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Prediction of Chromatin 
Accessibility in Gene-Regulatory 
Regions from Transcriptomics Data
Sascha Jung1, Vladimir Espinosa Angarica1, Miguel A. Andrade-Navarro2,3, Noel J. Buckley4 & 
Antonio del Sol1

The epigenetics landscape of cells plays a key role in the establishment of cell-type specific gene 
expression programs characteristic of different cellular phenotypes. Different experimental procedures 
have been developed to obtain insights into the accessible chromatin landscape including DNase-seq, 
FAIRE-seq and ATAC-seq. However, current downstream computational tools fail to reliably determine 
regulatory region accessibility from the analysis of these experimental data. In particular, currently 
available peak calling algorithms are very sensitive to their parameter settings and show highly 
heterogeneous results, which hampers a trustworthy identification of accessible chromatin regions. 
Here, we present a novel method that predicts accessible and, more importantly, inaccessible gene-
regulatory chromatin regions solely relying on transcriptomics data, which complements and improves 
the results of currently available computational methods for chromatin accessibility assays. We trained 
a hierarchical classification tree model on publicly available transcriptomics and DNase-seq data 
and assessed the predictive power of the model in six gold standard datasets. Our method increases 
precision and recall compared to traditional peak calling algorithms, while its usage is not limited to the 
prediction of accessible and inaccessible gene-regulatory chromatin regions, but constitutes a helpful 
tool for optimizing the parameter settings of peak calling methods in a cell type specific manner.

The differential gene expression patterns of cells are established by different regulatory landscapes at the tran-
scriptional and epigenetic layers. The dynamic epigenetic landscapes of cells shape different regulatory scenarios 
by changing the accessibility and activity of chromatin regions, determining different transcription factor (TF) 
binding landscapes and gene regulatory networks1, 2. Moreover, the chromatin landscape is established and main-
tained by the binding of transcriptional regulators to specific genomic regions3–5. Chromatin structure dynamics 
is essential for the regulation of niche-cell interaction6 and many phenotypic transitions, such as cellular differ-
entiation and reprogramming7–9 or disease onset and progression10, 11. Recently, great efforts have been devoted 
to the experimental profiling of the epigenetic states in different cell types11–13 and chromatin dynamics during 
complex biological processes6, 9.

Different studies have shown that active regulatory elements are located in accessible, i.e. nucleosome 
depleted, chromosomic regions14–18 and chromatin accessibility is predictive of functional activity within a spe-
cific cell type16. To date there exist several experimental methods for profiling nucleosome depleted chromatin 
regions. In particular, DNase hypersensitivity, formaldehyde-based FAIRE, or assay for transposase-accessible 
chromatin using sequencing (ATAC-seq)15, 19, 20 are frequently used to pinpoint genomic regions containing reg-
ulatory binding sites that are functional in each specific cell type or condition6, 9, 18. However, computational 
methods used for identifying genomic regions enriched with aligned reads – i.e. peak callers – have important 
limitations and, depending on the method used, the chromatin accessibility assignments can be significantly 
different after processing the same dataset. In a previous study comparing the called peaks obtained using four of 
the most widely used algorithms (Hotspot16, 21, F-Seq22, Zero-Inflated Negative Binomial Algorithm (ZINBA)23 
and Model-based Analysis of ChIP-Seq (MACS)24) it was found that the overlap of the results obtained by dif-
ferent methods was rather low, corresponding to only 11% of the total called peaks25. Moreover, this study also 
proved that the selection of the parameters used by each peak-caller has significant effects on the genome wide 
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accessibility profile obtained in each case25 whereby an optimal setting of the parameters is usually not known a 
priori. Namely, the parameterization used for controlling the false discovery rate of the peak callers is key, as more 
stringent cutoffs render increased false negative rates, while less stringent cutoffs result in increased false positive 
rates. Furthermore, repetitive and low-mappable regions further increase the number of false negative peaks and 
can only be assessed empirically13. Hence, there is a need for computational approaches for predicting chromatin 
accessibility that are less parameter sensitive in order to overcome the limitations of current peak-callers and 
provide a rationale for linking the expression of the genes related to a specific phenotype with the corresponding 
chromatin accessibility landscape.

In this paper we present a methodology for performing predictions of chromatin accessibility at 
gene-regulatory regions from transcriptomics data. We trained a hierarchical random forest model from 
ENCODE gene expression and chromatin accessibility data, encompassing an ample dataset of different human 
cell types. After deriving the classification model from RNA-seq expression data, we performed a thorough vali-
dation of our method to predict chromatin accessibility based on a gold standard dataset compiled from TF and 
histone modification ChIP-seq experiments. This analysis accentuates the clear improvements of our predictions 
compared to peaks obtained from the most commonly used peak callers (MACS, Hotspot and F-Seq) regardless 
of the applied false discovery rate thresholds. Furthermore, we show that the recall of our predictions and called 
peaks in gene-regulatory regions is able to identify the most accurate peak calling parameters with respect to the 
gold standard dataset.

Thus, these results indicate that our method for predicting accessible and inaccessible gene-regulatory chro-
matin regions is able to assist currently available peak calling algorithms in overcoming and addressing their 
limitations. In particular, our method not only can predict the accessibility of gene-regulatory regions, but it can 
also optimize the parameters of current peak calling algorithms.

Results
Hierarchical classification model construction and cross-validation.  Here, we present a method-
ology for predicting chromatin accessibility solely based on transcriptomics data, which is not dependent on the 
complex parameterizations needed by most current peak calling algorithms. Namely, our method predicts acces-
sibility of genes based on a hierarchical classification tree model trained with datasets including experimentally 
derived gene expression and chromatin accessibility data. We aligned chromatin accessibility data, i.e. DNase-seq 
data, to human genome version 19 (hg19) and subsequently derived regions of local enrichment (hotspots) using 
the Hotspot algorithm21 with 1% false discovery rate. A previous study identified that expressed genes show dif-
ferent distributions of their overlapping DNase-seq peaks. While highly expressed genes contain peaks around 
their transcription start and end sites, medium and lowly expressed genes predominantly contain peaks in the 
gene body26. Following this rationale, we obtained a binary accessibility assignment for each gene by calling it 
open if at least one hotspot is overlapping its promoter or gene-coding region and closed otherwise. In order to 
train the model we prepared a dataset comprising RNA-seq and DNase-seq data of 18 distinct human cell types 
or cell lines. The predictions of the fitted model are hierarchically combined using classification tree boosting 
methods (see Methods).

After training the model, we assessed how its predictions generalize to an independent dataset by performing 
Leave-one-out cross-validation. Therefore, the dataset of 18 human cell types and cell lines was partitioned by 
either chromosomes or cell types and cell lines of which all but one partition constitute the training data and the 
other one the validation dataset. The results of the Leave-one-out cross-validation were subsequently compared 
to the predictions made by the full model to evaluate the generalizability of the model. In all of the Leave-one-out 
experiments that we conducted, we observed a Pearson correlation coefficient greater than 0.95 with respect 
to the predictions of the full model, which supports the proposed generalizability to independent datasets (see 
Supplementary File S1 for a detailed presentation of the results). In addition to these analyses, we analyzed the 
reproducibility of the results with respect to different expression replicates of the same cell type or cell line. We 
obtained a second replicate for 17 cell type/line included in the training dataset produced from the same lab, 
trained the model with one replicate, predicted the accessibility for both replicates and assessed their Pearson 
correlation. Median correlations of 0.91 and 0.88 when training with the first and second replicate, respectively, 
underline a high reproducibility of the results in the presence of multiple replicates. Of note, the correlation of the 
different gene expression replicates is on average even higher (median: 0.97) but contain three outliers (0.92, 0.91 
and 0.7). These outliers are likely to influence the overall correlation of our predictions and seem to be causal of 
the lower, but still very high, correlations of the predictions (see Supplementary File S1 for a detailed assessment).

Importantly, the training dataset of 18 human cell types and cell lines contains several cancer cell lines, which 
typically harbour many structural variations27, 28. Therefore, reads from RNA-seq and DNase-seq experiments 
from cancer cell lines should not be aligned to the reference genome but rather to the sequenced genome of the 
cancer cell line under consideration. However, these sequenced cancer genomes are typically not available, which 
only allows the alignment to the reference genome. Due to this limitation, we also aligned all reads from cancer 
cell lines to the hg19 reference genome and trained the model with this data. In order to quantify the influence of 
the cancer cell lines on the predictions, we trained the model with the full dataset and non-cancer cell lines only 
and assessed the correlations of the predictions for the non-cancer cell lines. The predictions of the two models 
showed consistently high correlations of approximately 0.93 (standard deviation: 0.006) and as such underline 
the negligible influence on the predictions. However, in general, the effect of structural variations in cancer cell 
lines on the predictive accuracy of the model can be hardly quantified and thus the incorporation of cancer cell 
lines has to be taken with care.
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Comparison of the chromatin accessibility prediction strategy against traditional peak calling 
methods.  In order to assess the predictive accuracy of our methodology, we compiled gold standard datasets 
for six cell lines (A549, GM12878, H1-hESC, HeLa-S3, HepG2 and K562) from ENCODE13 having the most 
experimental data and compared our predictions to called peaks obtained with F-Seq22, MACS24 and Hotspot21. 
Each gold standard dataset is composed of cell type specific sets of accessible and inaccessible genes. First, genes 
in accessible regions are obtained from significantly enriched regions of cell type specific transcription factor 
binding site (TFBS) ChIP-seq, since previous studies identified TF binding sites to be predominantly located in 
DNase hypersensitive regions15. We compiled 31 to 100 TFBS ChIP-seq experiments from ENCODE13 and iden-
tified genes overlapping with at least one TFBS, which would be a strong indication that it is encoded in a chroma-
tin accessible region. Inaccessible genes, however, cannot be reliably determined by TFBS ChIP-seq experiments 
since the absence of binding events could be an indication that the gene is coded in a heterochromatic region 
in the corresponding cell line, or a lack of information of ChIP-seq binding site information for other TFs that 
could bind in this region. Thus, in order to overcome this problem we determined the gold standard dataset of 
inaccessible genes using ChromHMM29, a computational tool widely used to integrate epigenetics experimental 
data to segment the genome into chromatin states. We use precompiled datasets from the Roadmap Epigenomics 
project11 including five histone modifications – i.e. H3K4me1, H3K4me3, H3K36me3, H3K9me3 and H3K27me3 
– and, according to this data, regions showing enrichment in (i) a combination of H3K4me3, H3K36me330 
and H3K9me3 – indicative of ZNF genes and repeats that are targets of heterochromatin proteins31, 32  
– or (ii) H3K9me3 alone are considered to be heterochromatic. Similarly to the processing of TFBS ChIP-Seq 
experiments, genes overlapping heterochromatic regions will correspond to the set of inaccessible genes in the 
gold standard set.

For comparing peak calling algorithms against our predictions, we obtained DNase-seq experimental data for 
each gold standard cell line (one replicate for H1-hESCs and two replicates for A549, GM12878, HepG2, HeLa-S3 
and K562) and identified DNase hypersensitive sites (peaks) for various false discovery rate or Z-score thresholds 
for MACS, F-Seq and Hotspot to determine accessible and inaccessible genes (see Methods for details). We 
applied our methodology to publicly available RNA-seq for the six gold standard cell lines and obtained accessi-
bility predictions. Predictions and accessibility assignments from peak calling methods – in the following referred 
to as observations – were then compared against the gold standard datasets by means of the harmonic mean of 
precision and recall, the F1 – score. Since our method utilizes, in contrast to traditional peak calling algorithms, 
transcriptomics data to classify genes in accessible and inaccessible chromatin regions, we assessed how misclas-
sified genes are distributed over the range of gene expression values to obtain information about the performance. 
Therefore, we applied lower FPKM expression thresholds, i.e. only taking into account genes that are expressed 
above the selected threshold, and examined changes of the F1- score (Fig. 1).

When analyzing the complete datasets, which corresponds to a threshold of 0 FPKM, the predictions provided 
by our methodology obtain on average 0.065 (A549), 0.055 (GM12878, H1), 0.086 (HeLa-S3), 0.073 (HepG2) and 
0.094 (K562) lower scores in comparison to peak calling algorithms. A possible explanation is provided by the 
deterministic behavior of the hierarchical classification tree where all genes with the same expression value are 
assigned the same accessibility status. We thus observe many false negative assignments in our predictions for 
genes that are not expressed at all (0 FPKM). However, F1- scores above 0.75 indicate a good performance of our 
predictions. After applying different thresholding criteria, i.e. excluding genes with expression values below the 
threshold, the performance of our method gradually increases and obtains F1 – scores of 0.999 for genes that are 
more expressed than 0.08 FPKM in all datasets except HepG2. In particular, genes that show expression values of 
more than 0.08 FPKM, which is considerably lower than typical thresholds for defining expressed genes33–35, are 
accurately predicted by our methodology. It is to note that 0.08 FPKM does not serve as a fixed threshold above 
which all genes are considered to be accessible but only reflects the lowest expression value above which the com-
puted F1-scores are close to the optimum. Due to the hierarchical classification tree model, genes above this value 
can still be classified as inaccessible.

Of note, the cell lines included in the gold standard datasets are also part of the training dataset, which might 
influence the results of our model and mask potential overfitting issues. We therefore did not use DNase-seq data 
in the gold standard datasets but distinct TFBS and Histone modification ChIP-seq experiments for assessing the 
performance of our approach to ensure the independence of the training and validation datasets. Furthermore, 
the results described above clearly reject overfitting of our method. The F1 – scores do not correlate with those of 
Hotspot, the peak calling method with which the training samples were processed, and are also significantly bet-
ter than for F-Seq and MACS. Further support is provided by the Leave-one-out cross-validation of our model 
that were presented in the last section. This assessment shows that the predictions of our model are highly con-
sistent when leaving out one of 18 training samples. Thus, the F1- scores would be highly similar as well when 
performing the predictions without the cell line in the gold standard dataset, which supports that the results on 
the considered gold standard datasets are not biased by the fact that the expression of these cell lines are also 
included in the training set.

Since the predictions obtained with our model and the observations differ for a fraction of genes, we inves-
tigated how many of the genes predicted to be open but not declared open in the observations can be validated 
by the transcription factor binding events. We considered the TFBS ChIP-seq experiments for the six cell lines 
in the gold standard dataset and found that between 0.47 and 0.67 (median: 0.62) of those genes are bound by 
a transcription factor and, thus, should be considered accessible (see Supplementary Fig. S1). Considering that 
the gold standard dataset consists of only 31 to 100 TFBS ChIP-seq experiments per cell lines, these numbers are 
likely to increase when more ChIP-seq experiments become available for these particular cell lines and support 
the increased performance of our method for predicting accessible gene-coding chromatin regions.

http://S1


www.nature.com/scientificreports/

4Scientific Reports | 7: 4660  | DOI:10.1038/s41598-017-04929-6

Overall, the results of our analysis underline that gene expression is an accurate predictor of chromatin con-
formation for both accessible and inaccessible regions.

Utilizing gene expression as a predictor of chromatin accessibility, however, potentially introduces biases in 
the predictions in comparison with peak calling algorithms. First, the GC content of genes is negatively corre-
lated with their methylation level36, thus, high methylation levels are indicative of low/no expression although 
the gene is located in accessible chromatin and is more likely to be misclassified. However, inspection of the GC 
content of misclassified genes by F-Seq (blue bars), MACS (orange bars), Hotspot (green bars) and our predic-
tions (red bars) shows no significant differences (Fig. 2). Second, the abundance of RNA transcripts is divergent 
for different gene types. Previous studies showed that protein-coding genes are, for example, on average more 
expressed than non-coding genes37. In particular, the maximum expression of the majority of non-coding genes is 
below 1 FPKM and as such these genes are hypothetically more likely predicted to be located in heterochromatic 
regions38. Our data rejects this hypothesis as the percentages of misclassified genes per gene type is less than 7% 
for protein-coding genes and less than 3% for all other types (Fig. 2). Third, we examined a potential bias of our 
method with respect to peak calling algorithm in the chromosomal location of genes. This analysis serves as a 
negative control in which no bias is expected. Indeed, our assessment confirms that by showing a maximum 
difference of 3% per chromosome (Fig. 2). At last, we examined the distribution of misclassified genes by F-Seq, 
MACS, Hotspot and our predictions throughout the complete expression range and observed a significantly 
skewed distribution towards lowly expressed genomic regions when using our methodology. While the amount of 
misclassified genes is significantly higher for predictions in genes expressed below 0.1 FPKM – i.e. 94% of all mis-
classified genes are expressed between 0 and 0.1 FPKM, compared to 58.4%, 61.4%, 67.3% by F-Seq, MACS and 
Hotspot, respectively – the number of misclassified genes predicted with our methodology for highly expressed 
genes is rather low (Fig. 2). In the context of binary gene expression, typical thresholds between 0.1 and 1 FPKM 
are used to classify whether a gene is expressed or not33–35. In these regions, however, utilizing our method con-
stitutes a clear improvement having only up to 3% misclassified genes in each segment compared to, on average, 
14.4% of peak calling algorithms (Fig. 2).

Overall, our methodology is not only able to more accurately classify genes in accessible and inaccessible 
chromatin conformation by using gene expression data but also shows no bias towards gene types, GC content or 
chromosomal location. The most significant difference of our method compared to traditional peak calling algo-
rithms, however, is reflected in the percentage of misclassified genes across the gene expression range. In this case, 

Figure 1.  F1-Scores after applying FPKM expression cutoffs in each gold standard dataset. Comparison of F1
-scores after applying lower expression cutoffs in all six gold standard datasets of our predictions (red line), 
F-Seq (blue line), MACS (orange line) and Hotspot (green line). Dots, exemplifying mean values, and 
confidence intervals are shown, representing F1-scores across replicates and FDR (z-score) cutoffs. Only genes 
that are more expressed than the cutoff were taken into account for the calculation of F1-scores (0 cutoff 
representing all genes). While our method shows on average 0.075 lower scores for the whole dataset, the 
performance increases when only non-expressed genes are omitted and gradually increases to 0.99 in all cases 
except HepG2.
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our method misclassifies only 6% of genes with expression values higher than 0.1 FPKM – a very low threshold to 
define expressed genes – compared to 14.4% of traditional peak calling methods.

Obtaining optimal peak calling parameters by comparing called peaks and predictions.  The 
results described above demonstrated that our methodology can accurately identify genes located in accessible 
and inaccessible chromosomal regions. However, the hierarchical classification model – as it was trained – can 
only provide insights about the chromatin conformation of the whole gene but does not allow for further func-
tional analysis of peak locations provided by peak calling methods. As already discussed in a previous study com-
paring peak calling methods for DNase-seq data25, the choice of parameters – and especially the false discovery 
rate threshold – plays an important role for obtaining reliable results.

We thus sought to investigate how the predictions obtained by our methodology can help to identify the best 
parameter sets for F-Seq, MACS and Hotspot. In particular, we are interested in identifying parameter settings 
that maximize the F1- score with respect to our gold standard datasets. The results described in the previous sec-
tion showed that our method especially predicts accessible regions more reliably, which leads to the assumption 
that optimal peak calling parameters can be obtained by maximizing the agreement between called peaks and 
predicted accessible regions. This notion can be expressed as the recall of called peaks against our predictions for 
genes that are expressed above 0.01 FPKM. We varied the false discovery rate (Z-score) parameter for each peak 
caller (see Table 1) and evaluated the recall against our predictions as well as the F1-score with respect to the gold 
standard datasets for each setting. Notably, we observe a strongly increasing, linear relationship between the 
obtained F1-scores and the recall of called peaks and our predictions with adjusted R-squared values of 0.92, 0.84 
and 0.79 for F-Seq, MACS and Hotspot, respectively. Thus, the introduced recall measure to optimize peak calling 
parameters can explain 79% to 92% of the variation in the F1-score. The results of this analysis are summarized in 
Fig. 3 where each dot represents one replicate of one cell line given a certain parameterization.

While the coefficients of determination (adj. R-square values) provide quantitative measures of the agreement 
between the proposed recall measure and the F1-scores, we are eventually interested in ranking the observations 
to identify the optimal parameter set. Following this rationale, we derived rankings of the parameters based on 

Figure 2.  Comparison of our method to peak callers with respect to potential sources of bias. Potentially 
influencing factors for our predictions (red bars) where compared against F-Seq (blue bars), MACS (orange 
bars) and Hotspot (green bars). Neither, the chromosomal location nor gene type nor the GC content of 
misclassified genes distinguishes predictions from observations. However, by predicting accessibility based on 
gene expression (bottom right histogram), we significantly reduce the number of misclassified genes in regions 
expressed above 0.1 FPKM (6% compared to 41.6%, 38.6% and 37.2%). Due to the deterministic prediction, 
genes with no expression are overrepresented in the range of 0 to 0.1 FPKM (first bar, 38% out of 94%).

Peak Caller Thresholds

F-Seq (version 1.84) 0.5, 1, 2, 3, 4, 5, 6, 7

MACS (version 2.1.0.20140616) 0.01, 0.05, 0.075, 0.1, 0.15, 0.2

Hotspot (version 5.1) 0.01, 0.05, 0.075, 0.1, 0.15, 0.2

Table 1.  Thresholds used for each peak caller in the analyses throughout the manuscript. For MACS and 
Hotspot, thresholds correspond to false discovery rate (FDR) and in case of F-Seq to z-score thresholds. Z-score 
thresholds are negatively correlated with FDR. Thus, small values correspond to high FDR thresholds and large 
values to low FDR thresholds.
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recall and F1-score for each peak caller in each cell line of the gold standard. Comparison of the results yields in all 
cases a perfect agreement (Pearson’s r: 1.00, p-value: 0) meaning that the rankings obtained by our proposed recall 
measure are equal to the rankings obtained by F1-scores. This eventually proves the ability of our method to iden-
tify the optimal parameter settings for each peak caller even in the absence of a ground truth.

Discussion
The interpretation and detection of regions of enriched signals in accessible chromatin assays – e.g. FAIRE-seq 
or DNase-seq – suffer from different inherent limitations. On the one hand, computational data interpretation of 
DNase-seq experiments is easier in comparison to FAIRE-seq due to a higher signal-to-noise ratio39. However, on 
the other hand, a recent study performing a thorough assessment of most commonly used peak callers including 
MACS24, ZINBA23, F-Seq22 and Hotspot16, 21 revealed that computational methods to interpret DNase-seq data 
have also important limitations. In particular, the outcome of these methods heavily relies on the selection of 
many parameters, which in turn depends on the experimental conditions. More importantly, a systematic com-
parison revealed that all peak calling algorithms result in false discovery rates higher than 0.7 to obtain acceptable 
true positive rates25. Among all compared methodologies, Hotspot showed the least sensitivity to its parameter 
settings. The same study found that the overlap of detected peaks - i.e. accessible regions - of the four studied 
peak callers amounts to only 11%, which hampers the selection of the most appropriate tool for the analysis25. 
Hence, in order to overcome these limitations, we developed a hierarchical classification tree model correlating 
transcriptomics and the accessibility of gene-regulatory chromatin regions from a set of cell types and cell lines.

Figure 3.  Linear Regression of F1-scores and recall based on observations versus predictions. Linear regression 
(red lines) of F1-scores and recall – computed between observations and predictions – for each peak caller 
proves their linear relationship (adjusted R squared of 0.92, 0.84 and 0.79, respectively). Each dot represents a 
tuple of FDR (or z-score in case of F-Seq) cutoff, cell line and replicate.
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We compared our method and three of the most widely used peak calling algorithms, F-Seq22, MACS24 and 
Hotspot16, 21, against gold standard datasets obtained for six different cell lines from ENCODE13. It is to note, that 
we excluded ZINBA23 from our comparison due to its extended runtime25. In all six gold standard datasets, our 
methodology obtained strong F1 - scores – computed as the harmonic mean of precision and recall – and outper-
formed all peak calling algorithms. Since our methodology is trained on gene expression data, we examined 
misclassified genes, especially with low expression values, to identify potential biases. In particular, our analysis 
focused on characteristics such as the GC content of genes40, 41, which is negatively correlated with the genes 
methylation level, and highlights the ability of our method to distinguish gene-regulatory regions located in het-
erochromatin from those regulated by other epigenetic or transcriptional mechanisms.

Peak calling algorithm, such as F-Seq, MACS and Hotspot, have not only been used to study whether genes are 
transcriptionally or epigenetically regulated but allow for further functional analyses including the identification 
of distal regulatory elements42. However, all peak callers exhibit a vast amount of parameters that are ultimately 
influencing the identified hypersensitive sites and an optimal setting is not a priori known. While experimental 
procedures, such as qPCR, have been previously used to validate putative DNase hypersensitive sites43, an optimal 
computational strategy, that eventually saves time and resources, still does not exist. The method presented in this 
work can identify optimal sets of parameters for peak calling algorithms by comparing the observations of these 
tools – based on certain parameter settings – with respect to the predictions generated by our method. Moreover, 
it was able to accurately rank all analyzed parameter settings of all peak callers in regard to the six gold standard 
datasets, which allows the selection of an optimal set of parameters without prior knowledge.

Another important aspect considers the experimental requirements for obtaining reliable DNase-seq experi-
ments. Typically, genome-wide identification of hypersensitive sites requires millions of cells21, 44 not available for 
all samples, such as patient derived cancer cells. Thus, further exploring the possibilities to increase the precision 
of predicting accessible and inaccessible chromatin regions could help to overcome this experimental limitation.

We believe that the method presented in this work offers a valuable tool for identifying the chromatin land-
scape of gene-regulatory regions. It can further assist current peak calling methodologies in more reliably 
identifying gene regulatory regions not undergoing transcription throughout the genome by optimizing their 
parameter settings. The application of the hierarchical classification tree model is not limited to the prediction of 
accessible and inaccessible gene-regulatory chromatin regions from bulk gene expression data alone, but can be 
further extended. For example, chromatin interaction data from Hi-C experiments45 can be used as additional 
input data and further improves the performance for classifying lowly expressed genes (see Supplementary File S2 
for analysis details and results). Further work will be needed to extend it to single cell expression and accessibility 
data and evaluate the performance of the method in these datasets.

Methods
The present study infers the gene-level chromatin accessibility from transcriptomics data based on a developed 
hierarchical classification tree model. Given transcriptomics data of 18 human RNA-Seq and corresponding 
DNase-seq experiments, the model learns the relationship of expression levels and binary gene-level chromatin 
accessibility and can be readily applied to new, unseen transcriptomics datasets. The predictions are validated 
by gold standard datasets of genes located in accessible and inaccessible chromatin. While genes in accessible 
chromatin are defined by protein binding events in their proximity revealed by transcription factor binding site 
(TFBS) ChIP-seq, genes in inaccessible chromatin are characterized by heterochromatin associated genomic 
states of histone modifications. In the remainder of this section, we will outline the methodological details of the 
aforementioned study design.

Training dataset preparation.  We prepared a dataset including 18 human (Human Genome Version 19, 
hg19) RNA-seq and corresponding DNase-seq samples to train our methodology, all of which are annotated in 
ENCODE13. These samples include various cell line and cell type samples from different parts of the organism, 
ranging from alveolar basal epithelial cells over skeletal muscle cells up to embryonic stem cells. A detailed sum-
mary of all datasets can be found in Supplementary Table S1.

Reads alignments to the corresponding reference genome of DNase-seq samples were obtained from 
ENCODE13 (http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeUwDnase/), and DNaseI 
sensitive zones (HotSpots) were identified using the HotSpot algorithm (version 5.1)21, 46 with default parame-
ters. Specifically, a false discovery rate (FDR) threshold of 1.0% was imposed on all identified sites. We derived 
a binary assignment of the accessibility of a gene by calling it ‘open’ if the gene-coding region (including 3′ and 
5′ UTR) or promoter, defined by annotations in HOMER47, contains at least one hotspot,and ‘closed’ otherwise. 
For RNA-Seq experiments, alignments of long PolyA+ RNA-seq samples were obtained from ENCODE13 (CSHL 
Long RNA-seq track, see Supplementary Table S1 for accession numbers). Transcript abundance was estimated 
using HOMER v4.8.247 (homo sapiens accession version 5.8) by first creating a tag directory using the makeT-
agDirectory command with default parameters. Second, gene expression was quantified in FPKM format by 
running the analyzeRepeats program. Only reads mapping to exons on either strand were counted and different 
isoforms were condensed to the gene level.

Performance analysis on the basis of a gold standard dataset.  The performance of our method and 
three peak calling algorithms was assessed over a wide range of false discovery rate (FDR) cutoffs for MACS and 
Hotspot and z-score cutoffs for F-Seq (Table 1). Each method was evaluated on gold standard datasets of six cell 
types (A549, GM12878, H1-hESC, HeLa-S3, HepG2 and K562) comprised of reference sets for accessible and 
inaccessible genes. We compiled a set of regulatory regions from cell type specific transcription factor binding site 
(TFBS) ChIP-seq experiments deposited in ENCODE13. Each regulatory region was annotated using HOMER’s47 
annotatePeaks command with default parameters and each gene overlapping these regions was subsequently 

http://S1
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeUwDnase/
http://S1
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added to the reference set of accessible genes. Genes containing intragenic enhancers bound by a transcription 
factor are therefore considered to be accessible which is motivated by the fact that intragenic enhancers act as 
alternative promoters48 and thus the same reasoning applies as for typical promoter regions (see previous sec-
tion). Inaccessible genes, on the other hand, are defined by ChromHMM29, a computational tool widely used 
to integrate epigenetics experimental data to segment the genome into chromatin states. We used precompiled 
segmentations from the Roadmap Epigenomics project11 based on five histone modifications – i.e. H3K4me1, 
H3K4me3, H3K36me3, H3K9me3 and H3K27me3. Segments that are annotated to H3K9me3 alone or a com-
bination of H3K36me3, H3K4me3 and H3K9me3 are then defined as heterochromatic regions. Consequently, 
genes overlapping with at least one of these segments are then added to the reference set of inaccessible genes.

Based on the gold standard dataset of accessible and inaccessible genes, we compared the performance of our 
method and peak calling algorithms by means of the harmonic mean of precision and recall defined as the F1 – score:

= ⋅
⋅

+
F precision recall

precision recall
21

Assuming that accessible genes are the positive class and inaccessible genes the inaccessible genes, precision 
can be defined as the fraction of true positives among the predicted positives, 

+
TP

TP FP
, and recall as the ratio of true 

positives among all real positives, 
+
TP

TP FN
 25. In the context of predicting accessible and inaccessible genes, these 

definitions can be described as follows. Precision represents the ratio of correctly predicted accessible genes over-
lapping the accessible genes in the gold standard dataset. Similarly, recall is the ratio of predicted accessible genes 
that overlap the gold standard dataset over all accessible genes in the gold standard dataset.

Hierarchical classification model fitting.  For each training dataset we fit a classification tree model con-
sisting of three hierarchically combined layers, denoted as L L L, andB M U  for the bottom, middle and upper layer 
trees, respectively. The LB classifiers operate directly on the gene expression/open chromatin pair values. In par-
ticular, gene expression values correspond here to FPKM values obtained from RNA-Seq data. Open chromatin 
of the corresponding gene is then assigned a binary value depending on whether the gene-coding region or pro-
moter contains a called peak.

In a next step, we fitted one thousand LB classification trees for each sample. Each tree is built on a uniform 
sample of 1000 expression values/observations without replacement. The number of LB trees is determined by the 
empirical number of random samples needed to select each gene at least once and is multiplied by four to obtain 
well mixed training datasets. Especially for low expression, similar expression values might have different corre-
sponding accessibility values resulting in too fine-grained conditions in the classification tree – e.g. conditions on 
the fourth decimal place of an expression value. Drawing samples of 1000 expression value/observation pairs is 
addressing this issue by reducing the number of similar expression values while preserving the distribution of the 
initial sample. In a next step, the predictions of all LB trees of a sample in the training dataset are combined by 
another classification tree (LM classifier), relating the prediction scores with open chromatin information, which 
is equivalent to learning the separations of scores. We thus obtain as many LM classifiers as there are samples in 
the respective training dataset. Based on the identified DNase peaks, all training samples show an uneven ratio of 
genes encoded in hetero- and euchromatin, biasing the classification tree fitting. To account for the underlying 
imbalance, we employed a RUSBoost algorithm49 as the basis of each LM classifier. Due to the impossibility of 
processing all combinations of random subsets, a principal component analysis (PCA) was conducted to account 
for oversampling of the same values resulting in biased predictions of our methodology. Specifically, those prin-
cipal components are used as predictors of the LM explaining at least 95% of the variance. Finally, the predictions 
of all LM classifiers – i.e. the predictions of all samples – are combined within a single RUS-Boost classifier (LU  
classifier) to obtain the final predictions.

In contrast to L LandM U  trees, LB trees are grown iteratively starting from a single node containing all obser-
vations following the fitctree implementation in MATLAB. Notably, besides using gene expression as a predictor 
we employed the Mahalanobis distance50 of the expression value to the distribution of accessible and inaccessible 
genes, respectively. For expression value ei the Mahalanobis distance to the empirical distribution X is defined as 

µ µ= − − ′−∙ ∙d e e S e( ) ( ) ( )i i X X i X
1  where −SX

1 is the inverse of the sample covariance matrix of X.

Data Availability.  The source code of the method as well as example input data can be accessed online 
(https://github.com/saschajung/ChromAccPrediction).
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