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Abstract Reversible post-translational modifications of vari-
ous cardiac proteins regulate the mechanical properties of the
cardiomyocytes and thus modulate the contractile perfor-
mance of the heart. The giant protein titin forms a continuous
filament network in the sarcomeres of striated muscle cells,
where it determines passive tension development and modu-
lates active contraction. These mechanical properties of titin
are altered through post-translational modifications, particu-
larly phosphorylation. Titin contains hundreds of potential
phosphorylation sites, the functional relevance of which is
only beginning to emerge. Here, we provide a state-of-the-
art summary of the phosphorylation sites in titin, with a par-
ticular focus on the elastic titin spring segment. We discuss
how phosphorylation at specific amino acids can reduce or
increase the stretch-induced spring force of titin, depending
on where the spring region is phosphorylated. We also review
which protein kinases phosphorylate titin and how this
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phosphorylation affects titin-based passive tension in
cardiomyocytes. A comprehensive overview is provided of
studies that have measured altered titin phosphorylation and
titin-based passive tension in myocardial samples from human
heart failure patients and animal models of heart disease. As
our understanding of the broader implications of phosphory-
lation in titin progresses, this knowledge could be used to
design targeted interventions aimed at reducing pathologically
increased titin stiffness in patients with stiff hearts.

Keywords Cardiomyocytes - Muscle cell mechanics -
Posttranslational modification - Heart failure - Diastolic
function - Stiffness

Introduction

Our heart continually adapts to changes in hemodynamic load
and responds to neurohumoral stress, which requires the dy-
namic regulation of cardiac contractile performance on a beat-
to-beat basis. Control of heart function is exerted predomi-
nantly via signal regulation that often involves transient or
longer-lasting post-translational modifications (PTMs) of car-
diomyocyte proteins. A frequent and well-studied type of
PTM is phosphorylation, which is important to many biolog-
ical processes (Pawson and Scott 2005) and plays a pivotal
role in the regulation of cardiomyocyte protein function
(Hamdani et al. 2008a; Solaro 2008). This phosphorylation-
mediated regulation is complex and involves compartmental-
ization and cross-talk between protein kinases (PKs) and pro-
tein phosphatases (PPs). Alterations in PK and PP activities
are implicated in cardiomyocyte dysfunction and contribute to
reduced cardiac output in heart disease. Multiple other PTMs
have been found in cardiomyocyte proteins, such as O-
GlcNAcylation (Ramirez-Correa et al. 2008), arginylation
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(Comachione et al. 2014; Leite et al. 2016; Rai et al. 2008), S-
nitrosylation (Figueiredo-Freitas et al. 2015) and oxidation
(Alegre-Cebollada et al. 2014; Aryal et al. 2014; Balogh
et al. 2014; Beedle et al. 2016; Canton et al. 2011; Eaton
et al. 2002; Griitzner et al. 2009; Stathopoulou et al. 2016).
A myriad of functional consequences have been described for
these PTMs, which is an area of intense study. In this review,
we focus on PTMs of titin, the largest protein in our body
expressed in the contractile units, the sarcomeres.

The giant protein titin

The sarcomere is composed of three main filament sys-
tems: the myosin-based thick filament, the actin-based thin
filament, and the titin filament (Fig. 1, top). Individual titin
molecules span the entire 1-2 pum distance of the half-
sarcomere from the Z-disk to the M-band. Several alterna-
tive splicing events, mostly in the I-band titin region which
encompasses more than 220 of the 364 TTN exons, pro-
duce three main full-length isoforms: shorter, stiffer N2B
(3000 kDa) and longer, more compliant N2BA isoforms
(>3200 kDa) in the heart, as well as variable-length N2A
isoform in skeletal muscles (Bang et al. 2001; Neagoe et al.
2003; Prado et al. 2005). Rare isoforms of titin include the
full-length variants Novex-1 and Novex-2, and the truncat-
ed Novex-3 isoform (625 kDa). A novel isoform, termed
Cronos (2300 kDa), is expressed under the control of an
alternative promoter located near the I-band/A-band junc-
tion (Zou et al. 2015). Cronos was suggested to have a role
in sarcomeric (A-band) assembly, at least in zebrafish (Zou
et al. 2015), but a recent study found little evidence to
support this hypothesis (Shih et al. 2016). In contrast to
the I-band part of titin, almost all exons encoding the A-
band and M-band regions of the titin molecule are consti-
tutively expressed. A-band titin is tightly associated with
myosin and myosin-binding protein-C (reviewed by Linke
and Hamdani 2014). Near the M-band portion of titin is the
titin-kinase domain (TK), which was shown to be activated by
mechanical strain in vitro (Puchner et al. 2008). However,
according to recent structural data, TK may be a pseudokinase
(Bogomolovas et al. 2014). Notwithstanding this controversy,
TK has been established as a scaffold for multiple protein-
protein interactions (Lange et al. 2005; Mayans et al. 1998).
The function of titin as a molecular spring determines
the “passive” elasticity of the sarcomere (Li et al. 2002;
Linke et al. 1994; Trombitas et al. 1995). The elastic
spring region of titin is in the I-band segment of the mol-
ecule. This region has a complex structure comprising two
types of extensible segments (Freiburg et al. 2000): (1)
tandem Ig-domain regions termed ‘proximal-Ig’ (constitu-
tively expressed), ‘middle-Ig’ (alternatively spliced), and
‘distal-Ig’ (constitutively expressed); and (2) intrinsically

@ Springer

disordered structures, including the unique sequence of
the cardiac-specific ‘N2B’ element (‘N2Bus’) and the
‘PEVK’ segment, which contains numerous 26—28 residue
motifs rich in proline, glutamate, valine and lysine (Fig. 1,
top). Only repeats 27-31 in the NH,-terminal region of
the human PEVK segment are constitutively expressed in
the full-length titin isoforms. When the cardiac sarcomere
is stretched, the Ig-domain segments straighten out before
the PEVK and N2Bus eclements become extended (Li
et al. 2002; Linke et al. 1996; Linke et al. 1999).
Sarcomere stretching also increases the unfolding proba-
bility of the Ig domains, some of which will unfold at the
low passive forces (less than 10 pN/titin molecule) present
in sarcomeres that are extended in the physiological work-
ing range (Rivas-Pardo et al. 2016). In cardiomyocytes,
titin is the primary source of passive tension within a
sarcomere length (SL) range of ~1.8-2.2 um (Linke
et al. 1994) and, thus, is the main determinant of myocar-
dial diastolic passive stiffness during physiological load-
ing (Linke and Hamdani 2014). Apart from being
established as the passive elastic spring of the sarcomere,
titin has also been implicated in active muscle contraction
(Cazorla et al. 2001; Fukuda et al. 2001; Li et al. 2016;
Rivas-Pardo et al. 2016).

Titin-based myocardial passive stiffness can be modu-
lated under physiological conditions and in heart disease,
including human heart failure (HF). In end-stage failing
human hearts, titin-based passive tension is lowered due
mainly to isoform switching towards the more compliant
N2BA isoform (Neagoe et al. 2002). Another modifier of
titin stiffness is the binding of heat shock proteins to elas-
tic I-band domains (Bullard et al. 2004; Kotter et al.
2014). Moreover, titin-based elastic force is affected by
PTMs, of which phosphorylation has been studied most
intensely and will be covered in detail below. Additional
PTMs that alter the stiffness of titin include arginylation
(Leite et al. 2016) and various oxidative modifications,
such as disulfide bonding (Griitzner et al. 2009), S-
glutathionylation (Alegre-Cebollada et al. 2014), and
sulfenylation (Beedle et al. 2016). The functional role of
oxidative modifications in titin has been previously
reviewed by us (Beckendorf and Linke 2015; Breitkreuz
and Hamdani 2015) and will not be discussed further
here. An evolving topic over the last decade has been
the pathologically altered titin phosphorylation in HF with
preserved or reduced ejection fraction (HFpEF or HFrEF,
respectively), which often causes cardiomyocyte stiffen-
ing. Global myocardial stiffening is a hallmark of
HFpEF (Gladden et al. 2014) and may be due, in part,
to dysregulated titin phosphorylation (Linke and
Hamdani 2014). Considering the important role of titin
phosphorylation for mechanical heart function under
physiological and pathological conditions, this review
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Fig. 1 Phosphorylation sites identified in human, mouse, and rat titin. 7op
Layout of the N2BA titin isoform in the cardiac half-sarcomere. a—c
Positions of phosphorylation sites on (a) human titin (34,350 amino
acids; UniProtKB entry Q8WZ42-1), (b) mouse titin (35,213 amino
acids; UniProtKB entry A2ASS6.1), and (c) rat titin (34,252 amino acids;
NCBI entry XP_008773743.1). Only some of the many (potential)
phosphosites in titin identified in large phosphoproteomic screens (see
www.phosphosite.org; Hornbeck et al. 2015) have been confirmed by

aims to summarize what is known about these properties,
with a special focus on the cardiac titin springs.

Potential and established phosphorylation sites
along the titin molecule

In light of its large size, titin could well be the protein with the
most phosphorylation sites. Indeed, proteomic databases list
hundreds of potential phosphosites in human, mouse, or rat

site-specific methods such as western blotting with phosphosite-specific
antibodies or back-phosphorylation/autoradiography on recombinant
wild-type and mutant fragments. One study reported titin phosphosites by
in vivo quantitative phosphoproteomics using the SILAC mouse (Hamdani
et al. 2013c). A list containing these phosphorylation sites (current as of
March, 2017) is provided in the Online Table. PEVK titin region rich in
proline, glutamate, valine and lysine, 7K titin kinase domain, us unique
sequence

titin (Fig. la—c; Supplementary Table), which are searchable
by web-based resources, such as http://gygi.med.harvard.edu/
phosphomouse/index.php (Huttlin et al. 2010), http://cprl.
sund.ku.dk/cgi-bin/PTM.pl (Lundby et al. 2012), or http://
www.phosphosite.org/ (Hornbeck et al. 2015). How phos-
phorylation affects titin function has been studied for only a
limited number of phosphosites. Earlier work demonstrated
that proline-directed kinases, including extracellular signal-
regulated kinase-1/—2 (ERK1/2) and cyclin-dependent protein
kinase-2 (Cdc2), phosphorylate specific motif repeats
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(XSPXR; KSP) within the Z-disk and M-band titin regions
(Gautel et al. 1993; Gautel et al. 1996; Sebestyen et al.
1995). These phosphorylation events were suggested to be
important during developmental stages, e.g., by affecting the
interaction of the respective titin region with a binding partner
(Fernando et al. 2009). However, little else is known about the
functional implications of these PTMs.

A quantitative phosphoproteomics approach using the sta-
ble isotope labeling of amino acids (SILAC) mouse compared
titin phosphorylation in normal wild-type (WT) mouse hearts
with that in mouse hearts deficient in Ca**/calmodulin-depen-
dent protein kinase-II (CaMKII) isoforms y and 6 (Hamdani
etal. 2013c). Atleast 17 different sites along the titin molecule
were suggested to be phosphorylated by CaMKII and alto-
gether >70 serine/threonine/tyrosine phosphosites were con-
firmed in titin (Fig. 1b). Fifteen phosphosites were located in
the Z-disk region, 15 in the elastic I-band region, 4 in a region
coded by the Novex-3 exon (exon 48), 22 in A-band titin, and
15 in M-band titin. As regards the large unique sequence ele-
ments of [-band titin, 7 phosphosites were identified in N2Bus
and 4 in the PEVK domain. Importantly, phosphorylation of
the N2Bus and PEVK regions has been shown by single-
molecule force spectroscopy using atomic force microscopy
(AFM) to modify overall titin stiffness (Hidalgo et al. 2009;
Kriiger et al. 2009; Perkin et al. 2015), as will be discussed
further below.

Phosphosites in titin Ig-domain segments
and possible functional role

By in vivo quantitative phosphoproteomics, I-band titin
phosphosites were also detected in three Ig domains and
in a linker sequence between two such domains, located
in the proximal and middle Ig segments and the N2A
element, respectively (Hamdani et al. 2013c). Because
web-based resources list many more potential phospho-
sites in the tandem-Ig-domain regions of the titin spring
(Fig. 1), one can speculate that at least some of these
PTMs affect titin stiffness. Several Ig domains in I-band
titin contain phosphosites which are cryptic, i.e., they are
buried in the Ig-domain fold and become exposed only
after domain unfolding. This is also true for the proximal
and middle Ig domains of titin, which preferentially un-
fold under physiological conditions (Rivas-Pardo et al.
2016). Then, phosphorylation of Ig domains could affect
titin stiffness via a mechanism similar to that demonstrat-
ed for titin Ig domains that have been oxidized at cryptic
cysteines: When the Ig domain is unfolded in the presence
of oxidized glutathione (GSSG), refolding is inhibited,
and this mechanical weakening causes reduced titin-
based cardiomyocyte passive tension (Alegre-Cebollada
et al. 2014). If phosphorylation also had such effects,
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sarcomere stretching could enhance phosphorylation of
those Ig domains that have unfolded under the increased
stretch force, and thus lower titin-based passive tension.
In summary, while phosphorylation of PEVK and N2Bus
elements in I-band titin has been established as a modifier
of titin elasticity, phosphorylation of Ig-domain segments
could also have a mechanical effect on titin and the
cardiomyocyte.

Phosphorylation sites of the cardiac-specific N2Bus
element

The N2B element of titin is encoded by 77N exon 49 in
human and mouse and is expressed specifically in the cardiac
isoforms of titin, including N2B and N2BA. Exon 49 codes
for three Ig domains and N2Bus (572 residues in human titin).
N2Bus can be phosphorylated by several kinases (Linke and
Hamdani 2014), including PKA (Kriiger and Linke 2006;
Yamasaki et al. 2002), cyclic guanosine monophosphate
(cGMP) dependent PKG (Kriiger et al. 2009), ERK2
(Raskin et al. 2012), and CaMKII6 (Hamdani et al. 2013c;
Hidalgo et al. 2013).

PKA sites PKA is activated by cyclic adenosine monophosphate
(cAMP) following (-adrenergic stimulation. A PKA-
dependent phosphosite in human titin was found at
S4185 using back-phosphorylation assays in connection
with autoradiography on recombinant WT, deletion and
mutation constructs of N2Bus (Kriiger et al. 2009).
S4185 is present in human N2Bus but not cross-species-
conserved. This phosphosite was later verified in a mass-
spectrometric screen on PKA-phosphorylated recombinant
N2Bus (Kotter et al. 2013). In the same study, additional
PKA-dependent phosphosites were detected in human
N2Bus at position S4065 (semi-conserved) and in rat
N2Bus at S3744 (non-conserved) and S4010 (conserved;
this is S3991 in mouse titin), and S4012 (semi-conserved)
(Fig. 1a, c). Note that, throughout this review, we refer to
the human titin consensus sequence according to
UniProtKB entry Q8WZ42-1, the mouse consensus se-
quence according to UniProtKB entry A2ASS6.1, and the
rat consensus sequence according to NCBI entry
XP _008773743.1. The complete N2A element and the
constitutive part of the PEVK domain were also tested
in vitro for PKA-dependent phosphorylation, but were ex-
cluded as substrates of this kinase (Kriiger et al. 2009).
Phospho-specific antibodies were generated against con-
served p-S4010 (human)/p-S3991 (mouse) and used to
quantify N2Bus phosphorylation by western blot in mouse,
dog, or human heart tissue (Hamdani et al. 2013a, b, c;
Kotter et al. 2013, 2016; Mohamed et al. 2016; Rain
et al. 2014; Tschope et al. 2016).
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PKG sites Cyclic GMP-dependent PKG, which is activated in
signaling cascades initiated by nitric oxide (NO) or natriuretic
peptides, also phosphorylates N2Bus. The first PKG-
dependent phosphosite described for titin (using site-directed
mutagenesis and back-phosphorylation of recombinant hu-
man N2Bus) was S4185 (non-conserved), which is also phos-
phorylated by PKA (Kriiger et al. 2009). Additional PKG-
dependent phosphosites were identified by mass-
spectrometry of recombinant human N2Bus at S4092 (semi-
conserved) and S4099 (conserved; this is S4080 in mouse
titin) (Koétter et al. 2013). In recombinantly expressed rat
N2Bus, S3744 (non-conserved) was detected as a PKG-
phosphorylated site. PKG did not phosphorylate the constitu-
tive part of the human PEVK domain in vitro, but, interesting-
ly, it did phosphorylate the N2A element of I-band titin
(Kriiger et al. 2009). Phospho-specific antibodies made
against p-S4099 (human)/p-S4080 (mouse) and p-S4185
(human) have served to quantify N2Bus phosphorylation in
mouse, dog, or human heart tissue (Eisenberg et al. 2016;
Hamdani et al. 2013a, c¢; Kotter et al. 2013, 2016; Mohamed
et al. 2016; Miiller et al. 2014; Rain et al. 2014; Zile et al.
2015).

ERK?2 sites ERK?2 is an effector kinase of the mitogen-
activated protein kinase (MAPK) pathway activated by up-
stream kinase Rafl. ERK2 is recruited to N2Bus, together
with two of its upstream MAPKs, via four-and-a-half LIM-
domain-1 (FHL-1) protein (Sheikh et al. 2008). ERK2 phos-
phorylates N2Bus at specific sites, as detected using back-
phosphorylation assays on recombinant WT and mutated con-
structs of human N2Bus (Raskin et al. 2012). The following
phosphosites were found to be ERK2-dependent (reference to
the human titin consensus sequence): S3918 and S3960 (both
non-conserved), and S4010 (conserved). Thus, S4010
(=S3991 in mouse titin) is phosphorylated by both ERK2
and PKA. Notably, the N2Bus-binding partner FHL-1
blocked phosphorylation of N2Bus at several residues
in vitro, including S4010 (Raskin et al. 2012). However, be-
cause phospho-S4010 is well recognized by phospho-specific
antibodies in heart tissue (Hamdani et al. 2013b, c; Kotter
et al. 2013, 2016; Mohamed et al. 2016), the blocking may
be ineffective in vivo.

CaMKII sites The predominant CaMKII isoform in the heart
is CaMKIId, which phosphorylates N2Bus at multiple sites
(Hamdani et al. 2013c; Hidalgo et al. 2013). Using the
above-mentioned SILAC mouse model, quantitative titin
phosphoproteomics were performed comparing heart tissue
from WT and CaMKIIy/é double-knockout (KO) mice
(Hamdani et al. 2013c). The CaMKII-dependent phosphosites
thus detected in N2Bus were mostly non-conserved residues.
However, a conserved phospho-serine at S4062 (in human
titin/S4043 in mouse titin) reacted with phospho-specific

antibodies directed at this phosphosite, and the observed
hypo-phosphorylation at this position in CaMKIIy/é double-
KO mouse hearts suggested it is a preferred CaMKII
phosphosite (Hamdani et al. 2013c). This finding was further
supported by hyper-phosphorylation of p-S4043 in a transgen-
ic mouse model overexpressing CaMKII6 (Hamdani et al.
2013c). In a parallel study, recombinantly expressed human
N2Bus was phosphorylated by CaMKII$ and phospho-
residues were identified by mass spectrometry (Hidalgo
et al. 2013). Various non-conserved serines and threonines in
N2Bus were found to be CaMKIIé-dependent, while two
phosphosites were highly conserved (S3750 and S4209).

Taken together, the mechanically active N2Bus element in
cardiac titin has been established as a hot spot for phosphory-
lation by different PKs. At the same time, little is known about
protein phosphatases that dephosphorylate N2Bus, although
PP1, PP2a or alkaline phosphatase have been used experimen-
tally to dephosphorylate titin in vitro (Hidalgo et al. 2009;
Kriiger and Linke 2006; Kriiger et al. 2009). It will be inter-
esting to determine which PP(s) dephosphorylate(s) N2Bus
under physiological conditions in cardiomyocytes.

Phosphorylation of the N2A element

The recombinant N2A region of titin consisting of four Ig
domains and a longer unique sequence insertion was phos-
phorylated by PKG in back-phosphorylation assays (Kriiger
et al. 2009). However, the precise phosphorylation sites were
not determined. Notably, phosphorylation by PKG did not
appear to alter the mechanical properties of the N2A element
in single-molecule AFM force-extension measurements
(Kriiger et al. 2009). Catalytic subunit of PKA was also used
in phosphorylation tests on recombinant N2A, but it did not
phosphorylate this titin region (Kriiger et al. 2009). In con-
trast, in another study, PKA did phosphorylate the recombi-
nant unique sequence insertion of N2A encompassing 134
residues (Lun et al. 2014). A binding partner of this titin re-
gion, ankyrin repeat domain (Ankrd) protein (Miller et al.
2003), partially blocked PKA-mediated phosphorylation of
the unique sequence insertion in vitro, an effect shown for
both Ankrdl and Ankrd23 proteins (Lun et al. 2014). The
functional implications of these modifications remain un-
known, but could be related to the putative mechanosensor
function of the N2A element (Linke 2008; Lun et al. 2014).

Phosphorylation sites of the PEVK domain

Studies of site-specific phosphorylation in PEVK, another im-
portant spring element in I-band titin (Linke et al. 1998), have
focused exclusively on the relatively short COOH-terminal
portion coded (in human titin) by exons 219-223. This is the
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~185-residue-long part of PEVK that is constitutively
expressed in the full-length isoforms, including N2B (where
it is the only bit of PEVK expressed), N2BA, and N2A in
skeletal muscle (Freiburg et al. 2000). The remainder of the
PEVK element (differentially spliced) contains up to ~2000
residues and has several potential phosphorylation sites
(Fig. 1), which still await verification by site-specific methods.
As of now, two different PKs have been reported to phosphor-
ylate the constitutively expressed PEVK in cardiac muscle,
PKC« (Hidalgo et al. 2009) and CaMKII6 (Hamdani et al.
2013c; Hidalgo et al. 2013).

PKCa sites PKC is activated by the x,-adrenergic signaling
pathway and PKC«, the predominant isozyme in the heart, is
a key player in contractile dysfunction and HF (Hamdani et al.
2008a). PKC«x phosphorylated recombinant human PEVK
domain at two conserved serines, S11878 and S12022, as
determined by mass spectrometry in combination with site-
directed mutagenesis and back-phosphorylation assays
(Hidalgo et al. 2009). Treatment of the PEVK fragment with
protein phosphatase-1, prior to phosphorylation by PKCex,
exacerbated the effect. The cardiac N2Bus element was not
phosphorylated by PKCe in vitro. When the constitutively
expressed PEVK region was deleted in mouse hearts, PKCax
phosphorylation was abolished (Hudson et al. 2010).

CaMKII$ sites Multiple lines of evidence have documented
PEVK phosphorylation by CaMKII$ in vivo and in vitro and
may have provided the strongest data on site-specific titin
phosphorylation yet available. SILAC-based quantitative
phosphoproteomics using WT and CaMKIIy/d double-KO
mouse hearts identified CaMKII-mediated phosphorylation
at three conserved PEVK sites, T12869, S12871, and
S12884, which correspond to T12007, S12009, and S12022
in human titin, respectively (Hamdani et al. 2013c). These
phospho-residues were verified in site-directed mutagenesis/
back-phosphorylation experiments with recombinant PEVK
to be CaMKII6-dependent (Hamdani et al. 2013c). A mass-
spectrometric screen of recombinant PEVK also found
CaMKII$ phosphorylation at S12022 and suggested that
S11878 (S12742 in mouse titin) may also be phosphorylated
by this kinase (Hidalgo et al. 2013); however, the latter was
not confirmed elsewhere (Hamdani et al. 2013c). Three non-
conserved residues, T11922, T11932 and T11969, were de-
tected in vitro as additional CaMKIId-dependent phosphosites
(Hidalgo et al. 2013).

Phospho-specific antibodies identified unaltered phosphor-
ylation at S12742 in CaMKIIy/é double-KO versus WT
mouse hearts, but significantly reduced phosphorylation at
S12884 (Hamdani et al. 2013c). Thus, at least S12884
(mouse)/S12022 (human) can be phosphorylated by both
CaMKII$ and PKCwx. The phospho-specific antibodies
against p-S11878 and p-S12022 (p-S12742 and p-S12884 in
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mouse titin) have been used repeatedly to quantify PEVK
phosphorylation by western blot in mouse, rat, dog, or human
hearts (Hamdani et al. 2013a, b, c; Hidalgo et al. 2014;
Hudson et al. 2011; Hutchinson et al. 2015; Kotter et al.
2013, 2016; Kovacs et al. 2016; Mohamed et al. 2016; Rain
et al. 2014; Tschope et al. 2016; Zile et al. 2015).

Taken together, the constitutively expressed portion of
PEVK is a second hot spot for phosphorylation in I-band titin.
As with some phosphosites in N2Bus, a number of conserved
residues in PEVK can be phosphorylated by more than a sin-
gle PK. While it remains unknown which PPs dephosphory-
late PEVK physiologically, PP1 is a good candidate, as it
dephosphorylated the PEVK element in vitro.

Effects of titin segment phosphorylation
on stretch-dependent titin spring force

Phosphorylation of the unique elements in the titin spring
segment has a mechanical effect on the sarcomere. This was
initially shown for PK A-mediated phosphorylation of N2Bus,
which reduced the passive tension of skinned rat and bovine
cardiomyocytes (Yamasaki et al. 2002; Fukuda et al. 2005).
The effect was confirmed in single rat cardiac myofibrils and
was also shown to occur in human cardiac fibers, but not
skeletal myofibers (Kriiger and Linke 2006). Even a single
cardiomyocyte contains many different structural elements,
including cytoskeletal filaments, which potentially contribute
to passive tension and elasticity (Robinson et al. 2016).
Therefore, the most direct evidence for the effect of titin phos-
phorylation on titin spring force has come from single-
molecule mechanical measurements using AFM force spec-
troscopy (Kriiger et al. 2009; Hidalgo et al. 2009).
Mechanical manipulation of single human N2Bus mole-
cules (flanked by Ig domains) in AFM force-extension exper-
iments showed that the presence of cGMP-activated PKG
increased the persistence length, an important parameter of
(entropic) polymer elasticity and indicator of the polymer’s
bending rigidity, by a factor of ~2 (Kriiger et al. 2009). Such
an alteration in polymer elastic properties is predicted to lower
the force needed to stretch the polymer to a given length.
Using the wormlike chain model, the increase in persistence
length of N2Bus was predicted to lower the force of the whole
cardiac titin spring segment by nearly 20% (Kriiger et al.
2009). In an earlier pilot study, phosphorylation of N2Bus
by PKA surprisingly had no significant effect on single-
molecule N2Bus elasticity, as judged by unaltered persistence
length (Leake et al. 2006). In contrast, both ERK2 and
CaMKIIb increased the persistence length of N2Bus in
AFM force-extension measurements by a factor of 2-3 and
thus lowered the single-molecule force (Perkin et al. 2015).
The effect of CaMKII$ on force reduction was larger than that
of ERK2. In summary, phosphorylation of N2Bus increases
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the persistence length, which causes reduced overall titin stiff-
ness and explains a modest decrease in passive tension of a
cardiac sarcomere or cardiomyocyte.

The mechanical effect of phosphorylation by PKCx on the
constitutively expressed PEVK domain was also probed in a
single-molecule AFM force-extension study (Hidalgo et al.
2009). Other than with N2Bus, phosphorylation reduced the
persistence length of PEVK and increased the stretch-
dependent force of the titin spring, thus elevating cardiomyo-
cyte passive tension. The increase was on the order of 20—
30%. Taken together, the molecular stiffness of the N2Bus
and PEVK elements is changed in opposite directions upon
phosphorylation. Phosphorylation of N2Bus reduces overall
titin stiffness, phosphorylation of PEVK increases it.

A possible explanation for this opposing effect is the dif-
ferent net charge of N2Bus and PEVK (Kétter et al. 2013;
Linke and Hamdani 2014). N2Bus contains many acidic res-
idues, accounting for the low isoelectric point of this domain.
In contrast, the constitutively expressed part of PEVK has
many basic residues and a much higher isoelectric point.
Introducing negatively charged phosphate groups into the
negatively charged environment of N2Bus could increase in-
tramolecular electrostatic repulsion and lower the compact-
ness of the intrinsically disordered N2Bus, thereby increasing
its distensibility and reducing the force at a given extension.
Conversely, addition of negatively charged phosphate resi-
dues into the positively charged environment of PEVK would
promote electrostatic attraction, lower distensibility, and in-
crease the force at a given extension. According to this theory,
phosphorylation of elastic titin regions by different kinases
can produce different mechanical effects, depending on where
the PK phosphorylates the titin spring.

Changes in cardiomyocyte stiffness
upon phosphorylation by different kinases

Various studies on myocardial samples of different species
have provided evidence that those PKs that predominately
phosphorylate N2Bus usually lower the passive tension of
cardiomyocytes, whereas those phosphorylating PEVK typi-
cally increase it. PK A-mediated phosphorylation (specifically,
ex-vivo treatment with the catalytic subunit of PKA) caused a
reduction in passive tension of permeabilized cardiomyocytes
isolated from human (Borbély et al. 2009; Falcao-Pires et al.
2011; Kriiger and Linke 2006; Rain et al. 2014; van
Heerebeek et al. 2006), rat (Fukuda et al. 2005; Yamasaki
et al. 2002), cow (Fukuda et al. 2005), mouse (Hamdani
et al. 2008b), and dog heart (Hamdani et al. 2013a). PKG-
dependent phosphorylation also resulted in reduced passive
tension, as demonstrated for human (Borbély et al. 2009;
Kriiger et al. 2009), rat (Hamdani et al. 2013b), and dog
cardiomyocytes (Hamdani et al. 2013a). Likewise, ERK2-

mediated phosphorylation decreased the passive tension of
mouse papillary muscles (Perkin et al. 2015). However,
PKCax-mediated phosphorylation caused increased passive
tension in myocardial strips from mouse and pig hearts
(Hidalgo et al. 2009) and in cardiomyocytes from human heart
(Rain et al. 2014).

As CaMKII$ phosphorylates both N2Bus and PEVK, a
neutral effect of the kinase on passive tension could perhaps
be expected. However, the passive force of skinned mouse
cardiomyocytes was lowered by CaMKIId-treatment
(Hamdani et al. 2013c) and at least a trend for reduction was
seen in skinned human cardiomyocytes (Rain et al. 2014). In
support of these findings, a substantial (~30%) reduction in
passive tension occurred upon incubation of mouse papillary
muscles with CaMKII$ (Perkin et al. 2015). Furthermore,
cardiomyocytes of CaMKIIy/6 double-KO mice had in-
creased passive tension, whereas those of CaMKIIb-
overexpressing transgenic mice had reduced passive tension,
compared to those of WT mice (Hamdani et al. 2013c¢).
Therefore, the mechanical effect on N2Bus may dominate
over that on PEVK. We thus conclude that CaMKII usually
lowers titin-based spring force. Hence only one kinase
(PKCwx) has been identified yet, which increases titin-based
stiffness, whereas four kinases (PKA, PKG, ERK2 and
CaMKI19d) are known to reduce this stiffness.

Alterations of titin phosphorylation in heart failure

Evidence from our and other laboratories has shown that path-
ologically altered titin phosphorylation can occur in failing
hearts of human patients and animal models, but can also be
rescued ex vivo and in vivo (Linke and Hamdani 2014).

All-titin phosphorylation in human hearts This parameter
has been measured by using the ProQ Diamond (phosphopro-
tein)/Sypro Ruby (total protein) dual-staining system, western
blotting with anti-phosphoserine/threonine antibodies, or au-
toradiography after back-phosphorylation assays. Using the
latter, a deficit for PKG-dependent phosphorylation of titin
was detected in a pioneering study on end-stage failing human
hearts from patients with dilated cardiomyopathy (DCM)
compared to non-failing donor hearts (Kriiger et al. 2009).
In LV endomyocardial biopsies from patients with HFrEF,
aortic stenosis, or HFpEF, increased ratios of phospho-
N2BA:phospho-N2B were found by ProQ Diamond/Sypro
Ruby staining (Borbély et al. 2009; Falcao-Pires et al. 2011),
although this may not necessarily indicate altered phosphory-
lation per se, considering that titin isoforms switch towards
N2BA in failing human hearts (Neagoe et al. 2002; Schafer
etal. 2017). Furthermore, total-titin phosphorylation (by ProQ
Diamond/Sypro Ruby staining) was unaltered in another set of
explanted human DCM hearts, while hypertrophic
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cardiomyopathy (HCM) hearts showed modest hypo-
phosphorylation of titin (Kdtter et al. 2013). In right ventricu-
lar (RV) samples from patients with pulmonary arterial hyper-
tension, all-titin phosphorylation (by ProQ Diamond/Sypro
Ruby staining) was lowered compared to control samples
from humans with normal pulmonary pressures (Rain et al.
2013). In a small case study, total-titin phosphorylation (by
ProQ Diamond/Sypro Ruby staining) was increased in cardiac
biopsies of an HFpEF patient following delivery of electrical
signals during the absolute refractory period (cardiac contrac-
tility modulation), which aims to improve contraction
(Tschope et al. 2016). These findings suggested that all-titin
phosphorylation is increased in some forms of human HF, but
decreased or unaltered in other forms. Results also provided
evidence for reversibility of the titin phosphorylation changes
that occur in failing hearts.

All-titin phosphorylation in myocardium from animal
models In dog and rat models of HFpEF versus healthy ani-
mal hearts, all-titin phosphorylation (by ProQ Diamond/Sypro
Ruby staining) was reduced, but could be normalized by
ex vivo treatment with PKG (Hamdani et al. 2013a;
Hamdani et al. 2013b). Moreover, in vivo administration of
the cGMP-enhancing agents, sildenafil and brain natriuretic
peptide, acutely increased total-titin phosphorylation in the
dog model (Bishu et al. 2011). A more recent study on the
dog HFpEF model, however, found increased total-titin phos-
phorylation (by ProQ Diamond/Sypro Ruby staining) in sev-
eral cardiac chambers, compared to normal dog hearts (Zakeri
et al. 2016). In mouse hearts with diastolic dysfunction due to
experimental transverse aortic constriction, PK A-mediated to-
tal titin phosphorylation measured via back-phosphorylation/
autoradiography was increased (suggesting lowered titin-
based stiffness), but myocardial passive tension was higher
than in controls (Hudson et al. 2011). Several other experi-
mental mouse models have been studied for alterations in total
cardiac titin phosphorylation. In mice exposed to acute or
chronic volume overload, total-titin phosphorylation (by an-
ti-phosphoserine/threonine antibodies on western blots) was
significantly reduced, compared to sham-operated animals
(Mohamed et al. 2016). This finding differed from that of a
study on a similar mouse model, in which no alterations were
detected in PKA-mediated total-titin phosphorylation (via
back-phosphorylation/autoradiography) (Hutchinson et al.
2015). Furthermore, in a murine model of myocarditis, titin
phosphorylation (by ProQ Diamond/SyproRuby stain) was
significantly reduced but could be restored to normal levels
following virus-mediated injection of an inhibitor of the
interleukin-6 receptor (Savvatis et al. 2014). Along the same
line, the reduction in total-titin phosphorylation (by ProQ
Diamond/SyproRuby stain) and increase in cardiomyocyte
passive tension observed in obese type-2 diabetic versus
healthy mice—which may be related to pathological insulin
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signaling affecting titin properties (Kriiger et al. 2010; Falcao-
Pires et al. 2011)—were reversed by oral application of
sitagliptin-4, a dipeptidyl peptidase-4 inhibitor prescribed to
diabetic patients (Hamdani et al. 2014). Moreover, in aging
mouse and hypertensive rat hearts, all-titin phosphorylation
could be increased by oral administration of a natural poly-
amine, spermidine, which is known, among others, to increase
NO bioavailability and hence promote cGMP-PKG signaling
(Eisenberg et al. 2016). Many of these studies have thus
shown that cardiac titin phosphorylation is malleable and
can be manipulated by various interventions.

In summary, failing versus healthy human and animal heart
tissue samples have been studied extensively for all-titin phos-
phorylation. Findings have provided initial hints at changes in
titin phosphorylation in diverse pathologies, as well as rever-
sal of phosphorylation through specific treatments. However,
it needs to be acknowledged that measuring all-titin phosphor-
ylation provides only limited insight, considering the hun-
dreds of (potential) phosphosites present in titin (Fig. 1).

Site-specific titin phosphorylation in human hearts In at-
tempts to overcome this limitation, the phospho-specific anti-
bodies generated against N2Bus and PEVK phosphosites
have been used to obtain more detailed information on the
phosphorylation status of the unique spring elements of titin
in heart disease. For HCM and DCM human end-stage failing
versus donor hearts, a study found hypo-phosphorylation of
N2Bus at PKA/ERK?2 site p-S4010 and PKG sites p-S4099
and p-S4185 (Kétter et al. 2013). Conversely, PKCox-
dependent phosphosite p-S11878 in PEVK was hyper-phos-
phorylated. Both these alterations are anticipated to increase
titin-based passive tension, and this was indeed observed in
isolated myocardial strips from failing compared to donor
hearts (Kotter et al. 2013). In another study, cardiac titin was
hypo-phosphorylated at S4185 (PKG/PKA site in N2Bus) but
hyper-phosphorylated at S11878 (PKCwx site in PEVK) in
HFpEF patients with hypertension, compared to non-
hypertensive HFpEF patients and control subjects (Zile et al.
2015). No significant change was detected at p-S12022
(CaMKIIb and PKCx site in PEVK). The alterations in
N2Bus and PEVK phosphorylation were associated with in-
creased titin-based stiffness. Moreover, in a subset of end-
stage failing patient hearts showing increased CaMKIIS ex-
pression and activity, N2Bus sites p-S4010 (PKA/ERK2-de-
pendent) and p-S4062 (CaMKII6-dependent) were hyper-
phosphorylated compared to non-failing donor hearts, as
was PEVK site p-S11878 (PKC«-dependent), whereas p-
S12022 (CaMKII8/PKCa-dependent) showed a trend for in-
creased phosphorylation and p-S4099 (PKG-dependent)
remained unaltered (Hamdani et al. 2013c). In RV samples
from patients with pulmonary arterial hypertension, N2Bus
phosphorylation at p-S4185 was lower than in non-failing
donor hearts, as was PEVK phosphorylation at p-S12022,
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whereas p-S11878 was unaltered (Rain et al. 2014). These
changes were suggested to determine the increased RV car-
diomyocyte passive tension of the patients.

Site-specific titin phosphorylation in hearts of experimen-
tal animals Animal models of heart disease largely recapitu-
lated the changes in cardiac N2Bus/PEVK phosphorylation
seen in human patients. In a dog model of early HFpEF, a
phosphorylation deficit was found at N2Bus sites S4010
(PKA/ERK2) and S4099 (PKG), whereas phosphorylation at
PEVK site S11878 (PKCx) was increased (Hamdani et al.
2013a). In a metabolic risk-induced animal model of
HFpEF, the obese Zucker spontaneously hypertensive fatty-
1 (ZSF1) rat, N2Bus phosphorylation at S4010 (S3991 in rat)
was lower, but PEVK phosphorylation at S12022 (S12884 in
rat) was higher than in healthy rat hearts, whereas PEVK
phosphorylation at S11878 (S12742 in rat) was unaltered
(Hamdani et al. 2013b). The hearts of renin-overexpressing,
hypertensive rats showed increased phosphorylation at PEVK
site S12742 and unaltered phosphorylation at S12884, while
N2Bus phosphosites were not studied (Kovacs et al. 2016). In
mouse hearts stressed by pressure overload due to transverse
aortic constriction surgery, PEVK site p-S11878 (PKCx) was
hyper-phosphorylated and PEVK site p-S12022 (CaMKII6/
PKC«x) hypo-phosphorylated, whereas N2Bus phosphosites
were again not studied (Hudson et al. 2011). In murine hearts
exposed to acute or chronic volume overload, hypo-
phosphorylation was found at N2Bus sites p-S3991 and p-
S4080 (p-S4043 was unaltered) but also at PEVK site p-
S12884, while PEVK site p-S12742 was hyper-phosphorylat-
ed, compared to sham-operated control hearts (Mohamed
et al. 2016). These changes suggested a stiffer titin.
Surprisingly, a similar mouse model showed no alterations
in site-specific phosphorylation at S12742 and S12022, but
N2Bus sites were not studied (Hutchinson et al. 2015). In a
different experimental mouse model, cardiomyocyte stiffen-
ing was seen in early adaptive ventricular remodeling follow-
ing myocardial infarction and was explained by altered site-
specific titin phosphorylation, as PEVK phosphorylation at
S11878 and S12022 was increased, whereas N2Bus phos-
phorylation at S4010 and S4099 was initially unaltered but
later became reduced (Kotter et al. 2016). Finally, a dramatic,
beneficial, reduction in myocardial diastolic stiffness was
achieved in aging mouse or hypertensive rat hearts by oral
administration of spermidine, and this effect was associated
with increased titin phosphorylation at PKG-dependent
N2Bus site p-S4080 (Eisenberg et al. 2016).

Interestingly, altered titin phosphorylation also occurred in
rodent hearts in response to physiological exercise. Treadmill
running caused altered site-specific cardiac titin phosphoryla-
tion in rats, compared to sedentary controls: N2Bus site p-
S4099 (rat S4080) was hypo-phosphorylated and p-S4010
(rat S3991) unaltered, while PEVK site p-S11878 (rat

S12742) was hyper-phosphorylated and p-S12022 (rat
S12884) hypo-phosphorylated (Miiller et al. 2014). In a sim-
ilar study on mice, p-S12022 again responded to exercise with
reduced phosphorylation, while p-S11878 was unaltered
(Hidalgo et al. 2014). These changes were expected to lower
cardiac titin stiffness.

Relevance of altered titin phosphorylation
for cardiac function

Taken together, a general picture has emerged according to
which failing human and animal hearts typically (but not al-
ways) show hypo-phosphorylation at N2Bus sites and hyper-
phosphorylation at PEVK sites. These differential changes are
predicted to coordinately increase titin-based passive tension
in HF, including HFpEF. Reversal of the pathological titin
phosphorylation pattern may be achieved by exercise training
or specific drug interventions and appears to be helpful in
reducing the pathologically increased myocardial stiffness in
disease. Some of the above findings imply that the differential
phosphorylation of the elastic titin elements depends on the
up- or down-regulation of kinase signaling pathways (Linke
and Hamdani 2014). Pharmacological targeting of these path-
ways could be useful in treating HF patients with a stiff heart.

A relevant question that arises out of these observations is
whether or not reduced phosphorylation of N2Bus sites and
increased phosphorylation of PEVK sites should generally be
considered pathological, because they both increase titin-
based stiffness. Increased myocardial passive stiffness is a
key alteration seen in the majority of HFpEF patients (Zile
et al. 2004) and is considered detrimental to cardiac function.
The differential changes in titin phosphorylation at N2Bus and
PEVK sites observed in failing human and animal hearts are
thus likely to promote diastolic dysfunction. However, in-
creased titin-based stiffness may also have beneficial effects
on the heart. There is now excellent evidence suggesting that
lowered titin-based stiffness is associated with reduced length-
dependent activation (LDA) of the contractile apparatus (Ait-
Mou et al. 2016; Beqqali et al. 2016; Cazorla et al. 2001;
Fukuda et al. 2001, 2003; Li et al. 2016; Methawasin et al.
2014; Patel et al. 2012; Terui et al. 2008). LDA is the molec-
ular basis for the Frank—Starling relationship, a long-accepted
law of heart function stating that increased diastolic filling
causes increased contractility. Moreover, if titin stiffness is
raised experimentally due to deletion of the N2B region,
LDA is enhanced (Lee et al. 2010). Therefore, one can expect
that the increased titin-based stiffness that follows from the
differential changes in N2Bus and PEVK phosphorylation
also promotes the Frank—Starling mechanism. The alterations
in titin phosphorylation observed in heart failure could thus
have a beneficial effect on systolic pump function, perhaps
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acting as a compensatory mechanism that helps mobilize the
contractile reserve of the failing heart.

In conclusion, considerable progress has been made in re-
cent years in understanding how phosphorylation modifies
titin, cardiomyocyte, and global myocardial mechanical func-
tion. Nevertheless, the functional relevance of most of the
phosphosites in titin remains to be discovered. As our knowl-
edge of the broader implications of phosphorylation in titin
progresses, new therapeutic opportunities may become appar-
ent whereby targeted interventions to reduce titin stiffness can
be used to correct diastolic LV dysfunction and improve the
outcomes of HF patients with diastolic dysfunction.
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