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ABSTRACT

Circadian rhythms orchestrate biochemical and physi-
ological processes in living organisms to respond the
day/night cycle. In mammals, nearly all cells hold self-
sustained circadian clocks meanwhile couple the
intrinsic rhythms to systemic changes in a hierarchical
manner. The suprachiasmatic nucleus (SCN) of the
hypothalamus functions as the master pacemaker to
initiate daily synchronization according to the photope-
riod, in turn determines the phase of peripheral cellular
clocks through a variety of signaling relays, including
endocrine rhythms and metabolic cycles. With aging,
circadian desynchrony occurs at the expense of
peripheral metabolic pathologies and central neurode-
generative disorders with sleep symptoms, and genetic
ablation of circadian genes in model organisms resem-
bled the aging-related features. Notably, a number of
studies have linked longevity nutrient sensing pathways
in modulating circadian clocks. Therapeutic strategies
that bridge the nutrient sensing pathways and circadian
clock might be rational designs to defy aging.
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INTRODUCTION

With seminal successes in biomedical researches, the
improved medical conditions markedly lengthened human
lifespan however also led to emerging threats as known the
age-associated complexities (Kaeberlein et al., 2015). The
wide range of age-associated diseases, including neurode-
generative diseases, cardiovascular disorder, type-2 dia-
betes, and higher cancer incidences, are driven by the

causes of time, genetic and environmental situations that
remain difficult to dissect for major effector(s) in individuals.
Over decades, researches on aging have revealed the
retardation of physiological decline and lifespan extension
are conceivable by genetic perturbations in model organ-
isms, the results now offered potential therapeutic strategies
to prolong both healthspan and lifespan (Lopez-Otin et al.,
2016). Dietary restriction (DR), a chronic reduction of dietary
intake regime was proven as a major link of connecting
these genetic longevity studies. DR increases lifespan in
many model organisms, including budding yeast Saccha-
romyces cerevisiae, nematode Caenorhabditis elegans, and
fruitfly Drosophila melanogaster. These relatively simplified
models rendered further analyses of longevity genes and
pathways that are activated upon low-energy challenges
thus mimicked DR effects (Fontana and Partridge, 2015;
Guarente, 2013). Importantly, salutary effects of DR is evo-
lutionarily conserved as also observed in primates (Colman
et al., 2009; Colman et al., 2014). The significance of DR
emphases the idea that energy homeostasis is centered in
longevity, while aging is largely caused by aberrant energy
condition and metabolic inflexibility (Riera and Dillin, 2015).
Thus interactions among calorie intake, meal frequency and
timing, as organized by the daily circadian rhythm program,
are likely key to maintain the cellular and organ fitness.

Circadian rhythms govern a wide range of physiological
and behavioral systems, such as energy metabolism, sleep-
wake cycles, body temperature and locomotor activity
(Panda et al., 2002; Reppert and Weaver, 2002). Declined
circadian rhythmicity in endocrine rhythm, phase alignment
and sleep are commonly seen with aging (Mattis and Sehgal,
2016). Consistently, experimental disruptions of circadian
rhythms seriously impede functional physiology, lifespan and
endorse cancer incident (Filipski et al., 2003; Froy, 2013; Fu
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et al., 2002; Kondratova and Kondratov, 2012; Penev et al.,
1998). Even a milder circadian challenge, chronic jet-lag,
imposes on aged wild-type mice can markedly increase
mortality (Davidson et al., 2006). On the other hand, implant
functional circadian clock with fetal suprachiasmatic nucleus
in aged rodents allowed higher amplitude rhythm behavior
and longer surviorship (Hurd and Ralph, 1998; Li and Sati-
noff, 1998). The evidence pictured the pivotal contributions
of robust circadian rhythms in upholding the healthy physi-
ology and likely the extension of lifespan.

This review includes an overview of the molecular
mechanism of circadian control, and molecular deficiencies
implicated in age-related malfunctions. It discusses the
central circadian clock system and the pathologies with
aging, including the impacts to neurodegenerative diseases
and sleep. Finally, advises the links of circadian components
to energy-sensing pathways that modulate mammalian
lifespan, furthermore their potential as therapeutic targets to
treat age-associated loss in physiological homeostasis.

MOLECULAR OSCILLATORS IN THE CIRCADIAN
CLOCK

Circadian oscillations are generated via transcriptional–
translational feedback loops in a cell autonomous manner in
mammals (Bass and Takahashi, 2010; Dibner et al., 2010).
The core transcription factors CLOCK and BMAL1
heterodimerize and bind to E-box motif-containing clock-
controlled genes (CCGs) in a time-dependent manner. There
are at least two interconnected feedback loops involved in
the transcriptional regulation (Fig. 1). In the primary feedback
loop, CLOCK:BMAL1 initiates the transcription of Period
(Per) and Cryptochrome (Cry) through the binding of E-box
elements. The transcriptional control is also facilitated by
recruiting various coactivators including CBP/p300 (Hosoda
et al., 2009; Li et al., 2010), TRAP150 (Lande-Diner et al.,
2013) and SRC-2 (Stashi et al., 2014). When CRYs and
PERs proteins accumulate to critical levels, they assemble
into hetero-complexes and function as corepressors via
direct binding to CLOCK:BMAL1 thus repress their own
expression. The repression is facilitated by posttranslational
modifications, for instance phosphorylation of PERs for
nuclear translocation hence binding to CLOCK:BMAL1 (Lee
et al., 2001). The repression is later relieved by the degra-
dation of CRYs and PERs over time, allows another circa-
dian cycle of CRYs and PERs expressions taking place. In
the secondary loop, the nuclear orphan receptors REV-
ERBα, REV-ERBβ, RORα, RORβ and RORγ are involved in
controlling the temporal expression of BMAL1 and CLOCK.
Of note, these nuclear orphan receptors are also CCGs
under CLOCK:BMAL1 regulation. By recognizing RORE
elements within the promoters of Bmal1 and Clock genes,
ROR collaborates with PGC-1α to transcriptionally activate
Bmal1 and Clock. REV-ERB competes for the RORE binding
at circadian times with concentration advantage over ROR,

and executes as BMAL1 and CLOCK repressor (Cho et al.,
2012; Preitner et al., 2002; Sato et al., 2004). The repressing
activity requires the recruitment of a NCoR1-HDAC3 core-
pressor complex (Everett and Lazar, 2014). Recent findings
of hypoxia-inducible factor 1α (HIF1α) in additional regula-
tory route indicated oxygen level is an auxiliary cue in clock.
HIF1α itself is a CCG and at hypoxia, activates per expres-
sion via binding to the hypoxia-responsive element (HRE) in
a complex with ARNT. The results are of clinical interests to
cardioprotection and phase conditions such as jetlag (Ada-
movich et al., 2017; Peek et al., 2017; Wu et al., 2017). Other
transcriptional regulations in particular cell types, for
instance ZBTB20 in rhythmic expression of prokineticin
receptor-2 (Prokr2) in the suprachiasmatic nucleus neurons,
is critical for the bimodal activity behavior in mice (Qu et al.,
2016). It will be important to decipher known, or identify new
regulatory mechanisms in cell types that are responsible for
unique circadian behaviors.

Notably, both the primary and secondary feedback loops
are modulated by post-translational modifications in versatile
ways, e.g, protein ubiquitination, phosphorylation/dephos-
phorylation, acetylation/deacetylation, poly ADP-ribosylation
and O-GlcNAcylation (Reddy and Rey, 2014). These modi-
fications indicate evident basis linking circadian and meta-
bolic cycles at timely manner. Identify new post-translation
modifications and classify the modifications in the central

Figure 1. Molecular oscillators in circadian control.

(A) Transcription factor complex CLOCK:BMAL1 binds to

E-box containing motifs, allows the transcriptional activa-

tion of clock-controlled genes (CCGs) such as Pers, Crys,

Ror and Rev-Erb. The activation is facilitated by recruiting

coactivators such as CBP/p300. CCG transcriptions are as

well regulated by transcription factors relaying the external

cues. Examples include cAMP responsive element binding

protein (CREB), heat shock factor 1 (HSF1), hypoxia-

inducible factor 1α (HIF1α) and glucocorticoid receptor

(GR) that bind to their respective regulatory elements

(Bollinger and Schibler, 2014; Wu et al., 2016). Two

interconnected feedback loops involved in the circadian

transcriptional regulation. In the primary feedback loop,

PER and CRY assemble into repressor complexes next

attenuate the activity of CLOCK:BMAL1. In the second

feedback loop, ROR (also a CCG protein) can complex

with coactivator PGC-1α and bind to RORE element for

Bmal1 (and likely Clock) activation(s). REV-ERB works as

a repressor in Bmal1 transcription by concentration-

dependent competition at the same RORE sequence.

The repression involved the recruitment of NCoR/HDAC3

corepressor complexes. (B) Energy sensors such as

Sirtuins, AMPK and mTOR participate in circadian modu-

lations via post-translational modification of circadian

components, as depicted in (A). Interventions target the

pathways are of potential to treat age-associated circadian

amplitude decline and phase mis-alignment.
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and peripheral tissues will be of great value to understand
circadian physiology.

CLOCK GENES AND AGE-RELATED DISORDERS

Aging is a major risk factor for many human pathologies,
including cancer, diabetes, cardiovascular disorders and
neurodegenerative diseases (Lopez-Otin et al., 2013).
Genetic models of circadian disruption pheno-copied aging
and metabolic disorders frequently. A prominent case is the
loss of BMAL1. Mice deficient for Bmal1 are suffered from a
series of conditions related to aging. e.g., sarcopenia (with
both reduction in muscle fiber size and quantity), cataracts,
cornea inflammation, osteoporosis, premature hair loss, and
failed to form adequate visceral and subcutaneous adipose
storage (Kondratov et al., 2006). The strain is severely short-
lived with average lifespan of 37.0 ± 12.1 weeks, compared
to longer than 110 weeks of lifespan in same background
wild type animals (Nadon, 2006). The findings coordinate
well with the roles of BMAL1 in homeostatic maintenance of
the glucose level (Rudic et al., 2004), and in adipogenesis
regulation (Shimba et al., 2005). Consistently, it has been
noticed that Bmal1 mRNA amplitude declined with altered
peak phase in natural aging in rodents (Kolker et al., 2003).

As a reciprocal component of BMAL1, CLOCK deficiency
also results in shorter average lifespan to approximately
15% reduction compared to wild type, and premature
pathologies including cataracts and dermatitis (Dubrovsky
et al., 2010). CLOCK appears to be crucial in glucose
homeostasis as well, as both whole body and conditional
disruptions of CLOCK caused hypoinsulinaemia hence dia-
betes mellitus in rodents. Same study demonstrated BMAL1
is also participated in sustaining the pancreatic clock
(Marcheva et al., 2010). Of note, ClockΔ19 strain, the
CLOCK truncated line that was originally identified for its
significant period change from a random mutagenesis
screen, is with milder aging phenotypes such as diurnal
activity/feeding rhythms and obesity in normal housing
conditions compared to the knockout strain (Turek et al.,
2005). Additional challenges such as post ionizing irradiation
triggered an accelerated aging program in the strain (Antoch
et al., 2008). The results suggested that the particular
CLOCK truncation might be partially functional in protecting
from premature aging, at a condition that the intrinsic period
is far from optimal. Loss of PER2, a core circadian compo-
nent, is linked to cancer predisposing. The animals are
sensitive to γ irradiation later developed salivary gland
hyperplasia, teratoma and malignant lymphomas (Fu et al.,
2002). Further, genetic ablation of both Per1 and Per2
caused an arrhythmic phenotype together with premature
aging conditions, e.g., early decline in fertility, kyphosis and
predisposed tumor incidences (Lee, 2005). The DNA dam-
age response and p53-mediated apoptosis are defective in
these animals. The studies demonstrated that circadian
clock components are also important regulators in cell cycle
and proliferation likely specific in adulthood, as the double

knockouts seem developmentally normal at birth. Another
component CRY1 is shown to modulate hepatic gluconeo-
genesis by regulating the cAMP signaling. Rhythmic
expression of CRY1 directly adjusts intracellular cAMP
concentrations and the phosphorylation level of cAMP
response element-binding protein (CREB) by protein kinase
A (Zhang et al., 2010). Lipid metabolism is linked to circadian
clock in the cases of REV-ERB and ROR families. They are
important for regulating lipogenesis, lipid storage and adi-
pocyte differentiation in a rhythmic manner (Bray and Young,
2007; Chawla and Lazar, 1993; Torra et al., 2000). REV-
ERBs act as decent targets in treating obesity. The agonists
work against fat mass accumulation in high fat fed mice,
consequently improve dyslipidemia and hyperglycemia (Cho
et al., 2012; Solt et al., 2012).

The role of circadian genes in Cancer Biology remains to
be a complicated conundrum. As contrast to the tumor
suppressing effect of PER2, deletion of Cry1/2 in p53 null
mice protected the early onset of cancer incidence, and
sensitized the p53 deficient cells to apoptosis upon geno-
toxic stress (Ozturk et al., 2009). A recent finding of targeting
BMAL1 and CLOCK for acute myeloid leukemia (AML)
therapy indicates further the pro-cancerous option of clock
components (Puram et al., 2016). Many core circadian pro-
teins are involved in the cell cycle and the DNA damage
response (Sahar and Sassone-Corsi, 2009), thus may
facilitate the proliferation of transformed malignant cancer
cells while normal post-mitotic cells should be exempted
from the risk. Careful analyses of cancer types and the
associations to circadian gene alterations are essential to
address the paradox.

THE CENTRAL CIRCADIAN CLOCK SYSTEM

To organize physiology and behavior for proper functioning
according to the 24-hour environmental light/dark cycle,
mammals rely on a central pacemaker known as the
suprachiasmatic nucleus (SCN) for systemic synchroniza-
tion. SCN resides at the anterior hypothalamus and directly
contacts optic chiasm for sensing the external photic input. It
is composed by paired nuclei lateral to either side of the third
ventricle (Colwell, 2011). Though with limited neurons
(∼20,000 in mouse), SCN contains considerable neuron
heterogeneity. There includes calretinin, neurotensin (NT),
gastrin releasing peptide (GRP), angiotensin II, prokineticin 2
(PK2), neuromedin S (NMS), vasoactive intestinal peptide
(VIP) and arginine vasopressin (AVP) expressing neurons
(Welsh et al., 2010). Among them VIP and AVP neurons are
key neuron types that mark the ventral core and dorsal shell
subdivisions of SCN, respectively (Golombek and Rosen-
stein, 2010). Most SCN neurons are GABAergic (Moore and
Speh, 1993; Morin et al., 2006).

Neurons in the core are considered to incorporate exter-
nal inputs, such as photic light cue from the retinohypotha-
lamic tract (RHT), and likely also the projections from the
raphe nuclei (Morin and Allen, 2006). The environmental
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information is then coupled and communicated to the rest
parts of the SCN (Fig. 2). Among the core neurons, VIP
neuron is essential in the SCN oscillation coupling; likewise
GRP, NT neurons and neurotransmitter GABA contribute
significantly to the process as well (Aida et al., 2002; Choi
et al., 2008; De Jeu and Pennartz, 2002; Meyer-Spasche
et al., 2002; Shinohara et al., 2000). The sensory core
neurons display lesser clock gene expression amplitudes,

perhaps is suitable for faster resetting when respond to
environmental changes, as has been predicted in mathe-
matical modeling work (Pulivarthy et al., 2007). This is by
contrast to AVP, PK2, and even GABAergic neurons in the
dorsal shell SCN that circadian genes including Per1 and
Per2 are robustly oscillated in the subdivision (Hamada
et al., 2004; Nakamura et al., 2005; Yan and Okamura,
2002).
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Figure 2. Schematic functional map of circadian control. Studies have demonstrated the SCN efferent primarily travel to other

hypothalamic nuclei incuding dorsomedial hypothalamus (DMH), subparaventricular zone (sPVZ) and more. A map of direct SCN

neuron projections to sleep-awake or cognitive centers in the brain (A) and the intra-SCN (bilateral) connectomes (B), with the details

in connection density and neuron types, remains elusive at the moment.
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It has been observed that most of the projections from the
core terminate within the shell, stresses the point that the
interplay between the two regions is most important among
all circadian outputs from the SCN (Antle and Silver, 2005).
Several studies have demonstrated the SCN efferent from
both core and shell travel chiefly to other hypothalamic
nuclei, e.g., dorsomedial hypothalamus (DMH), paraven-
tricular hypothalamic nucleus (PVN), arcuate hypothalamic
nucleus (ARC), subparaventricular zone (sPVZ), and more
(Abrahamson and Moore, 2001; Kalsbeek et al., 2006; Yan
et al., 2007). The projections cover the nervous and endo-
crine systems for temporal control of the daily oscillation in
the body (Dibner et al., 2010). Notably, the projections to
central sleep system, for example the ventrolateral preoptic
area (VLPO), locus coeruleus (LC) and lateral hypothalamus
(LH), are suggested as indirect or sparse (Abrahamson
et al., 2001; Aston-Jones et al., 2001; Chou et al., 2002;
Novak and Nunez, 2000). This postulates either the sparse
connections are sufficient for temporal cues to structure the
sleep program, or there exists a central hub, such as DMH,
for the communications in between (Chou et al., 2003; Mattis
and Sehgal, 2016). A thorough SCN map with neuron type
accuracy via connectome works will be of great help to
elucidate the functional circadian circuitry (Fig. 2).

AGE-ASSOCIATED DECLINE IN CENTRAL
CIRCADIAN SYSTEM

Important features of functional circadian rhythms include,
e.g., sustaining at a sufficient oscillation amplitude through
out the daily cycle; composing a phase that is properly
aligned with the light/dark condition and can be entrained by
light; and maintaining in a near 24 h period to reflect the
Earth day (Bass and Takahashi, 2010; Welsh et al., 2010).
Aging hampers amplitude both in circadian gene expres-
sions (Hofman and Swaab, 2006; Yamazaki et al., 2002),
and several physical indexes including melatonin level,
sleep-wake disruptions, lowered locomotor activity (Duffy
and Czeisler, 2002; Valentinuzzi et al., 1997; Weinert, 2000;
Yoon et al., 2003). Further, phase shifts and re-entrainment
difficulty are also common drawbacks with aging (Gibson
et al., 2009; Scarbrough et al., 1997; Valentinuzzi et al.,
1997). While many factors account for these physical
changes, the central clock SCN is likely to stand as a key
element responsible for this age-related decline.

The central clock SCN decay, considering the direct or
indirect contacts to variable brain regions, would reveal
degeneration in at least two aspects: the SCN projections,
and secreted signals from the SCN. While projection details
of young versus old await careful investigations, SCN
secreting outputs have been studied. For example, aging
affects SCN prominently in the AVP neuron population. In
human, diurnal oscillation of the neuropeptide in young is
evident, but in elderly people (over 50 years of age) the
change becomes subtle. Further, the peaking time in the

early morning in young is reversed to low-amplitude night
peaking in the elderly (Hofman and Swaab, 1994). Interest-
ingly, the annual cycle of AVP expression is also lost with
aging. Young subjects are normally with lowest AVP-im-
munoreactive values during the summer and highest in
autumn (Hofman and Swaab, 1995). These results suggest
that the activities of human SCN, both for the diurnal and the
seasonal rhythms, become disturbed later in life. VIP neuron
is another, perhaps more sensitive, example to reflect
human SCN aging. In young male subjects (10–40 years),
the number of VIP neurons in the SCN is highest. However
in the age of 40–65 years old, the VIP neuron number dra-
matically decreased by about 60% further does not show
significant decline in later ages (Hofman et al., 1996; Zhou
et al., 1995).

Studies in rodents offered further evidences for SCN
activity change. First, the AVP neuron is significantly
reduced in aged rats while the total SCN neuron number
stayed similar (Roozendaal et al., 1987), a change reminis-
cent to the human case. SCN neurons become desynchro-
nized and are with decreased phase coherence with aging
(Farajnia et al., 2012). In vivo multiunit neural activity (MUA)
recordings in the SCN in young (3–5 months) versus aged
(13–18 months) mice revealed that the day and night
amplitude differences in the older are significantly reduced.
Similar decline in neural activity rhythms was also observed
in the subparaventricular zone, one of the major SCN output
regions (Nakamura et al., 2011). Whether molecular clock
components are good indicators for SCN aging remain
unclear. Nakamura et al. applied PER2 as the molecular
marker and only revealed subtle change in the two groups,
suggested the electrical activity rhythm is the more sensitive
circadian output measurement compared to molecular
components of the clock. Of note, other experiments showed
significant age-related decline of BMAL1 and CLOCK in the
SCN as well in few other brain areas, when compared 4
versus 16 month-old mice (Wyse and Coogan, 2010). Fur-
ther characteristic analyses on SCN aging are crucial to
reason the basis of circadian dampens.

CIRCADIAN DISRUPTION AND
NEURODEGENERATIVE DISEASES

Circadian disorders with sleep symptoms are commonly
seen in patients with neurodegenerative diseases (Kondra-
tova and Kondratov, 2012). For instance, Parkinson’s dis-
ease (PD) patients are disrupted for the cortisol and
melatonin rhythms (Breen et al., 2014; Videnovic et al.,
2014), and displayed Bmal1 reduce in blood samples from
PD patients (Cai et al., 2010), these all point toward the
deteriorated situations in circadian control. A PD transgenic
model via Thy-1 promoter mediated α-synuclein over-ex-
pression exhibited several circadian phenotypes in aging: a
clear reduced wheel-running activity with altered period,
altered temporal distribution of sleep, and decayed
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spontaneous neural activity in the SCN, suggested circadian
rhythm is severely disrupted in the PD model (Kudo et al.,
2011).

Another PD model also links phenotypes to circadian
impairments. The strategy is to selectively inactivate mito-
chondrial transcription factor A (Tfam) in dopamine neurons
thus mimics PD progression particularly for dopamine neu-
ron degeneration. The conditional knockouts have reduced
physical activity as early as by 5 months of age, and then
dampened for both circadian amplitude and stability. The
animals also showed abolished rhythmic locomotion in
constant dark or constant light conditions (Fifel and Cooper,
2014). Besides circadian phenotypes, sleep disturbance is
another hallmark during PD progression. Several sleep dis-
orders are discovered in PD patients, including insomnia,
restless leg syndrome and REM behavior disorder (RBD), a
symptom that permits motor activity during REM sleep
(Barone et al., 2009; Iranzo, 2013). RBD is potentially useful
for the prediction of PD onset, as PD pathology occurs in the
brainstem earlier than the substantia nigra (Braak et al.,
2004). Loss of hypocretin neurons in the lateral hypothala-
mus could also explain the malfunction of sleep/arousal
program in PD patients (Fronczek et al., 2007).

Alzheimer’s disease (AD) patients are long recognized for
SCN neuronal loss, of that VIP neuron is a prominent case
(Swaab et al., 1985; Zhou et al., 1995). A recent analysis of
actogram associated to post-mortem brain tissue demon-
strated that besides locomotor activity phenotype, AD
patients are also diagnosed with false rhythmic control of
core-body temperature and rest-activity (Satlin et al., 1995;
van Someren et al., 1996). Sleep–wake cycle dysfunction
and increased daytime sleepiness are regard as risk factors
for AD related dementia (Lee et al., 2007). Consistently, the
transgenic 3xTg-AD mouse strain that exhibits both Aβ and
tau pathology (as in human AD) were scored for similar cir-
cadian phenotypes. The results indicated that prior to AD
pathology, activity during daytime and period change were
observed in the transgenic, interesting more in the males.
The number of VIP neuron is decreased in the SCN, sug-
gested again that circadian dysfunction is predictive in early
AD onset (Sterniczuk et al., 2010a; Sterniczuk et al., 2010b).

Patients with Huntington’s disease (HD) have sleep
symptoms including advanced sleep phase, insomnia and
reduced REM sleep (Arnulf et al., 2008; Goodman and
Barker, 2010). Neuropathological analyses demonstrated
that HD patients are depleted for many hypothalamic neu-
ropeptides, i.e., AVP, oxytocin and hypocretin, hence dis-
turbed regular sleep/awake daily cycle (Aziz et al., 2008;
Gabery et al., 2010). The HD model, R6/2 transgenic strain
displayed reduced expression of Per2 and blunted oscillation
of Bmal1 in the SCN, as well reduced in motor cortex and
striatum. The increased daytime activity is likely associated
with reduced prokineticin 2 expression that is critical for
suppressing daytime activity in nocturnal animals (Morton
et al., 2005). VIP and VPAC2 receptor are down regulated in
R6/2 animals in the SCN (Fahrenkrug et al., 2007).

Together, the findings indicate circadian parameters can
serve as the basis for prognostic purposes. Sustaining effi-
cient circadian activities are likely key to prevent age-related
disorders, including neurodegenerative diseases.

LONGEVITY MEDIATORS IN CIRCADIAN
REGULATION

Vast amount of evidences have pointed out the importance
of circadian rhythm in functional physiology, however data
that are suggestive to longevity remain unclear. Our current
understandings mostly based on loss-of-function studies
(Eckel-Mahan et al., 2013), while genetic manipulation of
circadian gene has yet been reported with lifespan extension
outcome. Interestingly, many longevity mediators and path-
ways exert the beneficial effects via cooperating with multi-
ple circadian components. One evident example is Sirt1, a
longevity gene that mediates calorie restriction (CR) benefits
(Guarente, 2013), is involved in circadian regulation (Chang
and Guarente, 2014; Jung-Hynes et al., 2010). SIRT1 is a
NAD+-dependent deacetylase that is involved in regulating
circadian gene transcriptions via deacetylating histone H3
K9/K14 at the promoters regions (Nakahata et al., 2008). It
had been suggested that CLOCK works as a histone
acetyltransferase (HAT) in BMAL1 acetylation to facilitate
rhythmic circadian gene transcriptions (Hirayama et al.,
2007). SIRT1 appears to counterbalance the BMAL1
acetylation status in both fibroblast culture and the liver
(Nakahata et al., 2008). Alternatively, SIRT1 deacetylates
PER2 thus regulates PER2 stability further adjusts the cir-
cadian feedback inhibition (Asher et al., 2008). Notably, the
synthesis of SIRT1 cofactor NAD+ also follows a circadian
expression pattern. Nicotinamide phosphoribosyltransferase
(NAMPT), the rate-limiting enzyme for NAD+ salvage path-
way, is a rhythmically expressed protein that under E-box
transcriptional control (Nakahata et al., 2009; Ramsey et al.,
2009). Together with facts that SIRT1 oscillates in a circa-
dian manner, and the level of NAD+ declines with aging
(Gomes et al., 2013), SIRT1 in the interconnected loops
revealed a strong correlation between energy and circadian
rhythms.

SIRT1 has been demonstrated for numerous vital roles in
upholding neuronal health, including neuronal development,
memory formation and neurodegenerative disease preven-
tions (Herskovits and Guarente, 2014). Owing to the critical
function of hypothalamus in metabolic regulations, many
SIRT1 related studies have been carried out in different
hypothalamic nuclei. For instance, SIRT1 activities are
important for POMC neuron in the ARC, and for SF1 neuron
in the VMH to maintain systemic glucose homeostasis hence
prevent obesity (Ramadori et al., 2011; Ramadori et al.,
2010). A transgenic strain overexpressing SIRT1 in DMH
and LH showed improved sleep quality with extended lifes-
pan (Satoh et al., 2013). In the SCN, SIRT1 prevents age-
associated circadian phenotypes via supporting molecular
oscillation of clock genes (Chang and Guarente, 2013). Of
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note, SIRT6 (a SIRT1 homolog) also participates in circadian
regulation of fatty acid and cholesterol metabolism (Masri
et al., 2014). Whether new post-translational modifications
take place in circadian modulation, perhaps link to the ver-
satile activities found in other sirtuins (Choudhary et al.,
2014), is of great interest to pursue in the future.

Adenosine monophosphate-activated protein kinase
(AMPK), another longevity mediator that is important for
sensing low energy state, contribute to relieve the PER/CRY
mediated circadian feedback repression. AMPK phospho-
rylates and activates casein kinase I epsilon (CKIε) for the
subsequent phosphorylation of PER, therefore promote PER
degradation (Um et al., 2007). In a similar action, AMPK
phosphorylates CRY directly and facilitates CRY degrada-
tion (Lamia et al., 2009). The stimulation of AMPK activity
leads to a phase advance effect. AMPK has been studied in
many hypothalamic nuclei such as ARC, VMH and DMH, for
energy balance and metabolism control (Lopez et al., 2016),
yet the role in central circadian regulation in the SCN
remains unclear.

The mammalian target of rapamycin (mTOR), an impor-
tant sensor of insulin, growth factor, and mitogen inputs, has
been revealed in circadian control through many effector
proteins. For instance ribosomal S6 protein kinase 1 (S6K1),
an important regulator of translation acting downstream of
mTOR activation, can rhythmically phosphorylate BMAL1.
The particular modification allows BMAL1 to work as a
translation factor in a timely manner with response to the
mTOR signaling, in addition to the canonical role in circadian
transcription (Lipton et al., 2015). Of note, BMAL1 deficiency
caused elevated activity of mTORC1 both in cell culture and
in vivo. In vivo administration of the mTORC1 inhibitor
Rapatar increased Bmal1 null mice lifespan by 50% (Khapre
et al., 2014), the results suggested complex, bi-directional
regulations may exist between BMAL1 and mTOR. In the
SCN, the photic signal activates mTOR signaling and pro-
motes the translation of VIP by repressing 4E-BP1.
Accordingly, the 4E-BP1 deficient mice exhibit accelerated
re-entrainment upon light/dark shift and are more resilient to
constant light mediated circadian disruption (Cao et al.,
2013). Together, the findings reveal strong energy links
among aging, metabolism and circadian physiology.

CONCLUDING REMARKS

It is clear that age-related diseases such as cancer, type-2
diabetes, obesity and neurodegenerative disorders are pro-
foundly metabolic-associated (Lopez-Otin et al., 2013), and
functional circadian activities maybe key to preclude the
abnormalities (Asher and Sassone-Corsi, 2015). Numerous
data indicate nutrient-sensing/longevity pathways such as
SIRT1 and others assist circadian control, and impose reg-
ulatory loops in coordinating photic and non-photic feeding
stimuli. The beneficial effects offered viewpoints that inter-
ventions for promoting healthy aging and longevity may as
well treat circadian disorders. Initiated trials on sirtuin-

activating compounds (STACs) such as resveratrol,
SRT2104 or NAD+ precursors (Bonkowski and Sinclair,
2016; Wood et al., 2004); metformin for AMPK activation
(Barzilai et al., 2016); and rapamycin for mTOR inhibition
(Harrison et al., 2009; Li et al., 2014) are suitable candidates
for such interventions. Effects of these on central versus
peripheral clocks, and the underlying mechanisms await
careful analyses in the future.
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