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ABSTRACT Genetic association studies in admixed populations are underrepresented in the genomics literature, with a key concern for
researchers being the adequate control of spurious associations due to population structure. Linear mixed models (LMMs) are well
suited for genome-wide association studies (GWAS) because they account for both population stratification and cryptic relatedness
and achieve increased statistical power by jointly modeling all genotyped markers. Additionally, Bayesian LMMs allow for more flexible
assumptions about the underlying distribution of genetic effects, and can concurrently estimate the proportion of phenotypic variance
explained by genetic markers. Using three recently published Bayesian LMMs, Bayes R, BSLMM, and BOLT-LMM, we investigate an
existing data set on eye (n = 625) and skin (n = 684) color from Cape Verde, an island nation off West Africa that is home to individuals
with a broad range of phenotypic values for eye and skin color due to the mix of West African and European ancestry. We use
simulations to demonstrate the utility of Bayesian LMMs for mapping loci and studying the genetic architecture of quantitative traits in
admixed populations. The Bayesian LMMs provide evidence for two new pigmentation loci: one for eye color (AHRR) and one for skin

color (DDBT1).
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Variation in eye and skin color may be particularly ap-
parent in admixed populations, especially those formed
from ancestral populations with large differences in these
phenotypes. Pigmentation is a diverse phenotype in humans,
with most of the variation attributable to differences in the
amount, type, and distribution of melanin: a broad term for a
set of biopolymers synthesized by melanocytes (Jablonski
and Chaplin 2000; Parra 2007). The genetic basis for human
pigmentation diversity is yet to be fully understood, but
evidence suggests that natural selection shaped the modern
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distribution of human pigmentation to be a balance between
favoring dark skin near the equator to protect from folate
deficiency and sunburn, and lighter skin at higher latitudes
to allow for optimal vitamin D synthesis (Parra 2007). Genome-
wide association studies (GWAS) provide an avenue to further
understand the genetic mechanisms underlying this variation.
However, GWAS have been predominantly performed in Euro-
pean populations, with other ancestral groups and admixed
populations underrepresented (Need and Goldstein 2009;
Bustamante et al. 2011). Aside from data availability, one key
concern for GWAS in admixed populations is the control of
spurious associations due to population structure. The large
GWAS data sets currently being generated by the genomics
community are likely to span multiple ancestral groups, and
thus methods that can control for spurious associations in such
data sets are of great interest.

There are many methods for correcting for population struc-
ture when performing GWAS, with genomic control (Devlin
and Roeder 1999), regression control (Wang et al. 2005;
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Setakis et al. 2006), and principal component (PC) adjust-
ment (Zhang et al. 2003; Price et al. 2006) being the most
common approaches. These methods perform well for pop-
ulations with simple population structure but may perform
poorly when the relatedness structure is more complex or
in the presence of cryptic relatedness (Zhao et al. 2007).
Linear mixed models (LMMs) have been shown to be effec-
tive at controlling for population structure and cryptic re-
latedness in GWAS; however, they often only consider
individual single nucleotide polymorphisms (SNPs) in iso-
lation (Gianola et al. 2009; Vilhjalmsson and Nordborg
2013; Yang et al. 2014; Loh et al. 2015b). LMMs that jointly
model marker effects may further increase power in struc-
tured populations by capturing the effect of the causal var-
iant using multiple markers. Segura et al. (2012) proposed a
multi-locus LMM approach that uses a stepwise selection
algorithm to jointly capture weak effects, while Rakitsch
et al. (2013) combined the Lasso (Tibshirani 1996) with
the LMM to provide an efficient multi-locus method. Both
methods observed higher power and a lower false discovery
rate (FDR) than single-locus approaches for mapping. Ex-
tensions of the standard LMM, which assumes a single nor-
mal distribution on genetic effects, have been made from a
Bayesian perspective to include alternative distributions on
the genetic effects, and have been applied extensively in the
plant and animal breeding literature (Meuwissen et al.
2001; Habier et al. 2011; Erbe et al. 2012; Zhou et al
2013). Bayesian LMMs (BLMMs) are capable of modeling
all markers jointly and have been shown to perform better in
prediction than the standard LMM when the genetic archi-
tecture of a trait deviates from the infinitesimal model
(Goddard et al. 2010; Moser et al. 2015). Recent implemen-
tations of BLMMs are capable of performing genome-wide
analyses on a large number of individuals (Zhou et al. 2013;
Moser et al. 2015).

We demonstrate the utility of BLMMs for gene discovery by
applying them to eye and skin color phenotypes for individuals
from Cape Verde, an island nation off West Africa that is
home to individuals with large variation in eye and skin color
due to the mix of West African and European ancestry. Beleza
et al. (2013) performed GWAS on the Cape Verde data set,
using principal component adjustment to correct for popula-
tion structure (using the first three PCs). In addition, Beleza
et al. (2013) carried out conditional analyses for the most
significantly associated SNPs, linear regression adjusting for
African ancestry and island of birth, and a mixed effect model
implemented in the EMMAX software (Kang et al. 2010). All
three methods used in Beleza et al. (2013) pointed to the
same set of genetic loci found in the original PC-adjusted
association analysis.

In this work, we apply three recently published BLMM
methods — Bayes R (Erbe et al. 2012; Moser et al. 2015),
Bayesian sparse LMM (BSLMM) (Zhou et al. 2013), and
BOLT-LMM (Loh et al. 2015b) — to the unique Cape Verde
data set. All three methods can perform gene discovery, var-
iance component estimation, and prediction simultaneously,
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and assume different priors on the marker effects. This allows
for a variation of the assumptions of the infinitesimal model,
which is unlikely to hold for the eye and skin color pheno-
types present. We explore the potential of BLMM approaches
to yield improved power to detect associations in GWAS,
particularly in cases where there is substantial confounding
due to population structure or cryptic relatedness. Using real
genotypes from the Cape Verde data set, we simulate both
moderate and highly heritable phenotypes with genetic
architectures that contain both small and large effects to
demonstrate how BLMM methods can be adapted to iden-
tify new quantitative trait loci (QTL) from GWAS. We apply
these methods to the Cape Verde data set and identify two
additional loci that likely contribute to variation in eye and
skin color.

Materials and Methods
Methods overview

The BLMM methods used in this study possess different
implementations of a similar underlying model, i.e., the
LMM with a finite mixture of normal distributions used to
model the underlying distribution of marker effects. Bayes
R (Erbe et al. 2012; Moser et al. 2015) and BSLMM (Zhou
et al. 2013) estimate the effects of all markers jointly as ran-
dom effects, and use Markov chain Monte Carlo (MCMC) to
obtain approximate samples from their posterior distribution
given the observed data. Methods that use multiple markers
to jointly capture the causal QTL effect often lead to higher
power and a lower FDR than single marker approaches
(Segura et al. 2012; Rakitsch et al. 2013; Moser et al.
2015). Alternatively, BOLT-LMM (Loh et al. 2015b) uses a
mixture of two Gaussian distributions to model the marker
effects and uses a fast variational approximation to compute
approximate phenotypic residuals, with each single marker
then evaluated for association with the residuals via a retro-
spective score statistic. This method is more powerful than
standard single marker regression (as are other similar LMM
methods) and provides a bridge between Bayesian modeling
and the frequentist association testing framework (Loh et al.
2015Db). It is thus a good candidate for comparison with the
fully Bayesian methods. Furthermore, BOLT-LMM differs
from Bayes R and BSLMM in that associated evidence is
assessed for each marker using a P-value, whereas Bayes R
and BSLMM summarize the evidence of association via the
posterior inclusion probability, which is the probability that
the marker is associated with the trait given the data. For
multiple-regression models (Bayes R and BSLMM), markers
at a locus jointly capture the QTL effect and thus the associ-
ation signal is best evaluated on genomic windows (1 Mb for
example) (Fan et al. 2011; Fernando 2017). We utitlize a
window-based method for discovering QTL that rests on
the idea that the true associations are those that contribute
the most to the total genetic variation irrespective of whether
some proportion of this genetic variation is potentially due to



confounding. We validate these methodological concepts
through simulation and via application to the Cape Verde
data set.

Cape Verde data set

The Cape Verde data set (Beleza et al. 2013) consists of
625 individuals with high-quality digital eye photographs
and 684 individuals with skin reflectance measurements
and genotypes. For eye color, Beleza et al. (2013) developed
a new measure based on automated analysis of digital pho-
tographs that captures the full range of African-European eye
color variation. For skin color, reflectance spectroscopy was
used on the upper inner arm to calculate a modified melanin
index. Genotype quality control was performed as per Beleza
et al. (2013), but with a minor allele frequency (MAF) thresh-
old of 0.02 resulting in 858,510 autosomal SNPs. Phenotypes
were centered and scaled (by their SD) before regressing the
phenotypes on sex and taking the residuals as the new phe-
notype. The distribution of the eye and skin phenotypes
(standardized to mean O and variance 1) showed deviation
from normality (Supplemental Material, Figure S1 in File
S1). Thus, the continuous phenotypes for eye and skin color
were transformed using a rank-based inverse normal trans-
formation (Blom 1958).

To explore the level of admixture in the Cape Verde data
set, we visualized the first two projected PCs [implemented in
the software of Chen et al. (2016)] relative to the HapMap
3 (International HapMap 3 Consortium et al. 2010) European
and African ancestry cohorts (Figure S2 in File S1). Further-
more, to investigate the relatedness of individuals in these
data we summarized the diagonals and off diagonals of the
genetic relationship matrix, which was estimated using
genome-wide marker data in the GCTA software (Yang et al.
2011). For comparison, we also estimated the genetic rela-
tionship matrix of a random subset of 685 individuals from a
homogeneous European population from the Atherosclerosis
Risk in Communities (ARIC) Study (dbGaP accession number
phs000090.v1.p1). A summary of the diagonals and off diag-
onals of the genetic relationship matrix for both populations
shows much greater variance in the Cape Verde population
than the European population (Figure S3 and Table S1 in File
S1). The maximum value of the genetic relationship matrix
off diagonals of the Cape Verde population is ~0.25 suggest-
ing that the population is not made up of solely unrelated
individuals (Figure S3 in File S1).

Model statement

For each of the methods, the following linear model is used to
relate phenotypes y to genotypes X

y=1lpu+XB +e, €Y)

where y is a vector of phenotype values from n individuals, X
is an n X m matrix of genotypes measured for each individu-
al, B is a vector of m genetic effects to be estimated, 1, is a
vector of size n of ones, u represents the common phenotypic

mean, and ¢ is a vector of size n from distribution MVN (0, o21),
where I is the identity matrix. The elements of X are 0, 1,
2 encoded genotypes and represent the counts of the refer-
ence allele at each of m markers. Whether the columns of X
are centered and/or standardized depends on the method
used, with Bayes R mean standardized and scaled to have
variance 1, BSLMM mean centered only, and BOLT-LMM
mean centered and standardized to have common variance
(Loh et al. 2015b). Standardizing the columns of X corre-
sponds to making an assumption that rarer variants have
larger effects than common variants (Zhou et al. 2013). To
provide a baseline for comparison with the results generated
by the BLMMs, associations between each SNP and the phe-
notypes (adjusted for sex) were assessed using the marginal
regression model (i.e., standard GWAS). Similar to Beleza
et al. (2013), the first 10 PCs were fitted as covariates to
adjust for population stratification with the analyses per-
formed using the PLINK 2 software (Chang et al. 2015).

Bayesian linear mixed models

Bayes R: Erbe et al. (2012) were the first to present the Bayes
R method, which uses a Bayesian hierarchical linear random
regression model and poses the following four component
mixture priors for each SNP effect in model (1):

Bj ~ mN(0,0X o2) + mN(0,107* X o7)
+m3N(0,107° X 07) + m4N(0,107> X 07),  (2)

where j € (1,...,m) is an index over the SNPs, a§ is the
additive genetic variance explained by SNPs, and r; is the
proportion of SNPs that have no effect. In practice, the true
distribution of genetic effects is not known and thus one of
the strengths of this prior is its flexibility to approximate
various underlying distributions. Depending on prior knowl-
edge or cross-validation, the model can accommodate fewer
or >4 components and larger variance classes (i.e., changing
the multiplier of aé for any of the mixture components
1072 —-107! for instance). The model fits all SNPs simulta-
neously, which accounts for linkage disequilibrium (LD) be-
tween SNPs, and increases power to detect associations (as
do other methods) (Erbe et al. 2012; Moser et al. 2015). The
model also induces sparsity via the first component of the
mixture, thus fitting with the hypothesis that not all markers
are in LD with a causal variant. Moser et al. (2015) incorpo-
rated a hyper-parameter for the variance explained by ge-
nome-wide SNPs, o-g, which allows for the proportion of
phenotypic variance explained by genotyped SNPs (PVE) to
be estimated from the data, rather than fixing it prior to anal-
ysis as in Erbe et al. (2012).

BSLMM: BSLMM (Zhou et al. 2013) summarizes the two
ends of the spectrum with respect to the assumption of the
distribution of genetic effects, where the LMM assumes every
variant has an effect, and the sparse BLMM assumes that a
very small proportion of variants have an effect. Zhou et al.
(2013) highlight that the relative performance of BLMMs
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would vary depending on the true underlying genetic archi-
tecture of the phenotype. BSLMM is a hybrid approach that
includes the LMM and sparse regression model as special
cases and is capable of learning the genetic architecture from
the data. Additionally, BSLMM makes estimation of this type
tractable for reasonably large data sets using linear algebra
tricks for LMMs. Bayes R and BSLMM report the posterior
probability that a polymorphic site affects the trait condi-
tional on the data, which is a very natural statistic to interpret
in the context of QTL identification. For these methods, the
posterior inclusion probability (PIP) summarizes the number
of times a locus was present in the model.

Zhou et al. (2013) assume that B; from Equation (1) comes
from a mixture of two normal distributions:

Bj ~ 7TN(O, (Ug + U%)/(m’r)) +(1- 7T)N(O, 0’%/("’17’));

where setting 7 = 0 yields the LMM, and setting o, = 0
yields the sparse regression model in which a subset of SNPs
is assumed to have no effect (noninfinitesimal model), m is
the number of genetic markers, and 7 is the reciprocal of the
residual variance. This model can be interpreted as all vari-
ants have at least a small effect, which are normally distrib-
uted with variance ¢7/(mr), and some proportion 7 of
variants that have an additional effect that is normally dis-
tributed with variance o2/(mr).

BOLT-LMM: BOLT-LMM (Loh et al. 2015b) relaxes the as-
sumptions of the infinitesimal model by using a mixture of
two Gaussian distributions as the prior on g; in Equation (1),
giving the model greater flexibility to accommodate SNPs of
large effect while maintaining effective modeling of genome-
wide effects (for example, ancestry). The noninfinitesimal
component amounts to a generalization of the standard
mixed model, which places a spike-and-slab mixture of two
Gaussian priors on SNP effect sizes i.e.,

B;j ~ wN(0,0%) + (1 —m)N(0,03),

where 7 is the mixing proportion and 0% and o3 the variances
of the two Gaussians. This assumption gives the model
greater flexibility to accommodate SNPs of large effect while
modeling genome-wide effects. Loh et al. (2015b) note that it
is important that the spike component have nonzero variance
to capture genome-wide ancestry or relatedness effects.
When testing SNPs for association, effects attributed to the
random component, for all other chromosomes except that of
the SNP being tested [also referred to as a leave one chromo-
some out (LOCO) approach (Yang et al. 2014)], are condi-
tioned out from the phenotype and the final association
is performed on the residuals of this conditioning step,
which protects against confounding (Loh et al. 2015b).
BOLT-LMM uses a variational approximation to fit Bayesian
linear regressions for the Gaussian mixture priors rather than
MCMC as in Bayes R and BSLMM. BOLT-LMM uses cross-
validation to estimate hyper-parameters for the variational
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algorithm, rather than relying on variational approximate
log-likelihoods, because it was found to be more robust to
slackness of the variational approximation caused by LD (the
variational approximation is a good approximation when the
SNPs X are independent; Carbonetto and Stephens 2012).
BOLT-LMM could also be viewed as a hybrid methodology
that applies a retrospective hypothesis test for association of
the left-out SNPs with the residual phenotype. This is a key
point of difference from Bayes R and BSLMM which report a
PIP for each SNP, whereas BOLT-LMM retains the classical
hypothesis test approach. Loh et al. (2015b) simulated phe-
notypes that included an ancestry effect and found that the
BOLT-LMM chi-squared statistics were well calibrated in
terms of Ag¢ and the mixed-model analysis achieved statisti-
cally significant gains in power over principal component
analysis (PCA) across simulations. The genomic inflation fac-
tor Agc is defined as the ratio of the median of the empirically
observed distribution of the association test statistic to the
expected median (from the X% distribution) (Devlin and
Roeder 1999).

Implementation of BLMM methodology

For Bayes R [implemented in the software provided in Moser
et al. (2015)], we assumed the prior in Equation (2) with a
5% largest class. Additional prior assumptions were made as
per the default of the program provided in Moser et al.
(2015). The 5% variance class was used because previous
estimates of variance explained for large-effect loci from
eye and skin color were of this order, as reported in Beleza
et al. (2013). To monitor convergence of the MCMC chains,
we ran two chains with 100,000 iterations and 20,000 burn
iterations and another for 200,000 iterations with 40,000
burn in iterations, which included permuting the SNP order
to improve mixing, and a thinning rate of 1 in every 10 iter-
ations. We compared the results from the two chains, and
investigated the agreement between the estimates of the
PVE and the rank of the top regions for both eye and skin
color. For BSLMM, we similarly ran a short and long chain,
one with 1 million iterations with 100,000 burn in (program
default) and a longer chain of 2 million iterations with
100,000 burn in. When implementing the BOLT-LMM soft-
ware, an LD score table is required. The LD score table was
generated for the Cape Verde data set using the available
software (Bulik-Sullivan et al. 2015). This table was subse-
quently used when running the BOLT-LMM program.

Association inference from BLMMs

To make inferences about associated loci from Bayes R we
follow the work of Fernando and Garrick (2013) and
Fernando (2017), where the strength of association is tested
for every nonoverlapping 1-Mb window. Fernando and
Garrick (2013) outline that because BLMMs fit all markers
simultaneously, markers that are in high LD are likely to
jointly capture the association signal rather than attribute
the signal to any one SNP within a locus. Therefore, infer-
ence from these methods is best made on genomic windows



rather than on individual markers. To construct a posterior
distribution for the proportion of genetic variance explained
by markers in a genomic region we divide the genome into
1-Mb nonoverlapping regions. For each iteration t of the
MCMC chain we calculate for each window w € (1,...,W)
the genetic variance ogfwt)) = Var(X,,8.,), where X,, is the ma-
trix of SNPs in the window and B!, the estimated effects for
the SNPs in the window. Additionally, for each iteration we
calculate the total genetic variance as aém = Var(Xg"). The
ratio between the window variance and total genetic vari-
ance for each iteration t:

defines the proportion of the total genetic variance explained
by the window. We form the posterior distribution for r{, by
calculating this value for each of t iterations in the MCMC
chain. We compute the posterior probability that a window w
explains > 1% (for example) of the total genetic variation
by calculating the ratio of the number of iterations that
rl, >0.01 divided by the total number of MCMC iterations
T, which is defined to be the window posterior probability of
association [WPPA; Fernando and Garrick (2013)]. It can be
shown that using a threshold of WPPA = « to conclude that a
locus is associated with the phenotype will result in control-
ling the proportion of false positives (PFP) to be <1 —«
(Fernando and Garrick 2013; Zeng 2015). The posterior
probabilities contributing to these calculations require that
the priors placed on the unknown variables in the model are
identical to those used to generate these variables (Fernando
and Garrick 2013). Unfortunately, this is unlikely to be the
case, but as data size increases the posterior distributions will
become increasingly independent of the priors used. Control-
ling the PFP has the added benefits of it being independent of
the number of tests performed and does not require indepen-
dence of tests (Fernando et al. 2004). Bayes R allows for the
nonzero SNP effects for each iteration to be saved to file,
which facilitates these calculations post analysis.

BSLMM does not report the genetic effect from each MCMC
iteration and thus we cannot implement a similar method of
inference to that of Bayes R. However, Guan and Stephens
(2011) suggest calculating the posterior expected number of
SNPs in a window by summing the estimated PIPs for all
genetic variants in that region (denoted WPIP). We use this
measure to summarize the results from BSLMM at the levels
of regions and compare with the inference from the WPPA.

Loci associated with ancestry

To examine the degree of allelic differentiation across the
ancestral gradient of SNPs in the Cape Verde data set, we used
the method presented in Galinsky et al. (2016), which gen-
eralizes a previous method for detecting allele frequency
differences between subpopulations to populations with
fractional ancestry. The method uses the SNP weights from
PCA to calculate a statistic that measures the differentiation

of each SNP along the ancestral gradient. Galinsky et al.
(2016) outline that the statistic is calculated as the dot
product D; = y;vi, where v is the kth eigenvector of the
normalized genotype matrix and y; is the jth normalized
SNP. As per Galinsky et al. (2016), the set of D2 statistics
for all of p SNPs has a x? distribution after appropriate
rescaling, which allows for hypothesis testing for each
SNP to be performed. Inference can then be made about
which loci are highly differentiated along the ancestral gra-
dient. It is proposed that if the top associations for eye and
skin color do not lie in the set of lowest P-values after mul-
tiple testing correction, then this is further evidence that the
set of loci detected is less likely to be spurious due to struc-
ture. Additionally, we use the set of statistics to rank the set
of genotype SNPs for use in simulating phenotypes that are
correlated with ancestry. For highly associated SNPs (eye
and skin color) we only report D? statistic P-values for PC
one as it captures most of the ancestral differences (Figure
S2in File S1). Estimation of the first 10 PCs of the genotype
matrix was performed using the flashpca software (Abraham
and Inouye 2014).

Simulation study

The Cape Verde data provide an opportunity to understand
the performance of the BLMM methods relative to standard
methods in an admixed sample. Specifically, we wanted to
assess how BLMMs perform in terms of gene discovery and
PVE estimation, under simulated genetic architectures that
are similar to those hypothesized for eye and skin color. We
used the simulations to infer the PIP that allows for confidence
in making statements about whether a 1-Mb window around
the causal variant is associated with the trait conditional on
the data. Each of the simulation scenarios used the real ge-
notype data (n = 685) from Cape Verde.

Simulation one: We developed four simulation scenarios: (1)
90% PVE with effects attributed to SNPs at random; (2) 90%
PVE with effects assigned to SNPs that are associated with
ancestry; (3) 50% PVE with effects attributed to SNPs at
random; and (4) 50% PVE with effects assigned to SNPs that
are associated with ancestry. A list of ~18,000 independent
loci was generated for sampling using the PLINK 2 software
and the independent pairwise option with an LD threshold of
0.1. In scenario one, 50 genetic effects were sampled from
two normal distributions with five of the variants sampled
such that they explained a total of 40% of the phenotypic
variance. Another 45 variants were sampled to explain 50%
of the phenotypic variance and thus each phenotype had a
PVE of 0.9. The high PVE was chosen to reflect the eye and
skin phenotypes in the Cape Verde data set. These simulated
phenotypes were designed to be similar (in expectation) to
that of eye and skin color in that there are a few large genetic
effects along with many smaller effects. Fifty phenotypes
were simulated with Bayes R, BSLMM, and BOLT-LMM run
for each realization. Bayes R was run with a 5% largest var-
iance class to model the simulated loci of large effect.
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Additionally, a single SNP association analysis (analyzed in
PLINK 2) corrected for 10 PCs was run for gene discovery
comparison and a PVE estimation benchmark was carried
out using the widely used GREML approach (Yang et al.
2010) in the GCTA software (Yang et al. 2011).

Scenario two retained the same proportions of phenotypic
variance for the randomly sampled 5 and 45 causal loci (and
PVE of 0.9) but placed genetic effects on loci that were
differentiated across the admixture gradient (as outlined in
the section Loci associated with ancestry). It was hypothesized
[and supported by results in Beleza et al. (2013)] that eye
and skin color are correlated with ancestry; therefore, in or-
der to simulate these traits more realistically we generated
50 phenotypes by randomly selecting 50 loci that were asso-
ciated with the first PC (implicitly assuming that PC one is a
good proxy for ancestry as demonstrated in Figure S2 in File
S1). To generate the list of SNPs, we took the list of D?
statistics and subsetted it to those loci that had P-values
<1X1072 but >1x10"3 (~ 11,000 SNPs). This list in-
cludes SNPS that were differentiated across the ancestral
gradient but were not the “most” differentiated. This decision
was made by investigating the D? statistic P-values for the top
loci found in Beleza et al. (2013), which showed that most of
the top loci were differentiated but with P-values >1073.
This list was further filtered by LD to independent loci using
the PLINK clumping procedure. The final list of SNPs con-
sisted of ~3500 PC-one-associated SNPs. Again Bayes R
(5% largest variance class), BSLMM, and BOLT-LMM were
run for each realization with a single SNP association anal-
ysis (run in PLINK) corrected for 10 PCs and PVE estima-
tion in the GCTA software completed for comparison.
Simulation Scenarios Three and Four were a repeat of
the first two but with the 45 small-effect loci explaining
30% of the phenotypic variance, the five large-effect loci
20%, and a PVE value of 0.5. For both of these simulations
Bayes R was run with a 1% largest variance class as the
causal loci explained less variance.

Methods were assessed across simulation scenarios for
their ability to identify genomicregions containing simulated
causal SNPs. Two performance measures were used to sum-
marize the results namely: the true positive rate (TPR) for
detecting a 1-Mb window containing a simulated causal
variant and the FDR for detecting a 1-Mb window containing
a simulated causal variant. For the BOLT-LMM and PLINK
association analyses, a 1-Mbwindow was deemed tobe atrue
positive if it contained an SNP that passed genome-wide
significance and was a member of the simulated windows
that contained a causal SNP. For Bayes R and BSLMM, a 1-Mb
window was deemed to be a true positive if it had a WPPA (of
explaining >1% of the genetic variance) or WPIP greater
than a threshold « and was one of the simulated windows
that contained a causal SNP. For each method, the TPR was
calculated as the number of true positive regions/number
of simulated regions containing a causal SNP. The FDR
was calculated as the (number of regions that passed the
threshold — number of true positives)/number of regions
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that passed the threshold. These measures were summa-
rized for each scenario for all methods with different «
thresholds on WPPA and WPIP for Bayes R and BSLMM
explored.

Furthermore, we investigated the control of the PFP
for varying thresholds on the Bayes R WPPA. To achieve
this, for each a threshold on the WPPA in the set
(0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95) we calcu-
lated the observed PFP across the 50 replicates for each
simulation scenario. A region was declared a false positive
if it passed the @ WPPA threshold but did not contain a
simulated causal variant.

Simulation two: In the second simulation we focused on
investigating the PVE for large-effect loci and again summa-
rized the ability of each method to estimate total PVE with an
altered genetic architecture. This simulation investigated the
hypothesis that confounding contributes less to loci that
explain a substantial amount of the genetic variance. The
sum of the contribution of only highly associated regions is but
a portion of the total genetic variance because it ignores the
contribution from loci that may explain genetic variance but
do not show strong evidence for association. Therefore, it is
hypothesized that the sum of the estimated PVE for highly
associated regions should be a reasonable lower bound to
the total PVE for a trait and should be relatively free of
confounding. We test this hypothesis with simulation in order
to guide the conclusions made about the contribution to PVE
for the top loci detected for eye and skin color in the Cape
Verde population.

The four scenarios in simulation two, were a repeat of
simulation one in terms of PVE values and effect assignment
to loci. However, for each of the four scenarios we place
1005 causal variants throughout the genome. For scenario
one, five variants were chosen at random from independent
SNPs and were fixed such that they each explained 10% of the
phenotypic variance (total of 50%). This was done to limit
variability as random sampling could lead to a few loci explain-
ing much less or much more than 50%. The other 1000 variant
effects were sampled from a normal distribution and, on
average, explained a further 40% of the phenotypic variance.
This number of small-effect variants was chosen to alter the
genetic architecture from simulation one, and again avoid
variability in the total PVE explained by these 1000 loci.
Scenario two was similar to one, except loci were sampled
at random from the set of PC-one-associated SNPs. Scenarios
three and four had the same structure as one and two except a
total PVE of 0.5 was simulated with the top five loci having a
PVE of 0.3. Estimates of the PVE attributed to large-effect loci
were calculated by summing the 2pq3? /Var(y) where p is the
MAF of the causal locus, 8 the regression coefficient, and y
the phenotype vector. For Bayes R and BSLMM the estimate
of PVE was calculated by summing the effects in a 1-Mb re-
gion around the simulated causal locus as these methods
often spread effects or attribute the whole effect to an SNP
in very high LD with the causal variant.
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Data availability

Tables S7-S12 contain detailed results on detected loci for
eye and skin color for the Bayes R, BSLMM, and BOLT-LMM
methods and can be found in File S2. The following freely
available programs were used to complete the analyses:
BayesR (www.github.com/syntheke/bayesR), BOLT-LMM
(www.hsph.harvard.edu/po-ru-loh/software/), GCTA (www.
cnsgenomics.com/software/gcta/), GEMMA (http://www.
xzlab.org/software.html), and PLINK (www.cog-genomics.
org/plink2).

Results
Simulation study

Simulation one: Bayes R and BSLMM performed substan-
tially better (higher TPRs) than BOLT-LMM and single SNP
analysis for more highly heritable traits and in the absence of
confounding due to stratification (scenarios one and three,
Figure 1 and Figure S4 in File S1), but persisted even in the
presence of confounding (scenarios two and four, Figure 1
and Figure S4 in File S1). Thresholding on the WPPA con-
trolled the proportion of false positives to be <(1 — «) but
appeared to be too stringent with a WPPA threshold of 0.5
leading to a PFP between 0.05 and 0.1 across simulation
scenarios (Figure S5 in File S1). For each of the simulation
scenarios an « threshold of 0.95 resulted in an approximate
PFP of 1% and at 0.9 ~2%. These results suggest that a WPPA
and WPIP threshold of 0.5 is reasonable for concluding that a
region has evidence that it is associated with the eye and skin
color traits in these data. This conclusion rests on the assump-
tion that pigmentation traits are moderately heritable and are
driven by loci that are in part differentiated along the ances-
tral gradient in the Cape Verde population.

For estimates of PVE (Figure S6 in File S1), two general
trends emerged. In the absence of confounding due to strati-
fication (scenarios one and three), all four methods exhibited
upward bias with regard to PVE estimation (more apparent in
scenario three). However, in the presence of confounding due
to stratification (scenarios two and four), all four methods
overestimated PVE, consistent with what was originally de-
scribed for BOLT-LMM (Loh et al. 2015a). Second, PVE es-
timates from BOLT-LMM and GCTA showed much more
variance than that of Bayes R or BSLMM. Taken together,
the results of simulation one suggest that applications of
BLMM approaches in the Cape Verde population are most
useful for gene discovery and identification of causal vari-
ants, as we describe below.

Simulation two: Simulation two again suggests that BLMM/
LMMs exhibit an upward bias (when simulated with geno-
types from Cape Verde) with regard to PVE estimation espe-
cially in the presence of confounding due to stratification
(Figure S7 in File S1). Potential reasons for the upward bias
from the BLMMs across simulations are the inclusion of many
small effects, as there exists a nonzero probability that any

one SNP can be included in the model, and thus given the
small sample size, the Bayesian methods include many small
effects that cannot be set to 0 with certainty. This is likely to
reflect overfitting given the large number of parameters rel-
ative to the sample size. This upward bias is hypothesized to
be exacerbated when the effects are aligned with ancestry, as
observed, due to markers capturing the population stratifica-
tion. However, for these scenarios no individual noncausal
SNP had a high inclusion probability or large effect across
all iterations (i.e., posterior mean), and thus in each iteration
there is a different set of null effects that sum to a nonzero
heritability. These conclusions also apply to results from sim-
ulation one. For the five causal loci of large effect, the BLMMs
have a small downward bias in the PVE when compared to
estimates from PLINK (Figure S8 in File S1). However, the
simulation shows that summing the proportion of phenotypic
variance for regions surrounding the causal variant achieves
areasonable lower bound for the true PVE for large-effect loci
and thus for the total PVE.

Loci associated with eye and skin color

For Bayes R, the rank of the top loci and WPPA, distributions of
the genetic variance for the top regions, the posterior means of
the PVE, and the number of loci in the largest variance class all
remained stable for both eye and skin color when the results
from the longer chain were compared with the shorter chain
(Figures S9-S12 and Tables S2 and S3 in File S1). For
BSLMM, we saw a similar stability in the rank and WPIP of
the top loci for eye and skin color and the posterior mean of
the PVE between the long and short chains (Figures S13 and
S14 and Tables S4 and S5 in File S1). We therefore treat the
results from the longer chains as a representative sample
from the target distribution for each of the parameters of
interest. Results from the Bayes R model are based on the
longer chain run (200,000 iterations with 40,000 burn in),
which includes 16,000 iterations after thinning (1 in 10).
Similarly for BSLMM, posterior estimates were generated
from the longer chain of 2 M iterations with 200,000 ele-
ments from the longer chain after thinning.

Eye color: In the original analysis of the Cape Verde data set
with a linear model and PC correction, two loci for eye color
were identified, both on chromosome 15 and linked to the
candidate genes SLC24A5 and HERC2/0CA2 with top SNPs
152470102 and rs12913832, respectively. The three BLMM
methods identified both of these loci and, in addition,
revealed evidence for a new gene-dense locus on chromo-
some 5 (Figure 2 and Figure S15A in File S1 and Table 1).
Bayes R and BSLMM showed very strong evidence for asso-
ciation for the SLC24A5 and HERC2/0OCA2 gene regions with
a WPPA = 1.0 and WPIP = 1.0 for both loci. The chromosome
5 region showed a WPPA of 0.61 and WPIP of 0.55 suggesting
moderate evidence for association, with BOLT-LMM report-
ing the rs7736 SNP within this region as being genome-wide
significant (P-value = 1.1 X 1078). Within the top regions,
Bayes R and BSLMM reported large PIP values for the
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Figure 1 Comparison of the performance of Bayes R, BSLMM, BOLT-LMM, and single SNP PC corrected association analysis (performed in PLINK)
at identifying 1-Mb regions containing causal variants for simulation one, scenarios one and two, which had a simulated PVE equal to 0.9. Panels
include method on the x-axis and rate on the y-axis with the true positive rate (TPR) for detecting a 1-Mb region containing a causal variant (cyan),
and the false discovery rate (red) for each of the methods. For all panels BOLT-LMM and PLINK P-values are thresholded at the genome-wide
significance level (5% 1078) and thus their rates remain fixed across panels. Scenario one (random allocated loci) shows results for Bayes R
and BSLMM that have been thresholded on a WPPA or WPIP >0.1 and 0.2. Scenario two (loci associated with ancestry) shows results for Bayes R
and BSLMM that have been thresholded on a WPPA and WPIP >0.2 and 0.5. For each scenario, the threshold on WPPA/WPIP was decreased from
the initial value (left panel for each scenario) until the median FDR of at least one of either Bayes R of BSLMM was equal to that of BOLT-LMM
and single SNP regression. An alternative threshold is also displayed so that the rate of decrease of the median FDR for the other method can

be observed.

rs12913832 and rs1426654 SNPs (HERC2 and SLC24A5)
(Table 1). The rs1426654 SNP has an LD R? of 0.99 with
the rs2470102 SNP reported as the top association in Beleza
et al. (2013). Within the chromosome 5 locus, the rs7736
SNP showed smaller PIPs of 0.06 and 0.05 for the top SNP
(Table 1). The results from Bayes R and BSLMM show that
there are many variants contributing to the regional associ-
ation signal on chromosome 5 with smaller PIPs spread
across many SNPs (Figure S15A in File S1 and Table S7 in
File S2). Additionally, Bayes R and BSLMM show high PIPs
for the SNP 151635166 (0.67 and 0.90, respectively) sug-
gesting that for the HERC2 locus there may be >1 causal
SNP generating associations (Figure S15B in File S1). The
LD R? of the rs1635166 SNP with rs12913832 is relatively
small (0.25), further supporting this hypothesis (Table S6 in
File S1). BOLT-LMM reported Agc statistics of 0.99 for the
infinitesimal statistics and 0.99 for the noninfinitesimal sta-
tistics (Figure S16 in File S1). The standard linear model
analysis corrected for 10 PCs reported similar top loci to
those of Beleza et al. (2013) (Figure 2D). The standard
linear model analysis reported rs7736 (5.7 X 1077) as the
top SNP at the chromosome 5 locus.

1120 L. R. Lloyd-Jones et al.

The degree of allelic differentiation across the ancestral
gradient, summarized by the D? statistics, for the most highly
associated SNPs showed P-values that did not pass genome-
wide significance suggesting that these SNPs are not mark-
edly differentiated across the first PC (Table 1). However, no
SNP passed genome-wide significance for the allelic differen-
tiation across the ancestral gradient analysis with the top SNP
having an association P-value of 3.6 X 10~°. This shows that
the associated SNPs for eye color are not the most differen-
tiated across the ancestral gradient.

Each of the three BLMM methods showed moderate evi-
dence for an association on chromosome 5 not reported in
Beleza et al. (2013). The locus zoom plots showed a strong
LD pattern extending across a region of several hundred
kilobases that includes six genes of which one, AHRR (aryl-
hydrocarbon receptor repressor), is a plausible candidate
(Figure S15A in File S1). Originally recognized as a homo-
log of the arylhydrocarbon receptor (AhR) gene, AHRR en-
codes a bHLH-PAS protein that binds to the same response
element as AhR but represses AhR signaling. AHRR is widely
expressed, and in zebrafish embryos, morpholinos against
an AHRR paralog, AHRRa, elicit changes in gene expression
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Table 1 Summary of the top loci from Bayes R, BSLMM, and BOLT-LMM

Best BOLT-LMM Bayes R BSLMM D? statistic
Locus 1-Mb region WPPA  WPIP SNP P-value PIP PIP P-value PVE
Eye
AHRR chr5:68778:999418 0.61 0.55 57736 1.1x1078 0.06 0.05 25X 1072 0.02 (0.00, 0.05)
HERC2 chr15:26001220:26998850 1.0 1.0 rs12913832 4.2x107% 1.0 0.81 7.8x 1073 0.30(0.23, 0.38)
SLC24A5 chr15:46004188-46999899 1.0 1.0 rs1426654 8.3 x 1072 0.62 0.37 42x1073 0.07 (0.04, 0.11)
Skin
SLC45A2 chr5:33000379-33999967 1.0 0.92  rs35395 1.3% 10710 0.72 0.44 1.1x 1072 0.05 (0.03, 0.08)
DDB1 chr11:60002783-60976798  0.91 0.86 rs2513329 5.2x 1077 0.32 0.13 3.7x10™* 0.03(0.00, 0.06)
GRMS5/TYR  chr11:88001883-88994234  0.96 1.0 rs10831496 1.8x 10710 0.08 0.06 2.8x1072 0.03(0.01, 0.06)
APBA2 chr15:27000239-27999050 1.0 0.98 154424881 5.6x 10710 0.17 0.03 5.7X10™* 0.05(0.02, 0.08)
SLC24A5 chr15:46004188-46999899 1.0 1.0 rs1426654 2.7 x 1072 1.0 0.56 34%x1073 0.16(0.11, 0.20)

The WPPA and WPIP are reported for the stated 1-Mb regions with hg18 bp coordinates. For each region the best SNP refers to the SNP in the region with the smallest
P-value from BOLT-LMM. For the eye color HERC2 locus the PIP for Bayes R is with reference to the SNP rs1129038, which has an LD R? of 0.98 with the rs12913832 SNP. For
Bayes R the PIP for each SNP is that of being in the model, i.e., the sum of the PIP of being in any of the nonzero variance classes and for BSLMM the PIP corresponds to the
SNP having an effect above the polygenic background. Rows containing bold gene names are potentially novel relative to those found by Beleza et a/. (2013). The D? statistic
P-values are those generated from the allelic differentiation along the ancestral gradient method and are for principal component one. The reported PVE is the posterior
mean of the genetic variance for the 1-Mb region calculated from Bayes R in the WPPA procedure with the 95% credible interval in parentheses.

thought to reflect a role in eye development and function
(Aluru et al. 2014).

Skin color: In the original GWAS, Beleza et al. (2013) re-
ported four loci for skin color on chromosomes 5, 11, and
15 with candidate genes SLC45A2, GRM5/TYR, APBA2, and
SLC24A5. Bayes R, BSLMM, and BOLT-LMM all reported
these regions as showing evidence for association and, in
addition, revealed evidence for a new region on chromo-
some 11. Bayes R and BSLMM reported WPPA and WPIP
values >0.92 for the four loci identified in Beleza et al.
(2013) with BOLT-LMM reporting SNPs passing the genome-
wide significance for each of the regions (Figure 3 and
Table 1). Among the genes present in the additional region
on chromosome 11 recognized by the BLMM methods, the
DDBI1 gene is a plausible candidate for regulating variation
in skin color (Figure S15C in File S1). DDBI is involved in
nucleotide excision repair following UV-induced DNA dam-
age, and therefore could play a role in the tanning response
and/or photosensitivity (Liu et al. 2000; Bekker-Jensen et al.
2010). Bayes R and BSLMM reported strong evidence for this
locus with a WPPA = 0.91 and a WPIP = 0.86 that this region
is associated with skin color. The SNP with the smallest
P-value from BOLT-LMM (rs2513329) did not reach genome-
wide significance (P-value = 5.2 X 1077). The Bayes R and
BSLMM PIPs for the rs2513329 SNP (Table 1) in the DDB1
region were smaller than those for a second SNP located in
the same region (rs10792312 PIP = 0.46 and 0.76), which
has an LD R? of 1.0 with rs2513329 (Table S6 in File S1).
Similar to the chromosome 5 locus for eye color, the GRM5/
TYR locus showed many variants contributing to the regional
association with no one variant showing a PIP >0.3 (Tables
S10 and S11 in File S2).

BOLT-LMM only reported the infinitesimal model statistics
for skin color with a Ag¢ value of 1.04 (Figure S16 in File S1).
The linear association analysis corrected for 10 PCs reported
similar top loci to those by Beleza et al. (2013) (Figure 3D).
The degree of allelic differentiation across the ancestral
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gradient analysis, summarized by the D? statistics, for the
most highly associated SNPs showed allelic differentiation
P-values that did not pass genome-wide, suggesting that
these SNPs are not markedly differentiated across the first
PC (Table 1).

Proportion of phenotypic variance explained by highly
associated regions: Given the evidence from the three mod-
els, three regions for eye color showed the most evidence for
association. These were the AHRR gene region on chromo-
some 5, and the HERC2/0OCA2 and SLC24A5 gene on chro-
mosome 15. The distribution of the genetic variance was
generated as a by-product of the WPPA calculation and thus
from these analyses we calculated the posterior means for the
PVE by dividing the estimated genetic variance for each re-
gion for each iteration t by the estimated phenotypic variance
og + o2 for each iteration. The three regions for eye color
(AHRR, HERC2/0CA2, SLC24A5) explained 2.0% (0.0, 5.0),
30% (23, 38), and 7.0% (4.0, 11) of the phenotypic variance
for eye color, respectively (intervals in parentheses indicate
the 95% credible interval for these estimates calculated using
quantiles). These three regions explained 39% (32, 46) of the
phenotypic variance for eye color (Table 1).

For skin color, the five regions with the most evidence for
association were SLC45A2, GRM5/TYR, APBA2, and SLC24A5,
and the additional region of DDB1. These regions explained
5.0% (3.0, 8.0), 3.0% (1.0, 6.0), 5.0% (2.0, 8.0), 16% (11,
20), and 3.0% (0.0, 6.0) of the phenotypic variance, respec-
tively (Table 1). The total proportion of genetic variation
explained by the top five regions with evidence for association
was 32% (26, 38).

Discussion

The use of BLMMs in the heavily admixed Cape Verde pop-
ulation has led to evidence for additional associations for eye
and skin color when compared to those reported by Beleza
etal. (2013). The results from the BLMMs are consistent with
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the top regions presented in Beleza et al. (2013), and avoid
the choice of the number of PCs required to control for spu-
rious associations (as do frequentist versions of the LMM)
due to ancestral differences. The use of concordant evidence
across the three BLMM methods, coupled with biological an-
notation, indicates a potential involvement of the AHRR gene
region for eye color and the DDB1 gene region for skin color.
The moderate WPPA and WPIP values for the AHRR gene
locus were reinforced by a genome-wide significant result
for the rs7736 SNP from BOLT-LMM. Given the high WPPA
and WPIP for the locus in the DDB1 gene, and the central role
in DNA repair post UV damage that the protein product of this
gene encodes, we argue that this is statistically the most
suggestive locus for an effect on skin color not detected by
the PC-corrected linear model approach.

The results for eye and skin color are further supported by
the simulations where for highly heritable traits, Bayes R and
BSLMM retained higher TPRs for the same FDRs than the
BOLT-LMM and standard GWAS methods (at a genome-wide
significance threshold), which is likely derived from their
ability to jointly capture the effect of a causal variant using
multiple SNPs simultaneously (Guan and Stephens 2011;
Segura et al. 2012; Moser et al. 2015). This loss in power
was seen in the results for the chromosome five locus for
eye color, where PC adjustment resulted in associations not
being genome-wide significant relative to the BOLT-LMM re-
sults. This suggests that for discovery of new associations,
BLMMs may be a potential improvement over currently
implemented LMM methodology in structured populations.
The results from simulation 1, scenarios 1 and 2 show that
Bayes R has a higher median TPR and a lower median FDR
than BSLMM for a given WPPA and WPIP threshold. This may
be driven by the ability of Bayes R to better model the large
genetic effects for these simulated traits, which are generated
by the high PVE in these scenarios. This is further reinforced
by the convergence of the median TPR and FDR for Bayes
R and BSLMM in scenarios 3 and 4, which have a simulated
PVE = 0.5. This suggests that for more polygenic traits, Bayes
R and BSLMM are expected to perform equally well at map-
ping loci, a result observed in Moser et al. (2015). As BSLMM
does not allow for the calculation of the WPPA statistics, the
comparisons made between the median TPR and FDR across
simulation scenarios are not optimal. It is difficult to evaluate
how much of this difference is due to practical rather than
fundamental (such as the prior distribution on the genetic
effects) reasons. We also demonstrated that for each of the
simulation scenarios that the PFP was controlled to be be-
tween 5 and 10% when a WPPA threshold of 0.5 was applied.
This lends further evidence to the association results in the
AHRR and DDBI1 loci, which had a WPPA/WPIP of 0.6/0.55
and 0.91/0.86 respectively.

Previous estimates of PVE indicate that eye and skin color
are highly heritable with estimates for both traits ranging
between 0.7 and 0.9 (Brauer and Chopra 1978; Byard 1981).
One consequence of the definition of heritability is that it is a
population-specific parameter, because both the variation in
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additive genetic factors (and nonadditive), as well as the
environmental variance, are population specific (Visscher
et al. 2008). For traits simulated using the Cape Verde geno-
types, the median estimates of PVE from BSLMM/LMMs were
upwardly biased and showed large variation, with medians
hitting the boundary at unity in some scenarios. These results
suggest that PVE estimation using BLMM/LMMs is unreliable
for the Cape Verde data set. The LD score regression method
(Bulik-Sullivan et al. 2015) is a recent development for dis-
tinguishing between inflated test statistics due to confound-
ing bias and polygenicity. This method suggests one avenue
for removing confounding from population structure from
the heritability estimate but is yet to be extended to admixed
populations (Bulik-Sullivan et al. 2015). Bayesian LMMs cou-
pled with PC correction, or a generalized LD score regression,
may be avenues for unbiased PVE estimation, which would
require extensive simulations in a much larger data set with
empirical data to validate. However, estimates of PVE from
regions surrounding purported highly associated loci should
provide a reasonable lower bound for the narrow-sense her-
itability as seen in simulation two. The results from the PVE
for top associated loci are very similar to those reported for
skin color in Beleza et al. (2013), which concluded that the
four major loci contribute a total of 35% to skin color varia-
tion. Our results suggest that the PVE for the top five loci was
32% (26, 38) with the SLC24A5 locus contributing ~16%
and the DDBI1 locus explaining an additional 3%. This high-
lights that although BLMMs and marginal linear regression
both provide comparable estimates of PVE for an individual
locus of large effect, the BLMMs allow for additional loci to
be detected.

The posterior probability that a polymorphic site affects the
trait conditional on the data is a very natural statistic to
interpret in the context of QTL identification (Viallefont
et al. 2001; Stephens and Balding 2009). For the Bayer R
and BSLMM methods there may be a decrease in the poste-
rior probability for individual markers at a locus due to the
sharing of the effect across markers in LD. This leads to a
decrease in power for any one of the SNPs as the PIP will
be lower for each of them (0.5, for example, for a set of two
markers in perfect LD and sharing a PIP of 1). Furthermore,
the PIP for any one marker is dependent on the choice of prior,
especially for small data sets, where the number of effects to be
learned is much greater than the number of individuals con-
tributing information. However, Guan and Stephens (2011)
showed that when the genetic variance and the proportion
of null effects, which have a large influence on the PIP, were
fixed to a value substantially different from the true simulated
value, the PIPs showed limited deviation from the truth. A
further conclusion was that the rank and power were particu-
larly insensitive to the choice of prior assumptions on the pro-
portion of null effects and the genetic variance (Guan and
Stephens 2011). Evidence for this is observed in this study,
where the rank of the top regions for Bayes R and BSLMM,
along with the WPPA and WPIP, are very similar given the
large differences in modeling assumptions. Both the sharing



of effects and the sensitivity to prior assumptions are mitigated
by using a regional measure of association such as the WPPA,
where uncertainty is averaged across the region. Alternatively,
Wen (2015) derived Bayes factors for results generated from
the LMM methodology, which could also be used as a primary
statistical device for model comparison. It is important to point
out that P-values convey a strength of evidence that depends
on factors that affect power, which is not a concern for the
posterior probability of association statistics provided by the
Bayesian methods (Stephens and Balding 2009). We believe
that the results of this paper suggest that Bayesian LMM-based
methods coupled with a theoretically justified method for con-
trolling the false-positive rate could be a very effective tool for
mapping new genetic loci. However, more rigorous frame-
works for prior choice and assessment of significance and un-
certainty in genetic effects from Bayesian LMMs are needed,
which is an interesting open question.
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