinear interpolation for image
deformation. The similar results (Figs. 6 and 14) further sug-
gest the deformation model as the origin of inaccuracies.

Although the inaccurate deformation of the structure
boundaries and the bony regions was partially compensated
by ADRIC intensity correction to generate a better final
image (Fig. 6), it affected the interpretations of the intensity
correction signals, which were not expected in these regions.
To confine the intensity correction to voxels with true non-
deformation-induced intensity changes, we can introduce a
region-based mask into the ART update step to avoid updat-
ing voxel values outside the regions of potential non-defor-
mation intensity changes. Postprocessing techniques
including the removal of the ADRIC intensity correction in
these regions can also be helpful. However, both methods
should be implemented cautiously to avoid removing true
intensity correction signals. Therefore, improving the accu-
racy of the 2D-3D deformation algorithm may fundamentally
solve the problem through: (a) applying patch-based smooth-
ness regularization to better fit the sliding motion; (b) apply-
ing a more accurate voxel interpolation model to avoid
mismatches in high gradient boundaries; (c) applying biome-
chanical deformation models like those based on finite-ele-
ment analysis30,55 to obtain a better, more realistic
deformation field. Future studies will be conducted to explore
these options to further improve the accuracy of the ADRIC
algorithm.

4.D. Future prospects

In this study, the efficacy of the ADRIC technique was
evaluated using simulated XCAT phantom data, acquired

FIG. 14. Difference image between the XCAT “gold-standard” new CT vol-
ume and the deformed CTvolume using the Demons registration algorithm.

Medical Physics, 44 (6), June 2017

2238 Zhang et al.: CT reconstruction by ADRIC 2238



porcine data, and acquired lung phantom data. For the XCAT
and the porcine studies, the myocardial perfusion scenarios
under investigation served as good examples combining both
deformation and non-deformation-induced voxel intensity
changes. The physical lung phantom study simulates a lung
case with both deformation and intensity changes. Although
only presenting a simplified scenario featuring an isolated,
uniform, and high-contrast object with local deformation.
The efficacy of the ADRIC technique needs to be further
evaluated in future studies with more complicated real patient
scenarios, including the follow-up lung imaging after radio-
therapy treatments where lung-motion-induced deformation
and radiation-induced tissue inflammation are commonly
observed. In addition to reconstructing different clinical sce-
narios, ADRIC reconstructions of the same clinical scenario
but different ranges and degrees of deformation/intensity
changes should also be investigated to further evaluate its
robustness.

In this study, the scatter and beam-hardening effects are
not simulated in the projections generated for the XCAT CT
and porcine CT reconstruction. The prior and new projections
of the physical phantom study were both scanned on the same
LINAC system, which features similar scatter and beam hard-
ening components that cancel out when calculating the differ-
ence. In clinical applications where the prior and new images
are acquired at different systems (such as the conventional
CT system vs. the LINAC), their intensity level mismatches
caused by factors including different scatter ratios, beam
energy spectra, and imager lags may affect the accuracy of
the deformation recovery in ADRIC. In the current ADRIC
implementation, the projection similarity metric used in
deformation recovery is based on the sum of squared inten-
sity differences (Eq. 3). Recently we have developed a
2D-3D deformation technique that uses normalized cross cor-
relation (NCC) as the similarity metric between the projection
sets,29 which is proved more robust to the intensity-level mis-
matches. The robustness of the current ADRIC technique and
a potential NCC-based ADRIC technique will be investigated
and compared in future when more clinical imaging data
become available for evaluation.

In this study, the intensity correction step of ADRIC was
implemented through the ART technique. We selected ART
as it was easy to incorporate the prior information and fast in
convergence speed. Other intensity correction candidates,
including the simultaneous algebraic reconstruction tech-
nique (SART)11 and the simultaneous iterative reconstruction
technique (SIRT),56 will be evaluated in the future for their
potentials in further improving the noise feature and image
quality.

Currently, the ADRIC reconstruction takes around 2–3 hr
for 20–60 projections on a desktop with a 3.6 GHz Intel Core
i7-4790 CPU and an NVIDIA Quadro K4200 GPU. The
ADRIC initialization step takes ~1 hr and the ADRIC main
framework takes 1–2 hr. The 2D-3D deformation step and
the ART-dTV step both take ~ 1 min for each iteration of
ADRIC, which generally converges within 40–60 iterations.
Currently we are implementing a GPU-based parallelization

in the Demons registration algorithm, which takes less than
1 min.41 The incorporation of GPU-based parallel computing
in other components, especially the 2D-3D deformation
step,39 is currently in progress and expected to greatly accel-
erate the computation speed to facilitate clinical applications.

5. CONCLUSIONS

An adaptive deformation recovery and intensity correction
method was developed in this study. Using limited-view pro-
jections, the ADRIC technique reconstructed new CT vol-
umes through alternating between deforming prior CT
volumes and correcting non-deformation-induced voxel
intensity changes. Myocardial perfusion imaging scenarios
using XCAT-simulated phantom data and experimentally
acquired porcine data were evaluated, which validated the
efficacy of the ADRIC technique. A physical phantom study
was also conducted and validated the accuracy of ADRIC for
projections acquired on a real system. Additional patient
studies in different clinical scenarios are warranted to further
evaluate the ADRIC technique in the future.
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Additional Supporting Information may be found online in
the supporting information tab for this article.

Fig. S1: Relative errors of the reconstructed images by using
different relaxation factors for the ART update in the ADRIC
reconstruction, for both the XCAT data and the porcine data.
The relaxation factors used for each data point from left to
right are 0.005, 0.01, 0.05, 0.1, and 0.5, correspondingly. The
reconstruction uses 40 projections for the XCAT study and 20
projections for the porcine study.
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