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ABSTRACT Here, we develop and test a method to address whether DNA samples sequenced from a group of fossil hominin bone or
tooth fragments originate from the same individual or from closely related individuals. Our method assumes low amounts of retrievable
DNA, significant levels of sequencing error, and contamination from one or more present-day humans. We develop and implement a
maximum likelihood method that estimates levels of contamination, sequencing error rates, and pairwise relatedness coefficients in a
set of individuals. We assume that there is no reference panel for the ancient population to provide allele and haplotype frequencies.
Our approach makes use of single nucleotide polymorphisms (SNPs) and does not make assumptions about the underlying
demographic model. By artificially mating genomes from the 1000 Genomes Project, we determine the numbers of individuals at a
given genomic coverage that are required to detect different levels of genetic relatedness with confidence.
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OVERthepast fewyears, theamountofancientDNA(aDNA)
recovered from fossilized bones, teeth, and hair has grown

rapidly (Prüfer et al. 2014; Mathieson et al. 2015; Sawyer et al.
2015). Despite significant advances in sequencing technology,
laboratory practices, and computationalmethods, problems still
arise because of low amounts of endogenous nuclear DNA,
short degraded fragments, contamination from present-day hu-
mans, and sequencing errors. Nevertheless, data from ancient
remains are a precious source of information, providing insights
about the history of humans and their closest relatives that are
unavailable from any other source. DNA from several ancient
individuals found in the same location is especially important
because it can provide clues about relatedness within groups.
This information is valuable for downstream analyses that
make assumptions about relatedness among individuals.

In sexually reproducing species, the coefficient of related-
ness (r) is twice the probability that two sites sampled at

random from autosomes (one from each individual) are iden-
tical by descent (IBD). With that definition, r ¼ 1 for two
samples from the same individual or from monozygotic
twins, r ¼ 1=2 for first-degree relatives (parents and off-
spring or full siblings), and r ¼ 1=4 for second-degree rela-
tives (aunt or uncle and nephew or niece, half siblings,
grandparent and grandchild, or double first cousins), etc.

Information about the genetic relatedness between indi-
viduals is of significance in the fields of forensic sciences,
agriculture,humangenetics, andecological sciences.Avariety
of approaches have been developed to infer relatedness, each
suited to specific types of data. For comprehensive reviews on
statistical methods and available approaches see Weir et al.
(2006) and Speed and Balding (2015). The general concept
underlying relatedness analyses is that of IBD, but this quan-
tity cannot be observed directly in data. Instead, allelic states
at a particular locus are used to make inferences about IBD
and relatedness. When good quality, high-coverage genomes
from individuals are available, inferring relatedness is rela-
tively easy and many methods have been developed (Purcell
et al. 2007; Browning and Browning 2010; Pemberton et al.
2010; Huff et al. 2011;Wang 2011; Li et al. 2014)). However,
for aDNA, the quality and amount of data are often suffi-
ciently limited that existing methods cannot be applied.
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There have been some attempts to deal with the problems
posed by aDNA. For example, Vohr et al. (2015) developed an
approach to identify whether two DNA samples with ex-
tremely low coverage originate from the same or different
individuals. The authors introduced a likelihood method that
uses information from SNPs and patterns of linkage disequi-
librium. However, this method relies on a reference panel of
phased haplotypes from the same population to infer allele
and haplotype frequencies. This method can be used for hu-
man fossils that are sufficiently recent that a present-day
population can be used as a reference panel. However, for
older human fossils and for Neanderthals and Denisovans, no
reference panels are yet available.

In another recent study, M. D. Martin, F. Jay, S. Castellano,
and M. Slatkin (unpublished results) presented a method to
infer close genetic relatedness using low-coverage, next-
generation sequencing samples from ancient individuals.
They did not assume that a reference panel was available and
they accounted for contamination from modern humans and
sequencing errors. Their method investigates the overlap of
pairwise genetic distance distributions calculated under cer-
tain realistic scenarios to identify the relatedness between
pairs of individuals.

In this study, we extend the work of M. D. Martin, F. Jay,
S. Castellano, and M. Slatkin (unpublished results) by using a
maximum likelihood framework applied to each polymorphic
site and determine whether this approach provides improved
accuracy. In addition to inferring relatedness, our method pro-
videsestimatesofallele frequenciesandcontamination levels for
eachsample.Byartificiallymating individual sequences fromthe
publicly available 1000 Genomes Project, we determine the
number of individuals at a given genomic coverage that are
required to distinguish different levels of genetic relatedness.

Methods

Model notation

The relatedness r of two individuals is twice the probability of
identity by descent of two chromosomes chosen at random.
Individuals are denoted by i; j ¼ 1; 2; . . . ;N and sites are
denoted by k ¼ 1; 2; . . . ; L: We further assume the sequencing
error rate e is the same for every site k in every sequence. e is the
probability that a site is misread during the sequencing; if it is
misread at a site that is actually monomorphic then it creates a
false SNP, but if it is misread at a site that is actually polymor-
phic then it is misread as the alternative allele. The contamina-
tion rate for an ancient individual i is Ci: Ci the probability that a
randomly chosen read from an individual i is derived from a
present-day human. The average contamination rate over all se-
quenced ancient individuals is denoted �C: We use only sites that
are polymorphic in the contaminant panel and we will assume
that we observe only ancestral or derived (non-chimpanzee)
alleles at every site, thereby ignoring triallelic sites.

Furthermore, let fk be the derived allele frequency (daf) at
site k in the putative contaminating population (e.g., modern

humans). The observed daf at site k in the ancient samples is
qk and is a weighted average of the endogenous and contam-
inating allele frequencies (note that the model assumes ex-
actly one allele per genomic position per individual):

qk ¼ ð12 �CÞpk þ �Cfk (1)

where pk is the endogenous daf at site k in the ancient sam-
ples (unobservable because the alleles sequenced at a site
might either be endogenous or from the contaminating
population). We use �C because it is, in principle, impossible
to determine which of the reads at a given site comes from
the contaminating population. Therefore, our best esti-
mate of pk is:

pk ¼
qk 2 �C   fk
12 �C

: (2)

To summarize, the model input parameters are the allelic
(ancestral/derived) states at each site from each of the ancient
reads. The observed parameter is qk: fk is the only parameter
used from a contaminating reference data set. The more indi-
viduals that are available in the contaminating reference data
set the closer these values approach true population frequencies
resulting in more accurate parameter estimates. A parameter
that cannot be directly observed from the ancient data is pk; but
it is calculated at each step based on qk; fk, and �C: The param-
eters that wewill aim to estimate are the relatedness coefficient
for each pair of individuals ri;j; the contamination rate for each
individual Ci, and the overall sequencing error rate e.

For a pair of individuals i and j with relatedness ri;j; there
are three sets of parameters that need to be modeled.

1. Endogenous frequencies - the probabilities of allelic con-
figurations 11,10,01,00 in the aDNA (1 being derived,
0 being ancestral):
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(3)

2. Contaminated frequencies - the probabilities of allelic con-
figurations in the contaminated sample:
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(4)
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3. Sequenced frequencies - the probabilities of allelic config-
urations in the sequences themselves, allowing for se-
quencing error:

R11 ¼ ð12eÞ2Q11 þ eð12 eÞðQ10 þ Q01Þ þ e2Q00

R10 ¼ ð12eÞ2Q10 þ eð12 eÞðQ11 þ Q00Þ þ e2Q01

R01 ¼ ð12eÞ2Q01 þ eð12 eÞðQ11 þ Q00Þ þ e2Q10

R00 ¼ ð12eÞ2Q00 þ eð12 eÞðQ10 þ Q01Þ þ e2Q11

(5)

Parameter estimation

Assume a data set ofN ancient individuals and L aligned sites.
For each pair of individuals i and j (out of NðN2 1Þ=2 total
pairs) the log likelihood is calculated as:

lki; j ¼
XL

k¼1

logðRkÞ: (6)

The log likelihood for the entire data set is then the sum over
all log likelihoods lki;j for all pairs of individuals. We refer to
this approach as the “complete method” (note that this is a
composite likelihood because a single individual contributes
N21 times to the calculation and the pairs of individuals are
not independent).

Overall, the number of values that need to be estimated are
NðN2 1Þ=2 parameters for the relatedness coefficients ri;j; N
parameters for contamination rates Ci, and one parameter
for the sequencing error rate e. A method to maximize the
log-likelihood of these input parameters is implemented in
C++ using the nonlinear optimization routine L-BFGS
from the dlib C++ library (King 2009). The software we
generated is available online at https://github.com/christoph-
theunert/. Lower and upper bounds for the parameters r, C,
and e are set to [0.001, 0.9999], [0.0, 0.25], and [0.001,
0.25] respectively.

Asmentioned in the results, a slightly different procedure
of using only a subset of all available individuals to calculate
the likelihood for the entire data set was tested. In this case
n,N individuals are used to calculate the overall likeli-
hood as the sum over nðn21Þ=2 likelihoods lki;j: For exam-
ple, if one is only interested in a certain pair of individuals i
and j, then n ¼ 2 and only one ri;j needs to be estimated.
However, qk at site k is still estimated using all N individu-
als. Depending on the actual value of n this approach may
result in faster computation times. We refer to this ap-
proach as the “subset method.”

We simulated 50 independent data sets for each combina-
tion of N, L, and r, and separately performed the parameter
estimation for each of them. Therefore, the final estimates of
r are given as an average, and the accuracy of our method is
evaluated by the root-mean-square error (rmse) and the
mean absolute error (mae). When used together, rmse and
mae can characterize the errors in a set of forecasts. The
magnitude of the difference between them is informative
about the amount of variance in the individual errors in the
sample.

We checked the convergence of the L-BFGS routine by
running the optimization for the same data set 15 times. Each
time, theparameter vectorwas initializedwitha randomsetof
parameter values. We did that for multiple different data sets
and for every case we found the same final optimal value.

Simulations

For the initial evaluation of themodelwe generated sets of 2N
sequences of length L sites. For each sequence, alleles at each
position k were either derived (1) with probability Pk or an-
cestral (0) with probability ð12PkÞ; where Pk was randomly
drawn from U½0; 1�: To generate contaminated reads from
our simulated genotypes, we adopted a method used in
Racimo et al. (2016). For each simulated individual i, the
number of derived and ancestral fragments at a particular
site follows a binomial distribution that depends on the true
ancient genotype, the sequencing error rate, and the contam-
ination rate Ci [see Equations 3–6 in Racimo et al. (2016)].
Contamination rate Ci for individual i was randomly drawn
from a uniform distribution between 2 and 25% separately
for each simulation (i.e., in each simulation individuals have
different rates of contamination Ci). Sequencing error rate e
was set to 0.001 throughout all simulations. To systemati-
cally study the behavior of our method we assume one read
per individual at each simulated genomic position. We fur-
ther assume fk for each site from a putative reference panel to
be randomly drawn from U½0; 1�:

Furthermore,we simulateda scenariowhere readsareonly
available froma random subset of individuals (out of a total of
N) at each genomic site. Supplemental Material, Tables S3
and S4 in File S1 summarize the results.

To ensure that the simulation method mentioned above
does not introduce any biases, we carried out simulations
where we artificially mated unrelated European (EUR) se-
quences from the 1000 Genomes Project Phase 3 (1000 Ge-
nomes Project Consortium et al. 2015). A similar approach
was introduced by M. D. Martin, F. Jay, S. Castellano, and
M. Slatkin (unpublished results). This population was chosen
only to demonstrate the workflow and performance of our
method on real data and not with the intention of drawing
any conclusions about European populations. We focused on
phased genomes and extracted all biallelic polymorphic sites
from single chromosomes from EUR individuals. Contamina-
tion from a putative contaminant panel was implemented in
the same way as described before. We restricted our analyses
to SNPs that passed the basic 1000 Genomes Project filtering
criteria and for which ancestral allele information was avail-
able. The ancestral states were determined by using informa-
tion from the inferred human–chimpanzee ancestor at each
site. We filtered sites with a Map20 , 1 (Duke uniqueness
tracks of 20 bp) and we removed deletions and insertions.
The method behaves exactly the same for both data sets
(simulated sequences and sequences from the 1000 Genomes
Project).

In both cases, we performed artificial meioses of pairs of
individuals for single chromosomes. The recombination rate

Estimation of Relatedness Coefficients 1027

https://github.com/christoph-theunert/
https://github.com/christoph-theunert/
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.117.200600/-/DC1/FileS1.pdf


was assumed to be uniform along the genome and set to be
1:31028/bp per generation (Kong et al. 2002; Prüfer et al.
2014). We implemented a minimal number of one recombi-
nation event per chromosome per generation. Relatedness
among individuals was then simulated by artificially mating
them with other individuals to produce offspring.

To investigate the effect of different types of genomic sites,
we analyzed each data set (not the present-day reference
panel) filtered for: (1) fixed and polymorphic sites, (2) only
polymorphic sites, and (3) polymorphic sites that were either
changed to being fixed or remained polymorphic after allow-
ing for contamination and sequencing error. This way, we
could study the effect of different classes of sites on the
accuracy of our estimates.

Simulated pedigrees

Three different pedigrees (denoted f1, f2, and f3) were gen-
erated with the mating method described above:

f1: father + mother = child
f2: father + mother = child1; child1 + X0 = child2
f3: father + mother = child1; father + mother = child2;

child1 + X1 = child3; child2 + X2 = child4

whereX0, X1, andX2 represent unrelatedpartner individuals.
Throughout the manuscript each data set is further repre-
sented by an additional number which denotes the absence
(0.0) or presence (0.1) of contamination and sequencing
errors (e.g., f2.1 is the second pedigree f2with contamination
and error). In each data set all remaining individuals were
kept unrelated. The very last individual in each data set is a
direct copy of another individual before contamination and
error. This allows us to test the method for different degrees
of relatedness: r ¼ 0:5 in f1; r ¼ 0:5 and r ¼ 0:25 in f2;
r ¼ 0:5; r ¼ 0:25 and r ¼ 0:125 in f3; and r ¼ 1:0 in all three.

Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article.

Results

Accuracy when Ci ¼ 0 and e ¼ 0

First, we studied the accuracy of our method to identify
genetic relatedness simulated in pedigree f1.0 in the absence
of contamination and sequencing errors by using the subset
approach with n ¼ 2:

In Figure 1, each subfigure of boxplots represents a differ-
ent combination of N individuals (rows) and L sites (col-
umns) and shows the distribution of r for a pair of related
individuals over 50 independent data sets (see Figure S1 in
File S1 for more details and error values). Note that we refer
to the true simulated relatedness coefficient as rs; the point
estimates of it as r, and the estimated average over 50 inde-
pendent data sets as �r:

For example, in the upper right corner we simulated reads
for 202 diploid individuals and 100,000 overlapping poly-
morphic sites. For the two samples that result from the same
individual (rs ¼ 1:0), estimates are �r ¼ 1:0 with rmse = 0.01
and mae = 0.01. In the same data set for a pair of parent–
offspring individuals (rs ¼ 0:5), �r is 0.49 with rmse = 0.01
and mae = 0.01.

The variation of the parameter estimates, is given in more
detail in Figure S2 in File S1 showing that the range in esti-
mates for this data set is rather small (for rs ¼ 1:0 : r= [0.98,
1.01]; for rs ¼ 0:5 : r = [0.47, 0.49]). We note here that
values of r. 1 are possible as the final step of the parameter
inference is ri;j ¼ ri;j=12 ðmeanðCi;CjÞÞ: In the majority of
cases, the method underestimates the value of rs: As
expected, the fewer overlapping sites and individuals that
are available, the more the estimates deviate from the true
value of rs and the higher the error estimates become. For
example, forN=17 and L=1000,�r is 0.94 with rmse = 0.11
and mae = 0.09 (for rs ¼ 1:0); and �r ¼ 0:32 with rmse = 0.2
andmae=0.18 (for rs ¼ 0:5). It is worthmentioning that the
distribution of estimates for different rs do not overlap with
each other in any of the data sets.

Figure S3 in File S1 shows the comparison of estimated
and simulated contamination rates for each related individ-
ual with the rmse shown in the legend of each graph (note
that the true Ci ¼ 0). The method overestimates the contam-
ination rates, but the majority of Ci is estimated to be , 0:05
when the number of individuals and sites increase.

The accuracy of the method to identify relatedness coeffi-
cients from pedigree f2.0 is presented in Figure 2. Again, with
reads from 202 individuals and L. 1000 the results are
highly accurate, and simulated rs ¼ 0:5 as well as second-
degree relatedness rs ¼ 0:25 are estimated to be �r ¼ 0:48
and �r ¼ 0:23; respectively (see Figure S4 in File S1 for more
details and error values).

As expected, the smaller N and L, the less accurate results
become, e.g., �r ¼ 0:15 and error estimates �0.10 for
rs ¼ 0:25 when N = 48 and L = 10,000. Furthermore, with
N = 18 the method does not pick up the signal of rs ¼ 0:25
anymore. Although for more distantly related individuals pa-
rameter inference may be less accurate, distributions of esti-
mates do not overlap and so provide valuable information
about differences in relatedness (see Figures S5 and S6 in
File S1).

Identifying a relatedness of rs ¼ 0:125 from data set f3.0 is
even more difficult. Shown in Figures S7, S8, and S9 in File
S1 are estimates for rs ¼ 0:125: It can be seen that, only with
reads from 205 individuals, results are rather accurate at
�r ¼ 0:09 and errors of �0.03.

Accuracy when C > 0 and e > 0

Under a more realistic scenario, contamination from modern
humans and sequencing error may create bias. Therefore, we
tested the method on simulated data sets that are affected by
these factors. As described before, each Ci is drawn from
U ½0:02; 0:25� and e is set to 0.001 for all data sets.
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Summarizing the information for pedigree f1.1 from Fig-
ure 3, Figure 4, and Figures S10 and S11 in File S1, the
observations are similar to what we reported before but Ci

and e affect the accuracy of the results. The method is still
able to identify the same or related individuals while the
amount of available data has a more pronounced effect on
the accuracy. Estimates are less accurate than in the absence
of Ci and e. However, when comparing the results for
rs ¼ 1:0 and rs ¼ 0:5 from the same data set, the distribu-
tions of estimates for L. 1000 do not overlap. This does
provide valuable information (see Figures S10 and S11 in
File S1). For example, for 32 individuals and 10,000 sites,
estimates of the relatedness coefficient range between
½0:68; 1:08� when rs ¼ 1:0 and ½0:2; 0:45� when rs ¼ 0:5:

With N. 200 and L. 1000, estimates of r and Ci are highly
accurate with small error values. See Supplemental Mate-
rial text and Table S1 in File S1 for a comparison be-
tween the subset method and the complete method for
this data set.

The more distant the genetic relatedness between two
individuals the more data are needed to identify it. Figure 5
shows results for pedigree f2.1. Again, note that with 203 in-
dividuals and $ 10; 000 sites, rs of 0.25 and Ci are accurately
inferred (see Figures S12, S13 and S14 in File S1 for more
details and error values). The same is true for pedigree f3.1 as
seen in Figures S15, S16, and S17 in File S1. The likelihood
landscape under the presence and absence of Ci and e is
shown in Figure S30 in File S1.

Figure 1 Each panel represents a different combination of N (columns) and L (rows) and shows a boxplot for the estimates of simulated relatedness of
rs ¼ 1:0 (same individual) and rs ¼ 0:5 (parent–offspring or full siblings) over 50 independent data sets for pedigree f1.0. Dashed horizontal lines denote
the simulated values of rs:
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In conclusion, the proposed method can accurately infer
the degree of genetic relatedness even in the presence of
contamination and sequencing error. However, first-, second-,
and third-degree relatedness require more data to be
identified than when identifying DNA sequences that origi-
nate from the same individual. For example, for a rs ¼ 1:0 and
N = 32, �r is still 0.84. In this case, the distributions of esti-
mates in Figure S11 in File S1 show that the values do not
drop below r=0.7 in themajority of the cases (for L. 1000).
Our method tends to underestimate the parameters without
an overlap between the distributions of estimates for
rs ¼ 1:0; rs ¼ 0:5, and rs ¼ 0:25: This fact supports the val-
idity of results for rs ¼ 1:0 even more, as it seems unlikely
that an estimated value of r = 0.8 is seen when the DNA

sequences do not originate from the same individual. Note
that, overall, the individual contamination rates are more
often under- than overestimated when Ci .0:

Application to real data

To illustrate the application of our program to a real data set,
we analyzed a sample of seven ancient individuals from the
Motala population in Sweden, previously analyzed by Haak
et al. (2015). The individuals were all found in the same site
in Sweden and are dated to around the same time (5898–
5531 calBCE). Although the number of individuals is rather
small and might limit the power of our method to detect
relatedness, this data set is one of the biggest publicly avail-
able collections of ancient individuals from the same location

Figure 2 Each panel represents a different combination of N (columns) and L (rows) and shows a boxplot for the estimates of simulated relatedness of
rs ¼ 0:5 (parent–offspring or full siblings) and rs ¼ 0:25 (e.g., grandparent–grandchild or half siblings) over 50 independent data sets for pedigree f2.0.
Dashed horizontal lines denote the simulated values of rs:
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and time and, therefore, allows us to demonstrate the neces-
sary steps to apply our program:

1. Filter each individual BAM file according to a desired set
of filters (e.g., mapping quality, base quality etc.)

2. Intersect the genomic positions of all seven filtered BAM
files and create a file in BED format that contains positions
that are covered in each of the seven individuals

3. For each genomic position, identify the ancestral and de-
rived allele and their population frequencies in a modern
human contaminating panel (we chose 96 Northern and
Western European ancestry (CEU) individuals from the
1000 Genomes Phase 3 data set) and save the information
in a separate file (note that we only use sites that are
polymorphic in this contaminating panel)

4. Intersect the genomic positions from step 2 and the geno-
mic positions from step 3 for which ancestral/derived al-
lele frequencies are available and create a new file in BED
format

5. Based on the genomic positions from step 4, transform
each individual filtered BAM file into PILEUP format
(see http://samtools.sourceforge.net/pileup.shtml)

6. Based on the individual pileup formats, for each genomic
position pick the allele from each individual (here we pick
one allele at random if multiple reads cover a position)
and represent an ancestral allele by “0” and a derived
allele by “1”

7. Create a file inms format [see Hudson (2002)], i.e., allelic
information as one row per individual and one column per
genomic site

Figure 3 Results are presented for estimates of rs ¼ 1:0 (same individual) and rs ¼ 0:5 (parent–offspring or full siblings) as in Figure 1, but with Ci being
between 2 and 25% sequencing error set to 0.001 as in pedigree f1.1.
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8. Create a meta information file with three tab separated
columns for each position: site number (k); derived allele

frequency in the sample of seven individuals (qk); and
derived allele frequency in CEU (fk)

9. Run our program with the files from step 7 and 8 as input

Additionally, we generated a direct copy of one of the indi-
viduals and introduced it to the data set for a total of eight
individuals (and �7000 polymorphic sites). Therefore, one
pair of individuals (7 and 8) should show a higher related-

ness coefficient (note that the copied individual is not com-
pletely identical to its “parent” since we picked one allele at
random for each genomic position). We then analyzed the
whole set of eight individuals together and did not expect to
see any relatedness between pairs of individuals except for the
artificially related pair. As shown in Table 1, we do not observe
any related pairs of individuals except for the pair (7,8) that
shows an estimated r of 0.65. Although this is a rather small
data set and only serves as an example, the program is able to
identify the related pair. The individual contamination rates

Figure 4 Each panel represents a different combination of N (columns) and L (rows) and shows an x–y plot for estimated (y-axis) and simulated (x-axis)
contamination rates for pedigree f1.1. Dashed lines indicate rmse of 0. Ci was simulated to be between 2 and 25%:
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are estimated to be 0.0–0.03. However, note that it is difficult
to correctly interpret these numbers: first because the true
contamination rates are not known; second because based
on our simulation results this dataset is rather small and there-
fore these estimates are likely biased; and third because the
ancient individuals are much younger and therefore less di-
verged frommodern humans than, for example, Neanderthals.
This means that contamination is more difficult to detect the
less diverged the ancient individuals are from the contaminat-
ing population. We recommend applying our method to all

individuals in the data set to get an idea of how many related
and unrelated individuals are present.

Discussion

In this study, we present a method to infer the relatedness
coefficients from aDNA samples sequenced from a group of
fossil hominin bone or tooth fragments. Ourmethod accounts
for sequencing error and for contamination from present-day
humans. By artificially mating simulated sequences as well as

Figure 5 Estimates of rs ¼ 0:5 (parent–offspring or full siblings) and rs ¼ 0:25 (e.g., grandparent–grandchild or half siblings) as in Figure 2, but with Ci

being between 2 and 25%, and sequencing error set to 0.001 as in pedigree f2.1.
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sequences fromthe1000GenomesProject,wedeterminehow
many overlapping reads and how many individuals are re-
quired to obtain estimates of relatedness coefficients with
confidence. The likelihood model we developed for this pur-
pose differs from existing methods in that we directly model
the (hidden) ancient derived allele frequencies and do not
require a reference panel for the ancient population.

In our simulations, we assumed that each polymorphic site
is sequenced in every individual. With that assumption, the
number of overlapping sites is a parameter under our control.
The actual number of overlapping sites when there is low-
coverage sequence data is a random variable whose distribu-
tion depends on the sequencing method used. For shotgun
sequencing, the simplest assumption is that the number of
times a polymorphic site is sequenced is a Poisson distributed
random variable with themean equal to the coverage level, li
for individual i. The probability that the site is sequenced at
least once in individuals i and j is ð12 eliÞð12 eljÞ. For ex-
ample, if li ¼ lj ¼ 0:1 (i.e., 0.1 3 coverage in both individ-
uals), the probability that a site is covered by at least one read
is roughly 0.009. Therefore, if there are 3*106 polymorphic
sites, there would be roughly 27,000 overlapping sites in two
individuals. Different sets of sites would overlap in different
pairs of individuals. Hence the expected number of samples
that contribute to estimates of allele frequencies at each site
in a sample of N individuals is Nl where l is the average
coverage level. In the Figures S18–S29 and Tables S3 and
S4 in File S1, we allowed for this possibility in simulations by
assuming that fully overlapping sites in all individuals are not
available. As expected, the accuracy of the method decreases
when compared to using all individuals. However, the more
individuals in total available in a data set, the higher the
accuracy even when only using read information from a ran-
dom subset (e.g., 5 or 10 individuals) of them at each geno-
mic site. An alternative to shotgun sequencing is genomic
capture (Mamanova et al. 2010; Rohland and Reich 2012).
With a capture method that targets sites known to be poly-
morphic in the same or a closely related population, the prob-
ability that two sites are sequenced in two individuals
depends on a number of factors, including the closeness of
the population or populations used for ascertainment and the
complexity of the genomic library. However, the success of tar-
geted capture methods can be quite high. For example,
Castellano et al. (2014) used exome capture on twoNeanderthal
samples. In the El Sidron sample that had 0:2% endogenous

DNA, 92:8% of targeted sites were covered at least once. In
the Vindija 33.15 sample that had 0:5% endogenous DNA,
98:8% of the targeted sites were covered. Therefore, if exome
or SNP capture methods are used there is a good chance of
high levels of overlap in different individuals.

As can be seen from the results, the accuracy of themethod
stronglydependson thenumberof genomesavailable. It is not
particularly well suited to analyzing a small number of ge-
nomes. With only a few individuals, r is underestimated in all
caseswehave studied, regardless of howmanygenomic sitesL
we added (see Figure 3 for N= 17). The underlying problem
is that we do not have information from a reference panel
from the same population as the individuals under study to
obtain accurate estimates of allele frequencies. Therefore,
our estimates of the allele frequency qk strongly depend on
the number of genomes sampled. Using a reference panel
from another population might help, but the accuracy would
depend on the divergence between the reference panel and
the population under study. For example, using a reference
panel from modern humans when analyzing Neanderthals
would introduce an uncertainty in the allele frequency esti-
mates, since Neanderthals and modern humans are quite di-
verged. This uncertainty would probably be as great as when
using allele frequencies estimated from only a small number
of Neanderthal individuals.

We analyzed the runtime of our program for different data
sets (see Table S5 in File S1). From the results, it is obvious
that the computational time of the method depends heavily
on the number of individuals tested and, to a smaller extent,
on the number of genomic sites. For example, for a data set of
N = 17 and L = 10,000, it takes 5 and 8 sec to analyze n =
2 and n = 4 individuals, respectively. Analyzing n = 17 indi-
viduals already takes 25 min. The overall runtime increases
because of the n(n21)/2 individual pairs that need to be
calculated but also because of the increase in the number of
underlying parameters that the optimization method has to
take into account. For the example data set, increasing L to
100,000 increases the runtime to 14 and 51 sec when ana-
lyzing n = 2 and n = 4 individuals, respectively. So an in-
crease in sites by a factor of 10 has an effect on the runtime
that is orders of magnitudes smaller than increasing the num-
ber of individuals tested. Therefore, using the subset method
with n,N is computationally muchmore efficient than using
n = N.

In our analysis, we assume that the sampled (ancient)
population is in Hardy–Weinberg equilibrium. That assump-
tion allows us to derive the genotype frequencies from allele
frequencies. If a population is made up of inbred individuals,
then our method would not yield accurate results.

Wedonotmakeany inferencesabout the timeof separation
of the contaminating (present-day) population from the sam-
pled (ancient) population. If the contaminating population is
closely related to the sampled population, then allele frequen-
cies in the two populations will be similar and the estimated
allele frequencies in the ancient sample will depend only
weakly on the contamination rate. The estimate of the

Table 1 Results for pairwise relatedness coefficients ri;j for all pairs
of 7 + 1 Motala individuals

i/j 1 2 3 4 5 6 7 8

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0
6 0.0 0.0
7 0.65
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contamination rate would not be accurate but the error in
estimating that rate would not strongly affect estimates of
relatedness coefficients. If the contaminating population has
quite different allele frequencies, the estimates of contami-
nation rate will be more accurate.

Finally, admixture from the ancient (e.g., Neanderthal)
population into the contaminating (e.g., modern human)
population will not affect our method. Admixture will make
some of the contaminating allele frequencies slightly more
similar to Neanderthals than they would be in the absence of
admixture, which should not affect the estimates of contam-
ination rates or relatedness coefficients.
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