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ABSTRACT Population demographic history may be learned from contemporary genetic variation data. Methods based on
aggregating the statistics of many single loci into an allele frequency spectrum (AFS) have proven powerful, but such methods
ignore potentially informative patterns of linkage disequilibrium (LD) between neighboring loci. To leverage such patterns, we
developed a composite-likelihood framework for inferring demographic history from aggregated statistics of pairs of loci. Using this
framework, we show that two-locus statistics are more sensitive to demographic history than single-locus statistics such as the AFS. In
particular, two-locus statistics escape the notorious confounding of depth and duration of a bottleneck, and they provide a means to
estimate effective population size based on the recombination rather than mutation rate. We applied our approach to a Zambian
population of Drosophila melanogaster. Notably, using both single- and two-locus statistics, we inferred a substantially lower ancestral
effective population size than previous works and did not infer a bottleneck history. Together, our results demonstrate the broad
potential for two-locus statistics to enable powerful population genetic inference.
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PATTERNS of genetic variation within a population are
shaped by the evolutionary and demographic history of

that population, so observed variation encodes information
about that history. Knowing population demographic history
serves as an important control for learning about natural
selection (Bustamante et al. 2001; Boyko et al. 2008) and un-
derstanding the relative efficacy of selection as populations
change in size (Lohmueller et al. 2008; Henn et al. 2016).
One particularly informative statistic used to summarize genetic
polymorphism data is the allele frequency spectrum (AFS),
which stores the distribution of observed single-locus allele fre-
quencies from a sample of the population. The shape of the AFS
is sensitive to demographic history, and fitting the expected
AFS under parameterized demographic models to the observed
AFS is a powerful approach for learning about demographic
history (Marth et al. 2004; Williamson et al. 2005; Gutenkunst
et al. 2009; Kamm et al. 2017).

For unlinked loci, the AFS is a sufficient statistic of the data
and completely describes observed patterns of variation

(Lohmueller et al. 2009). The expected AFS under arbitrary
single- or multi-population histories can be efficiently calcu-
lated with either coalescent (Kingman 1982; Tajima 1983) or
diffusion (Kimura 1964; Williamson et al. 2005; Gutenkunst
et al. 2009) approaches. Poisson random field (PRF) theory
(Sawyer and Hartl 1992) can then be used to calculate the
likelihood of the data givenmodel parameters. A key assump-
tion of the PRF framework is that of independence between
segregating loci, so that allele frequency trajectories are un-
correlated. However, neighboring loci are physically linked
on the chromosome, and their allele frequencies are thus
correlated. Recombination serves to reduce this correlation,
with a higher rate of recombination between two loci more
rapidly breaking down that association. For any two linked
SNPs, their linkage disequilibrium (LD) is a measure of their
nonindependence. Furthermore, as with allele frequencies,
patterns of LD are shaped by historical demographic events
such as bottlenecks, growth, and admixture, and therefore
they are also informative about history (Pritchard and
Przeworski 2001).

For linked sites, the distribution of LD carries additional
information to the allele frequency spectrum about past
demography (Myers et al. 2008), and the joint distribution
of allele frequencies and LD between pairs of SNPs should
afford greater power for demographic inferences than
those based on allele frequencies alone. Characterizing
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two-locus allele frequency dynamics, and calculating their
sampling probabilities, has attracted a large body ofwork. Kimura
(1955) considered the case of genetic drift at multi-allelic loci
using a diffusion approximation, and he calculated the time to
fixation for one of the alleles when more than two alleles are
present. This approach was expanded over the following decade
to explicitly consider the two-locus setting with two alleles at
each locus (Kimura 1963; Hill and Robertson 1966; Karlin and
McGregor 1968;Ohta andKimura 1969;Watterson 1970). These
studies were generally interested in the probability and rates of
fixation under arbitrary recombination between the two loci, and
in characterizing the expectation and variance of LD.

More recently, samplingprobabilities for twoneutral linked
loci were directly calculated under equilibrium demography
(Golding 1984; Hudson 1985; Ethier and Griffiths 1990),
often using the recursion approach due to Golding (1984).
Hudson (2001) extended these results to generate those sam-
pling probabilities with knowledge of the ancestral state and
proposed a composite likelihood approach for fine-scale esti-
mation of recombination rates across the genome, which has
been implemented to infer recombination maps and identify
hotspots in human and Drosophila populations (McVean et al.
2004; Auton and McVean 2007; Chan et al. 2012). Xie (2011)
used a diffusion approach to calculate the allele frequency spec-
trum for two completely linked loci under neutrality or equal
levels of selection, while Ferretti et al. (2016) recently used a
coalescent approach to calculate the expected frequency spec-
trum for two completely linked neutral loci, and neutral sam-
pling probabilities were developed under the coalescent with
recombination for moderate to large recombination rates and
constant population size (Jenkins and Song 2009, 2010, 2012;
Bhaskar and Song 2012). Recently, Kamm et al. (2016) devel-
oped a coalescent approach to generate two-locus sampling
probabilities under arbitrary demography and recombination,
and found that accounting for demographic history improves
accuracy in composite likelihood approaches for estimatingfine-
scale recombination rates.

Here, we characterize the increase in power of demo-
graphic inference from using two-locus allele frequency
statistics vs. using the single-locus AFS. In particular, the
depth and duration of a bottleneck are confounded when
using the AFS, but we show they can be independently
inferred using two-locus statistics. To enable our analy-
ses, we developed a numerical solution to the diffusion
approximation for two-locus allele frequencies with arbi-
trary recombination. We packaged this method in a two-
locus composite likelihood framework that can be used to
infer single-population demographic histories. Addition-
ally, this framework allows for an estimate of the effective
population size based on recombination that is indepen-
dent from estimates based on levels of diversity. Using this
approach, we inferred demographic history for a highly
studied Zambian Drosophila melanogaster population, finding
a smaller effective population size than previous analyses
(Ne � 33 105), and a demographic history of recent modest
growth with no severe bottlenecks.

By incorporating linkage between pairs of loci, our work
extends previous demographic history inference approaches
based on the AFS and Poisson Random Field theory. Recent
approaches based on the sequentially Markovian coalescent
(SMC) incorporate linkage information in an alternative man-
ner. In particular, Li and Durbin (2011) used the SMC tomodel
the distribution of expected times to the most recent common
ancestor of segments of paired chromosomes, from which the
history of effective population size can be inferred. This ap-
proach has since been extended to multiple chromosomes, in-
creasing precision, and enabling inferences of population split
times and gene flow (Harris and Nielsen 2013; Sheehan et al.
2013; Schiffels and Durbin 2014). Most recently, computa-
tional advances have scaled the SMC approach to hundreds
of unphased whole genomes (Terhorst et al. 2017).

Methods

A two-locus model with influx of new mutations

We used a diffusion approximation to a two-locus model that
allows for two alleles at each locus, which are separated by
recombination probability r (Karlin and McGregor 1968;
Watterson 1970). We allow the left locus to carry alleles A
and a, while the right locus permits alleles B and b. Then four
haplotypes are possible, AB; Ab; aB; and ab;with frequencies
fAB; fAb; faB; and fab that sum to 2N (Figure 1A). Frequencies in
the subsequent generation are found by considering the ran-
dom pairing of haplotypes and the probability of a given
pairing passing on each type to their offspring. These proba-
bilities depend on current haplotype frequencies and the re-
combination rate, and are described in Table 1 of Watterson
(1970). For example, a parent carrying haplotypes AB=Ab
will pass on AB with probability 1=2 and Ab with probability
1=2; even with recombination. On the other hand, a parent
with AB=ab will pass on AB or ab each with probability
1=2ð12 rÞ and Ab or aB each with probability 1=2r: The
numbers (  f 9AB; f

9
Ab; f

9
aB; f

9
ab) of each haplotype in the next

generation are then pulled from the multinomial distribution
for sampling 2N haplotypes with probabilities found by con-
sidering random pairing of haplotypes and recombination.

New two-locus pairings, with two alleles segregating at
both sites, arise when a new mutation occurs at one unmu-
tated locus when the other locus is already polymorphic.
Suppose, without loss of generality, that the right locus is
already polymorphic, with derived allele B at frequency
xB ¼ fB=2N; and ancestral allele b at frequency xb ¼ 12 xB:
Then, a new A mutation at the left locus begins at frequency
xA ¼ 1=2N; and occurs on the B haplotype with probability
xB; or on the b haplotype with probability xb: Two-locus fre-
quencies then evolve under the multinomial process de-
scribed above until one or both loci are fixed for either the
ancestral or derived allele, at which point we stop tracking
that two-locus pair. The frequencies xB are drawn from the
population distribution of one-locus frequencies f ðxÞ; which
can be approximated using diffusion theory (Kimura 1964).
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Thus, new independent two-locus pairs enter the population
with frequencies ðxAB; xAb; xaBÞ ¼ ð1=2N; 0; xB 2 1=2NÞ with
rate proportional to xBfðxBÞ; and ð0; 1=2N; xBÞ with rate pro-
portional to ð12 xBÞf ðxBÞ:

The density fðx1; x2; x3Þ of two-locus haplotype frequen-
cies, where x1; x2; and x3 are the relative frequencies of
haplotypes AB; Ab; and aB; respectively (Figure 1B), can
be approximated using diffusion theory, as described in the
next section. The two-locus haplotype frequency spectrum
stores the counts of derived haplotypes in a sample, where
one or both loci carry the derived allele. To obtain the two-
locus spectrum F for n samples from the density function f

(Figure 1C), we sample against the multinomial sampling
distribution:

Fi;j;k } ∭
xi $0"i

x1þx2þx3 #1

�
fðx1; x2; x3Þ

�
n

i; j; k

�
xi1   x

j
2   x

k
3

3 ð12x12x22x3Þn2i2j2k   dx1   dx2   dx3

�
:

(1)

Here,
�

n
i; j; k

�
is the multinomial coefficient, defined as

n!=½i!j!k!ðn2 i2 j2 kÞ!�: Because we assume that two-locus
pairs are independent realizations of this process, PRF theory

tells us that if we observe data Dði; j; kÞ; each entry in the
observed two-locus spectrum is a Poisson random variable
with mean Fi;j;k: This allows the application of likelihood the-
ory to compare observed data to model expectations.

Two-locus diffusion approximation

We solved the multiallelic diffusion equation for f to obtain
the expected sample two-locus spectrum.Measuring time t in
units of 2Na generations, where Na is the ancestral reference
population size, the forward diffusion equation describes the
evolution of the probability density of two-locus frequencies,
and is written (Equation 3 in Hill and Robertson 1966) as
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(2)

Here, D ¼ ½x1ð12 x1 2 x2 2 x3Þ2 x2x3� is the LD, given haplo-
type frequencies ðx1; x2; x3Þ; and nðtÞ ¼ NðtÞ=NA is a function
for the relative population size to the ancestral population size
at time t. The population scaled recombination rate between
the A=a and B=b loci is r ¼ 4NAr; where r is probability of re-
combination between the two loci per generation. The action of
recombination is readily interpretable in the diffusion equation:
recombination acts directionally on the haplotype frequencies
xi; pushing them toward linkage equilibrium (D ¼ 0) at a rate
directly proportional to the recombination rate r.

The domain of the two-locus diffusion equation is the
tetrahedron with 0# xi # 1 for i ¼ 1; 2; 3; and

P
ixi # 1 (Fig-

ure 1B). If the r ¼ 0 and there is no recurrent mutation, then
all boundary surfaces of the domain are absorbing, so if one of
the haplotypes is lost from the population it remains lost.
However, with r. 0; the boundary is not necessarily absorb-
ing, as recombination may reintroduce a previously absent
haplotype. For example, if only Ab and aB haplotypes are
found in the population, a recombination event may give rise
to either an ab orAB haplotype in the next generation. Some of
the edges of the domain are absorbing, since once one of either
A=a orB=b fixes at the left or right locus, respectively, that two-
locus pair remains fixed in the absence of recurrent mutation.

We numerically solved Equation 2 using finite differencing
in a framework similar to Ragsdale et al. (2016). We split the
diffusion operator into mixed and nonmixed terms, using an
implicit alternating direction scheme for the nonmixed spa-
tial derivatives (Chang and Cooper 1970), and a standard
explicit scheme for the mixed spatial derivatives. We used
equal numbers of uniformly spaced grid points for each spa-
tial dimension, so that grid points coincided directly on the
off-axes surface of the domain. This allowed for density to be
accurately integrated along the surface and interior of the
domain. As discussed in Ragsdale et al. (2016), and detailed
in Supplemental Material, File S1, naively applying finite

Figure 1 Two-locus model and frequency spectrum (A) Two loci with
two alleles each are separated by recombination distance r ¼ 4Ner:
Four haplotypes are possible, and we track the frequencies of the three
derived haplotypes. (B) Frequencies change within a tetrahedral do-
main, with corners of the domain corresponding to one of the four
haplotypes fixed in the population. New two-locus pairs occur when a
new mutation A occurs against the B=b background, or when B occurs
against the A=a background, so we inject density along the Ab or aB
axes proportional to the background one-locus allele frequencies. (C) A
sample two-locus haplotype frequency spectrum for a sample size of
n ¼ 12:
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differencing along the off-axes surface led to numerical error
in the solution to f. Thus, we instead accounted for density
moving between the interior of the domain and that surface
by directly moving density between the two each timestep.
To solve for the two-locus spectrum under a nonequilibrium
demographic model nðtÞ;we first solved for f at equilibrium,
and then integrated forward according to n.We then sampled
f against the multinomial sampling distribution with sample
size n (Equation 1) to obtain the two-locus spectrum.

Because it is three-dimensional, numerically integrating
the two-locus diffusion equation requires computation pro-
portional to n3grid; where ngrid is the number of grid points
used in discretization. In practice, ngrid must be larger than
the data sample size n for accurate solution, and extrapolat-
ing from several ngrid settings dramatically improves accuracy
(File S1). By contrast, solving the single-population one-locus
diffusion equation requires computation proportional to ngrid:
In most cases, analysis of two-locus statistics will thus be
much more computationally intensive than analysis of one-
locus statistics.

Extension of the PRF to two loci

Because the diffusion equation is linear, it can be used to solve
for thedensityofall two-locus frequencies in thepopulationby
allowing for the continuous influx of new pairs of loci. In the
single locus case, we assume an infinite sites model and that
mutations evolve independently. New mutations arise at rate
proportional to uN ¼ 4Nm; where m is the per-base mutation
rate, and N is the population size. Mutations begin at fre-
quency 1=2N; which suggests that as N/N in the diffusion
limit, any new mutation would immediately vanish. Sawyer
and Hartl (1992) describe how to compensate for this by
taking the scaled mutation rate uN/N so that the expected
allele frequency spectrum remains proportional to u ¼ 4Nam;

where Na is the ancestral effective population size. The AFS
for a sample of size n is then found by integrating against the
binomial sampling function

FbiðiÞ ¼ 2
Z 1

0

�
n
i

�
fðxÞxið12xÞn2idx: (3)

Because f ðxÞ is proportional to u, Fbi is also proportional to u.
Moreover, the likelihood of an observed AFS is the product of
Poisson likelihoods across bins, with means given by Fbi
(Sawyer and Hartl 1992). In the numerical solution to
the single-locus diffusion equation, we approximate the limit

N/N by adding density to the smallest interior grid point D
at rate u=D; as in Gutenkunst et al. (2009).

In the two-locus model, a new linked pair of polymorphic
sites arises when a mutation occurs at one locus (suppose the
left A=a locus) when the other is already polymorphic (B=b).
The frequency of B at the right locus is determined by f ðxÞ;
and the probability that it is polymorphic is proportional to
the population-scaled mutation rate u, as in single-locus PRF
theory. For the left locus, in the diffusion limit (N/N)
we again allow uN/N so that new A mutations enter the
population proportional to u ¼ 4Nam: Observed pairs of loci,
with both sites segregating in the population, thus occur at
rate proportional to u2:Numerically, we handled this influx of
density by injecting mass into the two-locus diffusion equa-
tion. We simultaneously tracked the single-locus allele fre-
quency density function f, and set the influx of density into f

proportional to f � u=D along the x2 and x3 axes (Figure 1B
and File S1).

Composite likelihood estimation and
demographic inference

We follow the composite likelihood approach outlined by
Hudson (2001), in which we consider pairs of loci and their
sampling distribution. Reducing the full likelihood for more
than two linked loci to the composite likelihood over all pos-
sible pairs of polymorphisms leads to the loss of information.
However, computing two-locus sampling statistics retains a
considerable amount of information regarding both allele
frequencies and patterns of LD between them. For recombi-
nation distances r 2 ½rmin; rmax�; we consider all pairs of loci
separated by each value of r within this range and then store
the sampled frequencies in the appropriate two-locus fre-
quency spectrum. In practice, recombination distances vary
continuously over any interval, so we are required to bin
our data within subintervals of r by defining intervals
½r0; r1Þ; ½r1; r2Þ: For fine enough subintervals, we approxi-
mated the expected two-locus spectrum for an interval
½ri21; riÞ using our diffusion approach with the mean recom-
bination rate over that interval r ¼ ðri21 þ riÞ=2:

For a given r-interval, we made the assumption that all
pairs of loci contributing to the two-locus spectrum are in-
dependent, approximating the full likelihood by the compos-
ite likelihood across all pairs of loci. The two-locus frequency
spectrum then forms a Poisson random field, so for sam-
ple data D and expected model M calculated under model

Table 1 Point estimates from fits to Drosophila data. Reported log-likelihoods (LL) are for two-locus data using the demographic history
parameters from each fit. 95% confidence intervals are given in Table S1 in File S1

Data Statistics (Model) n1 n2 T1 T2 pmis Ne LL

One-locus (2-epoch) 4.23 0.329 0.0476 302,900 –1,368,000
One-locus (3-epoch) 2.35 10.7 0.388 0.0938 0.0496 291,500 –1,629,500
Two-locus (fix Ne; 2-epoch) 4.05 0.371 0.0454 3 3 105 –1.325,400
Two-locus (fix Ne; 3-epoch) 1.76 4.67 0.302 0.247 0.0469 3 3 105 –1,289,400
Two-locus (var. Ne; 2-epoch) 4.05 0.371 0.0454 299,900 –1,325,400
Two-locus (var. Ne; 3-epoch) 1.47 4.64 0.398 0.287 0.0474 286,600 –1,283,740
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parameters Q; the likelihood of the data LðQjDÞ can be cal-
culated by assuming each data entry Di is a Poisson random
variable with mean Mi: Thus, the likelihood function for a
single r-bin is

LðQjDÞ ¼
Y
i

e2MiMDi
i

Di!
: (4)

We allowed the population mutation rate u to be an implicit
parameter for each bin, which scales the total size of the
frequency spectrum, while retaining its shape. Themaximum
likelihood value for u is then û ¼ ðPDi=

P
~MiÞ1=2;where ~M is

the model spectrum with u set to one. The square root arises
because mutations that are paired to existing variant sites
arise at rate proportional to u, but those existing mutations
also arise at rate proportional to u, so that the total rate of
influx of new two-locus pairs occurs at a rate proportional to
u2; as described in the previous section.

We simultaneously considered all bin intervals of
r 2 ½rmin; rmax�; and so for bin centers ðr1=2; r1þ1=2; . . .Þ;
the likelihood function is

L
QjDrj; j ¼ 1=2; 1þ 1=2; . . .
� ¼ Y

j

Y
i

e2Mrj ;iM
Drj ;i

rj;i

Drj;i!
; (5)

where j indexes the r-bins, and i indexes the frequency spectrum
entries for a given rj: In reality, pairs of loci are not independent,
so we used the Godambe Information Matrix (GIM) to estimate
parameter uncertainties (Coffman et al. 2016), which adjusts the
composite likelihood statistics to account for linkage between
data. This required bootstrapping the data, and we did so by
dividing the autosomal genome into 1000 bins of equal length
and resampling these regions with replacement.

We fit single-population demographic models to the data,
which are defined by parameterized population size history
functions nðtÞ (Equation 2).We considered simplified demo-
graphic models that may be described by a handful of param-
eters, unlike the many-parameter functions used in Liu and
Fu (2015). For example, in an instantaneous expansion
model, the parameters are the relative change in size n and
the time T in the past that the population changed size. In
principle, our approach may be used to simulate any size
function nðtÞ; including piece-wise constant and exponential
functions. In practice, however, complex many-parameter
functions may be unidentifiable from the available data
(Bhaskar and Song 2014; Lapierre et al. 2017).

Phased and unphased data

For data with phased chromosomes, determining haplotype
frequencies is a straightforward exercise of counting observed
types. Using an aligned outgroup, the ancestral state for each
SNPmaybedetermined, so that the two-locus spectrumstores
derived two-locus allele frequencies. The ancestral state for
each locusmay bemisidentified, potentially due to sequencing
error or recurrent mutation along the lineage leading to

the outgroup, and this can distort the two-locus spectrum
(Hernandez et al. 2007). To account for ancestral misidentifi-
cation, we included the probability pmis 2 ½0; 1� that a given
SNP had a misidentified state in our model fitting. Thus, with
probability pmisð12 pmisÞ the A allele was misidentified but
the B allele was correctly identified, andwith the same prob-
ability the B allele was misidentified and the A allele was
correctly identified. Both alleles A and B were misidentified
with probability p2mis: In fitting a demographic model to
data, we fit pmis along with the parameters from the demo-
graphic model.

When data are unphased, as is the case for many genomic
datasets, observed haplotypes can not be tallied. Rather,
we are left with counts of genotypes in individuals,
ðnAABB; nAABb; nAAbb; nAaBB; . . .Þ: The composite linkage disequi-
librium statistic D̂ is an unbiased estimator for D (Weir 1979;
Zaykin 2004),

D̂ ¼ 1
n
ð2nAABB þ nAABb þ nAaBB þ 1

2
nAaBbÞ2 2pq; (6)

where n is the number of sampled individuals. One possible
approach to summarize observed data might be to work with
the joint statistics p ¼ nA; q ¼ nB; and D̂: Instead, we directly
used genotype counts in the “genotype frequency spectrum”

G. In genotype data, individualsmay carry AA;Aa; or aa at the
left locus, and BB; Bb; or bb at the right locus. Thus, there are
nine possible two-locus genotypes (AABB; AABb; AAbb;
AaBB; . . .) that could be observed to be carried by an indi-
vidual. G is an eight-dimensional object whose state space
has size O


ðnþ 1Þ8�; but it is sparse so it can be stored
efficiently. Each genotype can only be formed by the pairing
of two specific haplotypes (e.g., AABb can only be from one
haplotype of each AB and Ab), except for AaBb;which could
be formed by ABþ ab or Abþ aB: Thus, we expected G to
still carry information about demography through the joint
patterns of allele frequencies and LD. Expected genotype
frequencies can be calculated from expected haplotype fre-
quencies, and we detail our approach in File S1.

Drosophila sequence data and recombination map

As an application, we considered a single Zambian population
of fruit flies, using data from phase 3 of the Drosophila Pop-
ulation Genomics Project (DPGP3), available from the Dro-
sophila Genome Nexus (Lack et al. 2015). The data consisted
of 197 sequenced haploid embryos, so genomes were neces-
sarily phased. We used Annovar (Wang et al. 2010) to anno-
tate all biallelic SNPs across the genome, and we used
intronic and intergenic regions in our two-locus analysis.
We determined the ancestral allele for each SNP using the
alignment to D. simulans (April 2006, dm3 aligned to dro-
Sim1, downloaded from the UCSC genome browser), by
assuming the D. simulans allele was ancestral. If the D. mel-
anogaster site had no alignment, or if the D. simulans allele
was different than the twomelanogaster alleles, we discarded
that site.
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For each chromosome, we considered all pairs of biallelic
SNPs in intergenic and intronic regions for which an ancestral
state could be determined, within recombination distance
rmax: We determined recombination distances using the re-
combination map inferred by Comeron et al. (2012), which
reports cumulative recombination rates in units of centimor-
gan over 100,000 bp intervals along each chromosome per
female meiosis. Because recombination only occurs in fe-
males in D. melanogaster, we halved the reported rates to find
the effective recombination rate per generation. We con-
verted to r ¼ 4Ner by taking the map distance d (in centimor-
gan) separating the two SNPs and multiplying by 4Ne=100:
This required an estimate for Ne; so we used neutral demo-
graphic fits to intronic and intergenic single-locus data, which
provided an estimate for u ¼ 4NemL: Here, we assumed a mu-
tation rate of m ¼ 5:531029 (Schrider et al. 2013). The total
length of sequences that were included in our analysis was
L � 3:933 107: Then, Ne ¼ u=ð4mLÞ � 33 105: For each
two-locus pair, we counted the number of AB; Ab; aB; and ab
haplotypes across all 197 samples, and then subsampled to a
sample size of n ¼ 20: These data could be projected down
to a sample size n ¼ 20 (File S1), but we chose to subsample,
because caching in memory the many projection matrices
necessary to account for different numbers of successful calls
was infeasible. Subsampling allowed for more pairs to be in-
cluded in the data, as any pair of loci without missing haplo-
type data for at least 20 samples was included. Additionally,
the smaller sample size allowed for more rapid evaluation of
the expected frequency spectrum for optimization, because
coarser grids could be used to obtain an accurate numerical
solution to f.

Independent inference of Ne

The effective population size Ne is scaled out of the diffusion
equation (Equation 2), but the likelihood of the data does
depend on Ne; because two-locus statistics are binned by the
population-scaled recombination rate r ¼ 4Ner; where r is
the per-generation recombination rate. Thus Ne can be
inferred from two-locus statistics if the per-site rate of recom-
bination r is known, similar to how Ne can be inferred from
one-locus statistics and u ¼ 4Nem if the per-site mutation rate
m is known. Given a recombination map, we then require an
accurate estimate for Ne to appropriately bin the data. In the
case that the effective population size is unknown, Ne may be
left as a parameter to be fit during optimization of the model
to the data. In this approach, we guess an initial effective
population size N0 to first bin the data by r0 ¼ 4N0r (for
example, 104 for human populations, or 106 for Drosophila)
and then allow the r-value for each bin to be rescaled byaN as
r ¼ 4N0raN : If the best fit aN ¼ 1; then N0 turned out to be
the best fit effective population size, while if aN is larger or
smaller than one, then the best fitNe is inferred to be larger or
smaller than N0 by that factor. We rescaled the r value for
each bin of data instead of reassigning data to fixed bins for
fair comparison of likelihoods across varying values of aN and
because reassigning two-locus data each iteration of optimi-

zation would be computationally burdensome. Because of
this rebinning, likelihood calculations for different values of
aN require integrating Equation 2 for different values of r.
For computational efficiency, we cached equilibrium f den-
sities over a fine grid of r values, and used the cached f from
the closest r as the initial condition for each integration.

Inaccuracies in the assumed recombination map may bias
our inferences. In the simplest case, recombination rates may
be systematically underestimated or overestimated relative to
the true rates. In the fixedNe analysis, pairs of loci will thus be
assigned to incorrect r bins, biasing inferences. In the free Ne

analysis, systematic errors in the map will be absorbed into
the estimate of Ne; so demographic parameters will not be
biased when expressed in genetic units, but will be biased
when expressed in physical units. In amore complex case, the
assumed recombination map may be too coarse to capture
hotspots of recombination. The assumed recombination rate
between a pair of loci may thus be higher or lower than the
true rate, depending on whether the pair spans a hotspot
(Figure S1 in File S1). This would add noise to the binning
of pairs of loci by recombination rate, which may bias infer-
ence. The magnitude of this effect will depend on the density
and strengths of hotspots, the density of polymorphisms, and
potentially the underlying demographic history, all which
may be particular to the species or population being studied.

Data availability

The Drosophila data we analyzed (Lack et al. 2015) are avail-
able from the Drosophila Genome Nexus at http://www.
johnpool.net/genomes.html. Our methodology for solving
the two-locus diffusion equation and fitting data are in-
tegrated into dadi, available at https://bitbucket.org/
gutenkunstlab/dadi. Supplemental text, figures, and a ta-
ble that further detail the methodology and Drosophila
application are available in File S1.

Results and Discussion

Numerical accuracy of solution to two-locus allele
frequency spectrum

We first compared our numerical solution for two-locus sta-
tistics for a population in demographic equilibrium to those
calculated by Hudson (2001). Our solution matched those
using Hudson’s algorithm across all values of r, from com-
pletely linked (r ¼ 0) to loose linkage (r ¼ 100) (Figure 2,
top row). To verify our numerical solution for nonequilibrium
demography, we compared it to simulations of the discrete
two-locus process with an influx of mutations. We simulated
a population of N ¼ 1000 diploid, randomly mating indi-
viduals for independent pairs of loci separated by a given
recombination rate. New two-locus pairs entered the pop-
ulation at a rate proportional to Eq. S3 and S4 in File S1.We
allowed the simulation to proceed for 20N generations, and
then applied specified population size changes, sampling
two-locus haplotype frequencies from the population after
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each simulation completed. Our nonequilibrium solution
matched the simulated two-locus statistics (Figure 2, bot-
tom row). See File S1 for further details regarding simula-
tion and numerical accuracy.

Two-locus statistics are sensitive to
demographic history

To assess the increase in statistical power for demographic
history inference using the two-locus spectrum vs. the single-
locus spectrum, we used the information theoretical mea-
sure Kullback-Leibler (KL) divergence (Kullback and Leibler
1951). KL divergence measures the amount of information
lost if an incorrect demographic modelM0 is used to approx-
imate the true model Mtrue; and it can be interpreted as the
expected likelihood ratio statistic for testingMtrue againstM0:

For discrete distributions, such as frequency spectra, KL di-
vergence is defined as

DKLðMtruekM0Þ ¼
X
i

MtrueðiÞlogMtrueðiÞ
M0ðiÞ : (7)

In our comparisons, we took M0 to be a model of constant
demography, and compared the KL divergence for two demo-
graphic models, an instantaneous growth model, and a bottle-
neck and recovery model, between two-locus and single-locus
frequency spectra (Figure 3). A larger KL divergence indicated
that more information is contained in the data to reject the
constant size model. For the two model types, we considered
varying recovery times T since the demographic event, so, in
the growth model, T is the time since the instantaneous ex-
pansion (n ¼ 2), and, in the bottleneck model, T is the time
since recovery from the bottleneck (nB ¼ 0:1;TB ¼ 0:05). In
all cases, the two-locus spectrum ismore informative about the
demography per pair of linked loci than are two unlinked loci
in the single-locus frequency spectrum.

We considered the KL divergence for varying values of
recombination rate r from completely linked (r ¼ 0) to loose

linkage (r ¼ 100). For large r, KL divergence from two-locus
statistics converged to the measure for unlinked single-locus
data, which is to be expected since r/N implies unlinked
loci. The case of complete linkage (r ¼ 0) corresponds to
the triallelic frequency spectrum (Jenkins et al. 2014;
Ragsdale et al. 2016), because without recombination
the fourth haplotype never occurs. Jenkins et al. (2014)
have shown that triallelic loci are more informative about
demographic history than biallelic loci, but our results
show that pairs of sites separated by an intermediate re-
combination distance are often even more informative
(Figure 3). Notably, the most informative recombination
distance varied between demographic models and recov-
ery times T since demographic events. As T increases,
lower recombination rates are relatively more sensitive,
because higher recombination rates will restore levels of
LD faster than lower recombination rates. Therefore,
loosely linked loci are more informative about recent de-
mographic events, while tightly linked loci are more in-
formative about deeper events.

Weperformed theKLdivergence analysis ongenotypedata
as well (Figure 3, red curves), and we found that two-locus
statistics at the genotype level are also more sensitive than
one-locus statistics. For the growth model, the KL divergence
of genotype data were intermediate between the KL diver-
gences of one-locus and haplotype data, but, for the bottle-
neck model, little sensitivity is lost when using genotype data
instead of haplotype data.

Fits to simulated data

To further validate our model and to explore efficient and
informative ways to collate two-locus statistics, we simulated
single-population demographic history under neutrality with
realistic human mutation and recombination rates using ms
(Hudson 2002) (details in File S1). Each simulation consisted
of 100, 1-Mb regions under a simple growth model (instan-
taneous expansion by a factor of 2, 0.1 time units before

Figure 2 Verification of numerical solution. For sample size n ¼ 30; the distribution of nAB is shown, when the frequencies of A and B are p ¼ 10 and
q ¼ 15 and r is varied. Top row: Comparison to equilibrium statistics from Hudson (2001). Bottom row: Comparison to discrete simulation under
growth model.
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present), to which we then fit a two-epoch demographic
model using both the single- and two-locus statistics of the
simulation (File S1). We repeated this simulation and fitting
process 50 times, and checked how well we recovered the
simulated demographic parameters. We used the same sim-
ulations to check the accuracy of our fits to genotype data, by
pairing chromosomes to create diploid individuals. Figure 4
shows our fits to simulated data, with two-locus genotype
statistics more precisely recovering the true demographic
model than single-locus statistics, and haplotype statistics
more precisely than genotype statistics. When we allowed
Ne to vary, we also precisely recovered the simulated param-
eters, including aN (Figure 4B). The inferred parameter val-
ues were correlated between approaches (Figure S2 in File
S1). For example, if the expansion factor was overestimated
using single-locus statistics, it also tended to be overesti-
mated using two-locus statistics.

In an identical fashion, we also simulated a bottleneck
model, in which the population size shrank by a factor of 0.1
for 0.05 genetic time units, and then recovered to its original
size for 0.2 time units until sampling at present (Figure 5). For
this demography, the fits to single-locus statistics were incon-
sistent, and many replicates did not converge to reasonable
parameter values, with nB tending to 0. The two-locus hap-
lotype fits more precisely recovered the modeled parameters,
although the inferred values of nB were consistently slightly
elevated. The fits to genotype data were also more precise
than using single-locus data, consistent with our KL diver-

gence results (Figure 3). Disentangling the depth and dura-
tion of a bottleneck from allele frequency data are notoriously
challenging (Keinan et al. 2007; Bunnefeld et al. 2015), and
jointly incorporating information about LD dramatically im-
proves parameter identifiability.

Figure 4 Fits to data from simulated growth model. (A) We simulated
50 replicate data sets with length 100 Mb under an instantaneous growth
model using ms and checked how precisely we recovered the simulated
parameters for both single- and two-locus data, including allowing Ne to
vary (B). (C, D) For both n and T, fits to the two-locus frequency spectrum
were more precise than single-locus fits. Here, the median values and top
and bottom quartiles are indicated by the boxes, and the whiskers extend
to the largest and smallest inferred values from the simulated datasets.

Figure 3 Sensitivity to demographic history. We compared KL divergence measures between two-locus statistics and the single-locus frequency
spectrum for a simple growth model (A, top row) and a bottleneck model (E, bottom row). The blue curve shows the KL divergence for phased
(haplotype) data, while the red curve is for unphased (genotype) data. In each comparison, we considered the KL divergence between the specified
demographic model and a null model of constant population size. (A) In the instantaneous growth model, the population doubled in size some time T in
the past, and we considered (B) T ¼ 0:05; (C) 0.1, and (D) 0.2. (E) In the bottleneck model, the population shrank to 1=10 its original size for TB ¼ 0:05
genetic time units, and then recovered to its original size T genetic units ago for (F) T ¼ 0:05; (G) 0.1, and (H) 0.2. In all cases, and across all values of r,
KL divergence was greater for two-locus statistics than the corresponding single locus statistics of the same number of unlinked sites. The two-locus
spectrum is thus more sensitive to demographic history than the single-locus spectrum.
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Demographic inference of a Zambian
Drosophila population

As an application of our approach, we considered the demo-
graphic history of a Zambian population of D. melanogaster,
which is thought to be a close proxy to the ancestral population
(Lack et al. 2015). We first fit two- and three-epoch single-

population demographic models to intronic and intergenic
single-locus data in order to estimate u and Ne (Table 1). We
inferred the ancestral effective population size to be�33 105;
which is somewhat lower than previously suggested sizes
for D. melanogaster (Keightley et al. 2014; Garud and Petrov
2016). Using the recombination map of Comeron et al.
(2012), we determined distances in r between pairs of loci,
assuming an effective population size of 33 105; and we
binned two-locus data as described above. We then fit the
two- and three-epochmodels to the two-locus data, with and
without varying Ne (Figure S3 in File S1 and Table 1) and
calculated parameter uncertainties using the Godambe In-
formation Matrix (Table S1 in File S1). For all fits, we sub-
sampled the data to 20 samples for computational speed,
and additional speed-up was afforded by calculating each
r-bin’s expected frequency spectrum in parallel. Our models
all included a parameter pmis to account for potential mis-
identification of the ancestral state of an allele. As expected
(Hernandez et al. 2007), for all fits, pmis was inferred to be
similar to the divergence along the D. simulans lineage from
D. melanogaster (Begun et al. 2007).

For the two-epoch model, parameter values inferred using
single- and two-locus data were similar (Table 1). For the
three-epoch model, the two-locus data led to inferences of
less dramatic growth deeper in the past than did the single-
locus data. Notably, the three-epoch model fit the one-locus
data better than the two-epochmodel, but it produced a worse
likelihood when the resulting demographic parameters were
applied to two-locus data, perhaps indicating over-fitting
(Figure 6 and Table 1). When we included the ancestral
effective population size Ne as a parameter in the two-locus
fits, the best-fit value was similar to that inferred from single-
locus data. In an earlier analysis, wemistakenly set fixedNe in
the two-locus fits to be half the intended value, which led to
dramatically different inferences of demographic parameters
(Table S1 in File S1). Scaling the recombination map by a
fixed estimate for Ne may thus introduce significant bias into

Figure 5 Fits to data from simulated bottleneck model. (A) We simulated
50 replicate data sets with length 100 Mb under a bottleneck and re-
covery demographic history, in which the population declined to 0.1 its
original size for T ¼ 0:05 genetic time units and then recovered to its
original size for 0.2 time units. (C–F) Demographic inferences using sin-
gle-locus data alone could not consistently recover the true parameters.
However, using genotype or haplotype two-locus data allowed for precise
inference of model parameters, including when Ne was allowed to vary (B).

Figure 6 Fits to LD-decay from Drosophila data. LD-decay curves for two-locus models compared to observed decay curves from the data. (A) The two-
locus model using the best fit parameters from single-locus data, (B) the two-locus model fit with Ne set to 33105; and (C) the two-locus model with Ne

allowed to vary. Each of the models underestimates long-range LD decay, as also observed by Garud and Petrov (2016).
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downstream parameter estimates when that estimate is
incorrect.

All the inferred models fit the single-locus frequency spec-
trum well (Figure S4 in File S1). All models, however, under-
estimated long-range LD, although the two-locus model fits
performed better than the single-locus fits (Figure 6). Pre-
vious models of D. melanogaster demographic history also
underestimated long-range LD (Garud and Petrov 2016).
While a more complex demography might be able to better
fit the LD curve, factors aside from single-population demog-
raphy may be critical to generating the pattern of long-range
elevated LD, including population substructure, recent ad-
mixture, or the effects of linked selection.

Previous studies have also fit demographic models with a
potential bottleneck to data from African D. melanogaster
populations. Duchen et al. (2013) used a Zimbabwean popu-
lation to infer demographic history, and reportedNe � 53 106

and an extremely severe bottleneck over 200,000 years ago.
Using the same set of Zambian individuals as our study,
Sheehan and Song (2016) inferred a bottleneck between
10,000 and 100,000 years ago, with Ne � 650; 000 on either
side of the bottleneck, andNe � 170; 000 during the bottleneck.
In contrast,we infermodest stepwise increases in population size
over the last 50,000 years, with no bottleneck. Our approach
does have power to detect bottlenecks (Figure 5), even at mod-
est sample sizes, so the origin of these differences is unclear.

Bothourone-locus and two-locus estimates of theancestral
effective population size of D. melanogaster are notably
smaller than previous estimates. Keightley et al. (2014) esti-
mated the spontaneous mutation rate by sequencing a family
of two parents and 12 full-sibling offspring, and used this
estimate to infer Ne � 1:43 106: The effective population
size may also be estimated from observed levels of diversity,
and Charlesworth (2015) estimatedNe � 0:73 106 using ob-
served synonymous site diversity. Ne is often assumed, or
estimated, to be at least 106; and sometimes much larger,
in many population genetic studies of D. melanogaster
(Thornton and Andolfatto 2006; Sella et al. 2009; Garud
et al. 2015; Garud and Petrov 2016). Our estimates for Ne

were substantially lower. Using levels of diversity for intronic
and intergenic loci, we estimated Ne � 33 105 through our
demographic fits to the single-locus AFS (Table 1). In an
alternative approach, we allowed Ne to vary in the two-locus
inference, and we again estimated a value of Ne � 33 105:
This approach is based on the scaling of the recombination
map without assuming a fixed mutation rate, so it provides
an independent inference of the effective population size.
Together, our results suggest that ancestral Ne for D. mela-
nogastermay be lower than previously estimated, and studies
that require an assumed effective population size should con-
sider a range of possible Ne values that include small sizes.
Notably, it has been suggested that linked selection is com-
mon throughout the genome of D. melanogaster (Garud and
Petrov 2016), and linked selection is known to increase the
variance in offspring distribution, which, in turn, decreases
the effective population size (Leffler et al. 2012).

Conclusions

Based on the continuous approximation to a two-allele two-
locus discrete Wright-Fisher model with recombination, we
developed a numerical solution to the two-locus diffusion
equation that handles arbitrary recombination rates and de-
mographichistory.Weused thismethodtodevelopa composite
likelihood framework to infer demographic history from ob-
served two-locusdata,whichcanhandledata sampledaseither
haplotypes or genotypes. While two-locus statistics have been
used successfully and extensively to infer fine-scale recombi-
nationmapsformanyorganisms,wefocusedonquantifyingthe
additional power afforded by two-locus over single-locus sta-
tistics for demographic history inference. We found that two-
locus statistics do provide substantial additional power. For
example, while inferring the parameters of a bottleneck model
from single-locus data are notoriously difficult (Keinan et al.
2007), we were able to precisely and consistently recover the
correct demographic parameters using two-locus statistics. For
at least some scenarios, little power is lost when data are
unphased and genotype frequencies are fit. Finally, we turned
to data from a Zambian fruit fly population, and we inferred
recent modest population size growth. The demographic his-
tory that we inferred still underestimates the observed long-
range levels of LD, which has been previously observed in this
population (Garud and Petrov 2016). Moreover, using two
independent approaches, one based on levels of diversity,
and the other based on scaling the recombination map, we
inferred the ancestral effective population size to be substan-
tially lower than previous inferences. It is likely that additional
factors to single population demography are at play, including
potentially complicated demographic features such as sub-
structure and admixture, and the effects of linked selection.
Themethods described here are integrated into dadi, available
at https://bitbucket.org/gutenkunstlab/dadi.
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