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Background. Error-free diagnosis of Alzheimer’s disease (AD) from healthy control (HC) patients at an early stage of the disease is a
major concern, because information about the condition’s severity and developmental risks present allows AD sufferer to take
precautionary measures before irreversible brain damage occurs. Recently, there has been great interest in computer-aided
diagnosis in magnetic resonance image (MRI) classification. However, distinguishing between Alzheimer’s brain data and
healthy brain data in older adults (age> 60) is challenging because of their highly similar brain patterns and image intensities.
Recently, cutting-edge feature extraction technologies have found extensive application in numerous fields, including medical
image analysis. Here, we propose a dual-tree complex wavelet transform (DTCWT) for extracting features from an image. The
dimensionality of feature vector is reduced by using principal component analysis (PCA). The reduced feature vector is sent to
feed-forward neural network (FNN) to distinguish AD and HC from the input MR images. These proposed and implemented
pipelines, which demonstrate improvements in classification output when compared to that of recent studies, resulted in high
and reproducible accuracy rates of 90.06± 0.01% with a sensitivity of 92.00± 0.04%, a specificity of 87.78± 0.04%, and a
precision of 89.6± 0.03% with 10-fold cross-validation.

1. Introduction

Alzheimer’s disease (AD) is an irremediable neurodegenera-
tive disorder that causes dementia in elderly people around
the globe. It has been predicted that the pervasiveness of
AD will double within the next 2 decades and that one out
of every 85 people will be afflicted with the disease by 2050
[1]. Therefore, there is a need to identify neuroimaging bio-
markers that can grant accurate and early diagnoses of
dementia. In addition, to diagnose an AD sufferer clinically
at a primitive disease stage, many imaging biomarkers must
be identified using different imaging modalities, such as
MRI [2], position emission tomography (PET) [3], func-
tional magnetic resonance imaging (fMRI) [4], single-
photon emission computed tomography (SPECT) [5], and
magnetic resonance spectral imaging (MRSI) [6].

An accurate and early diagnosis of AD and identification
of the risk of progression from mild cognitive impairment
(MCI) to AD provide AD sufferers with awareness of the

condition’s severity and allow them to take preventative mea-
sures, such as making lifestyle changes and taking medica-
tions [7]. Currently, many neurologists and medical
analysts have been spending significant time to researching
technique to allow for early diagnosis of AD, and encourag-
ing results have been frequently achieved [8]. MRI is an influ-
ential, noninvasive brain imaging technique that provides
higher-quality information about the shape and volume of
the brain than computed tomography (CT), SPECT, and
PET scans. It provides superior soft tissue differentiation,
high spatial resolution, and better contrast and can even
identify tiny irregularities in the brain [9]. Moreover, the
diagnostic use of MRI has been tremendously improved
due to the automated and precise labeling of MR images,
which performs an important role in identifying AD in
related patients from healthy and elderly controls (HC) [10].

Earlier, majority of diagnosis work was accomplished
manually or semimanually for measuring a priori region of
interest (ROI) of MRI, based on the reality that subjects with
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AD experience have more cerebral atrophy when compared
to HCs [11, 12]. Most of this ROI-based examination focused
on the contracting of the cortex and hippocampus and
amplified ventricles. Nevertheless, ROI-based approaches
are not practicable in hospitals because of few shortcomings:
(i) ROI technique needs a priori data and expert knowledge.
(ii) The manual diagnosis accuracy is dependent on the
knowledge of physicians and interpreter [13]. (iii) The inter-
action among the voxels was troublesome to enforce. (iv) It
was essential to explore other potential areas that may be
linked to AD [14]. (v) Automatic segmentation of ROI was
not beneficial in practice, and investigator needed to segment
the brain using hand [15]. Therefore, automated methods
can assist physician in diagnosing diseases from images such
as those produced by MRI, for which many slices are
extracted from the tissues and long periods of may be neces-
sary for the evaluation of the images.

The aim of this article is to present an automated
approach for diagnosing AD by using the “whole brain anal-
ysis” method. It has achieved popularity, since it examines
entire voxels of the brain. It is not essential to segment the
brain as earlier, and it does not require any biomarker for
the classification purpose. The main drawback is dimension-
ality that can be resolved through high-speed computers,
which is comparably inexpensive [16]. The whole-brain
investigation laboriously relies on true computation, and it
can only be finished by a computer researcher after a physi-
cian assisted in labeling the input data as either AD or HC.
Usually, the whole-brain inspection labels the entire brain
as a ROI, where two stages are involved, namely, feature
extraction and classification.

Scholars have presented different methods to extract
effective features for the detection of AD and other types of
pathological brain disease. Additionally, classificationmodels
and methods survive; nevertheless, not all of them are suit-
able for the processing of MR brain images. Based on latest
literature, we found two drawbacks with the previous work:
(i) The discrete wavelet transform (DWT) is usually utilized
for feature extraction. The DWT has better directional selec-
tivity in horizontal, vertical, and diagonal directions and has
better image representation than Fourier transform, but its
major drawbacks are that it has poor directionality, is sensi-
tive to shifts, and lacks phase information. (ii) Most of the
state-of-the-art mechanisms consider only single slice-based
detection (SSD) per patient. The obtained slices may not con-
tain the foci of the disease.

To tackle above problems, we suggested two improve-
ments. First, we propose a DTCWT that possesses attractive
properties for image processing, including shift invariance
and high directionality. Second, we consider multiple slices
for each patient unlike previous studies, so that information
gain is more consistent, reliable, and accurate. In hospitals,
multiple slice-based detection is utilized because of its inex-
pensiveness. Research has clearly showed that the DTCWT
is more suitable than the traditional wavelet domain for fea-
ture extraction [17].

Our contribution aims to introduce a novel method
for AD detection with higher accuracy than state-of-the-art
methods, on the basis of DTCWT, PCA, and ANN

technique. Furthermore, we build a computer-aided diagno-
sis (CAD) system, which can be utilized in the early diagnosis
of AD-related brain area and subjects. Our objective is to
develop assisting tool for clinicians.

All of the preprocessing methods are used to obtain
good results. To show effectiveness of our proposed sys-
tem, we have evaluated performance measures including
accuracy, sensitivity, specificity, precision, and bar plot
for the comparison of the proposed method with the exist-
ing systems. The paper is arranged as follows. Section 2
offers background knowledge on materials and methods.
In Section 3, the experiments, results, and discussion are
presented. Finally, conclusion and plan for future studies
are presented in Section 4.

2. Materials and Methods

2.1. Materials

2.1.1. Dataset. In our study, the dataset is accessed fromOpen
Access Series of Imaging Studies (OASIS). OASIS is a project,
for compiling and sharing MRI datasets of the brain to make
such data accessible to the scientific community. The data are
accessible at http://www.oasis-brains.org. A sample of the
MR brain image is shown in Figure 1.

OASIS provides two types of data: cross-sectional and
longitudinal MRI data. In this study, we used cross-
sectional MRI data because we aimed to develop an auto-
matic system for detecting AD, which would not require lon-
gitudinal data that had been gathered from AD patients over
long periods of time.

The dataset consists of 416 subjects whose ages are
between 18 and 96. In our study, we consider 126 samples
(including 28 ADs and 98 HCs). Table 1 shows statistical
information about the subjects included in the experiment.
Only right-handed subjects are included in the study, con-
sisting of both men and women. The exclusion criterion is
patients less than 60 years of age or any of their reports are
missing. The unbalanced data may cause difficulty in future
recognition; we fine-tune the cost matrix to resolve this issue.

The dataset contains information about the patient’s
demographics. The demographic features contain gender
(M/F), age, education, socioeconomic status, and handed-
ness. The mini mental state examination (MMSE) is a short
30-point questionnaire test utilized to monitor for cognitive
impairment and dementia. The MMSE test comprises simple
questions and problems in numeral areas: the time and place,
repeating list of words, arithmetic, language utilization, and
comprehension, in addition to basic motor skills. Clinical
dementia rating (CDR) is a numeric scale measuring the
severity of symptoms of dementia. The patients’ cognitive
and functional performances were accessed in six areas:
memory, orientation, judgement and analytical, community
affairs, residence and hobbies, and individual care. The
patients’ CDR ranks and education level are listed in
Tables 2 and 3, respectively.

2.2. Proposed Method. The proposed method consists of three
important stages, namely, feature extraction using DTCWT,
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feature dimensionality reduction using PCA, and classifica-
tion using feed-forward artificial neural network. The overall
block diagram of the suggested method is shown in Figure 2.
Normalization of image is included in preprocessing section.
All of these individual techniques have been proven out-
standing, so we strongly believe that the proposed method
can also achieve excellent results.

2.3. Image Preprocessing and Normalization. For each
patient, each scanning session involves the MR of three
or four T1-weighted image scans. In order to add the
signal-to-noise ratio (SNR), all indicated MRI scans with
the identical protocol of the same individual are motion-
corrected and spatially coregistered, to the Talairach coor-
dinate space to produce an averaged image, and then are
brain-masked. The motion correction recorded the 3D
images of all scans and then developed an average 3D
image in initial acquisition space. Also, the scans are then
resampled to 1mm× 1mm× 1mm. The obtained image is
converted from acquisition space to Talairach coordinate
space. Lastly, the brain extraction is achieved.

We used MRIcro software (which can be downloaded
from http://www.cabiatl.com/mricro/mricro/) and imported
the image from the backup folder and then extracted the
2D MR image slices of each subject. In this paper, we only
choose 32 important center slices from each subject man-
ually based on our experience. These slices are used for

preprocessing. The reason behind picking center slice from
all slices is that it retains more relevant information about
the brain tissues as compared to earlier slices and later
slices in the group of 1–256 slices. The direction of the slice
possibly may be sagittal, coronal, or axial. In this research,
we chose axial direction by knowledge. The same process is
applied to all the subjects (126 including both ADs and
HCs). All images are in PNG format, and the dimensions of
the slices are 176× 208. The image is resized to 256× 256
before being used for further processing.

2.4. Discrete Wavelet Transform. The discrete wavelet
transform (DWT) is an image processing method [18] that
gives multiscale representation of a stated signal or image
[19]. Standard DWT is helpless to shift variance issue and
only has horizontal and vertical directional selectivity [20].
Suppose s denotes a particular signal, n symbolizes the
sampling point, h and g denote a high-pass filter and low-
pass filter, respectively, and H and L depict the coefficients
of high-pass and low-pass subbands. We have

(a) Normal (b) Alzheimer’s disease

Figure 1: Dataset sample (axial view after preprocessing).

Table 1: Statistical data of the participants.

Factor HC AD

No. of patients 98 28

Age (years) 75.91± 8.98 77.75± 6.99
Education 3.26± 1.31 2.57± 1.31
Socioeconomic status 2.51± 1.09 2.87± 1.29
CDR 0 1

MMSE score 28.95± 1.20 21.67± 3.75
Gender (M/F) 26/72 9/19

Table 2: Clinical dementia rating scale.

CDR Rank

0 Nondementia

0.5 Very mild dementia

1 Mild dementia

2 Moderate dementia

Table 3: Education codes.

Code Description

1 Beneath high school graduate

2 Secondary school graduate

3 Some college

4 College graduate

5 Above college
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H n =〠
m

h 2n−m s m ,

L n =〠
m

g 2n−m s m
1

The LH represents a low-pass filter along x-axis and
high-pass filter along y-axis. HL represents a high-pass filter
along x-axis and low-pass filter along y-axis. The LL repre-
sents low-pass filters along both directions, and HH repre-
sents high-pass filters along both directions.

Here, the HL and LH have clear-cut for both vertical and
horizontal orientations. For the HH, it combines directions
of both −45 and +45 degrees jointly, which stems from the
utilization of real-valued filters in DWT. This combining also
hinders the direction check [21].

2.5. Dual-Tree Complex Wavelet Transform. The dual-tree
complex wavelet transform (DTCWT) is a modified version
of the traditional DWT. To help boost the directional selec-
tivity impaired by DWT, DTCWT is proposed. The tradi-
tional DWT is shift variant because of the decimation
operation used in the transform. As a consequence, a small
shift in the input signal can create a very dissimilar set of
wavelet coefficients formed at the output. It utilizes two real
DWTs processing input data in parallel [22]. The first
DWT symbolizes the real component of the transform,
whereas the second DWT depicts the imaginary component
together forming a complex transform.

The DTCWT provides a solution for “shift-invariant
problems” as well as for “directional selectivity in two or
more dimensions,” which are both shortcomings of the ordi-
nary DWT [23]. It obtains directional selectivity by utilizing
wavelets that are approximately analytic. It also has the abil-
ity to produce a total of six directionally discriminating sub-
bands oriented in the ±15, ±45, and ±75 directions, for both
the real (R) and imaginary (I) parts. Figure 3 illustrates the
DTCWT. Let hi n and gi n be the filters in the first stage
as in Figure 3. Let the new kth stage response of the first filter

bank be H k
new ejw and second filter bank be H k

new ejw we
now have the following result as a corollary of Lemma 1.

Corollary 1. Suppose one is provided with CQF pairs
ho n , h1 n , ho′ n , h1′ n . For k > 1,

H k
new ejw =H H k

new ejw , 2

if and only if

h 1
0 n = h 1

0 n− 1 3

A 2D image f x, y is decomposed by 2D DTCWT over a
series of dilations and translations of a complicated scaling
function and six complex wavelet functions φθ

j,l that is,

f x, y = 〠
l∈Z2

sjo ,lϕ jo , l
x,y + 〠

θ∈Θ
〠
j≥jo

〠
l∈z2

cθj , l
φθj , l x,y , 4

where θ ∈Θ = ±15°, ± 45°, ± 75° gives the directionality of
the complex wavelet function. This is to say that the decom-
position of f x, y by utilizing the DTCWT creates one com-
plex valued low-pass subband and six complex valued high-
pass subbands at every level of decomposition, where every
high-pass subband corresponds to one particular direction θ.

A study was carried out in [24] to compare the DTCWT’s
directional selectivity to that of the DWT. The simulation
results showed that the edges detected by the DTCWT had
clear contours, and nearly all directions could be detected
clearly and perfectly. However, the edges detected by the
DWT were discontinuous, and only horizontal and vertical
edges could be successfully detected. The results verified the
effectiveness of the DTCWT over the DWT. By utilizing
DTCWT, we are extracting DTCWT coefficients from
the preprocessed images. The additional features include
the information about the demographics of the patients
such as age, gender, handedness, education, SES, and clinical

Normalization Dual-tree complex
wavelet transform

Principal component
analysis

Feed-forward
neural network

Normal brainAlzheimer’s disease

Figure 2: Block diagram of the proposed system.
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examination. The handedness features are not included in
the work since all the patients are right-handedness.

2.6. Principal Component Analysis. The coefficient from the
DTCWT enlarges the dimensionality of feature space that
makes the classification job more complicated.

Additionally, it leads to excessive computational over-
head and enormous memory storage. As a result, it is essen-
tial to lower the dimension of the feature set and get the
significant features to boost the classification result. Since
the last two decades, a method called PCA has earned much
more attention for data visualization and reduction of
dimensionality. It systematically projects the initial input

data to a lower-dimensional space, well-known as principal
subspace through an orthogonal transformation while pre-
serving most of the data variations. For a stated set of
likely correlated variables, these transformation outcomes
in a set of values of linearly uncorrelated variables are
called as principal components (PCs). All of the steps to
implement PCA are demonstrated in Algorithm 1. The
additional information on PCA and its implementations
can be viewed in literature [25, 26].

Let us consider a set of data. PCA is employed to find a
linear lower-dimensional reduction of the dataset. In this
case, the variance of the constructed data is preserved. PCA
limits the feature vectors to the component it selects, which
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Figure 3: The DTCWT is implemented utilizing two wavelet filter banks functioning in parallel.

Let X be an input text file ( X: matrix of dimensions M ×N )
Accomplish the following steps:

Step 1. Estimate the empirical mean: u m = 1
N ∑

N

n=1
X m, n .

Step 2.Compute the deviations from the mean and save the data in the matrix B M×N : B = X− u h, here, h is a 1 ×N row vector of all
1’s: h n = 1 for n = 1,…,N .
Step 3. Obtain the covariance matrix C C = 1

N B B∗.
Step 4.Get the eigenvectors and eigenvalues of the covariance matrix V−1CV =D V -the eigenvectors matrix; D -the diagonal matrix
of eigenvalues of C,D p, q = λm for p = q =m is the mth eigenvalues of the covariance matrix C.
Step 5. Rearrange the eigenvectors and eigenvalues: λ1 ≥ λ2 ≥ λ3 ≥ λ4 ≥……λN .
Step 6. Selecting components and developing a feature vector: save the first L columns or V as the M×L matrix W,W p, q = V p, q ,
for p = 1,…,M, q = 1,…, L where 1 ≤ L ≤M.
Step 7.Obtaining the fresh data set: The eigenvectors with the leading eigenvalues are forecasted into space, this projection appears in a
vector depicted by fewer dimension (L <M) accommodating the essential coefficients.

Algorithm 1: PCA algorithm.
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leads to an effective classification algorithm. The main idea
behind implementing PCA is reduction of the dimensionality
of the DTCWT coefficients, which results in more adequate
and accurate classification.

The following algorithm is utilized to obtain the prin-
cipal components from the input matrix and finally fed to
the feed-forward neural network. Now, the input matrix
possesses only these PCs. Hence, the size of the matrix is
reduced. Therefore, feature extraction is done in two steps:
DTCWT extracts the wavelet coefficients, and essential
coefficients are later selected by the PCA as described in
Algorithm 1.

2.7. Feed-Forward Neural Networks

2.7.1. Structure. Feed-forward neural networks (FNN) are
broadly used in pattern classification because they do not
need any information regarding the probability distribution
or a priori probabilities of distinct classes. Neural networks
(NN) harness power from their densely parallel structure
and their ability to acquire information from experience. As
a result, they can be utilized for accurate classification of
input data into different classes, provided that they are pre-
trained. The architecture of a multilayer feed-forward neural
network is shown in Figure 4.

Three factors need to be considered in designing an ANN
for a specific application: (i) the topology of the network, (ii)
the training algorithm, and (iii) the neuron activation
function. A network may have many layers of neurons,
and its complete architecture may possess either a feed-
forward or a back propagation structure. A multihidden-
layer back propagation NN with sigmoid neurons in its
hidden layer is chosen. Similarly, linear neurons are
selected for the output layer. The training vector is pro-
vided to the NN, which is instructed batch mode [27].
The NN is a two-layer network, and its configuration is
N I ×NH ×N0 N I represents the input neurons, NH is
the hidden layer, and N0 indicates that the brain under
observation is either HC or AD.

2.7.2. Training Method. Mathematicians have already
proven that a conjugate gradient (CG) algorithm, probing
along conjugate gradient directions, produces a faster con-
vergence than the steepest descent directions do. Among
CG algorithm, the scaled conjugate gradient (SCG) method
is the most powerful [28]. Thus, we utilize the SCG to train
our network.

Let ω1 and ω2 be the connection weight matrix linking
the input layer and hidden layer, and the hidden layer
and the output layer, respectively. Later, we can deduce
the training process reported by the following equations
to improve these weighted values that can be divided into
four subsequent steps [29].

(1) The calculation of the outputs of all neurons in the
hidden layer is done by

yj = f H 〠
N I

i=1
ω1 i, j xi  j = 1, 2,…,NH 5

Here, xi stands for the ith input value, yj stands for
the jth output of the hidden layer, and f H refers to the
activation function of hidden layer, commonly a sigmoid
function as observed:

f H x =
1

1 + exp −x
6

(2) The outputs of all neurons in the output layer are
stated as follows:

Ok = f o 〠
NH

j=1
ω2 j, k yj k = 1, 2,…,No 7

Here, f o represents the activation function of output
layer that is usually a line function. At first, all weights
are accredited with random values and amended by the
delta rule on the basis to the learning samples.

(3) The error is articulated as the MSE of the distinction
among output and target value [30].

El =MSE 〠
No

k=1
Ok − Tk l = 1, 2,…,Ns, 8

where Tk depicts the kth value of the genuine labels which is
already well-known to users and Ns denotes the number of
samples [31].

(4) Let us consider that there are Ns samples; therefore,
the fitness value can be written as

F ω = 〠
N s

l=1
El, 9

where ω designates the vectorization of the (ω1, ω2). The aim
is to minimize the fitness function F w , namely, force the
output values of every sample appropriate to equivalent
target values.

The hidden layer or the output layer j is depicted in
Figure 5. The inputs, weighted sum, and activation function
of output layer are shown in Figure 5. The connection weight
between the input layer and hidden layer and hidden layer
and output layer is shown in Figure 6. The connection
weights can also be represented in the matrix form known
as connection weight matrix.

3. Experiment, Results, and Discussion

The proposed method is implemented using the 32-bit
Matlab 2015b environment on Intel(R) Core (TM) i3-2120,
with a processing speed of 3.30GHz and 2GB of RAM run-
ning Microsoft Windows 7. Readers can repeat our results
on any computer with which MATLAB is compatible.
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This article aims at developing a CAD of AD brain
system with better performance. The pseudocode is listed
in Table 4.

3.1. Parameter Estimation for s. It is always a major concern
to find the optimum value of decomposition level s. We know

that a smaller s provides less information whereas a larger s
provides more information to the classifier. In order to avoid
overfitting problem, a smaller s is used. Here, we change the
value of s from 1 to 5 with increment of 1 and check up the
corresponding average accuracies with FNN. The one which
gives the highest accuracy is the optimal value of s.

Input
layer

Hidden
layer

Output
layer

Inputs Outputs

Figure 4: Architecture of a multilayer feed-forward neural network.

y1

yi

yn

·

·

Inputs

Weight
Wnj

∑ f0 Output

Weighted sums Activation
function

Figure 5: Hidden or output layer j. The input j are outputs from the previous layers. These are multiplied by their corresponding weights to
configure a weighted sum. A nonlinear activation function is applied to the net input. [The inputs to input j are labeled y1, y2,…, yn If unit j
was in the first hidden layer, then these inputs would correspond to the input tuple I1, I2, I3,…, In ]
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3.2. Feature Extraction. In this paper, we extract the DTCWT
coefficients from the input images. The features of 5th resolu-
tion scales are selected because they provide higher classifica-
tion performance than other resolution level scales. The
DTCWT has a multiresolution representation as the wavelet
transform does. For disease detection, it is preferable to use a
few intermediate coefficient scales as the classifier input. The

lowest scales have lost fine signal details whereas the most
highly detailed scales contain mostly noise. Therefore, we
prefer to choose only a few intermediate scales for the
DTCWT coefficients. These obtained coefficients are sent as
input to the PCA.

3.3. Feature Reduction. Excessive features increase calcula-
tion time as well as memory storage. In addition, they some-
times make classification much more complicated, which is
known as curse of dimensionality. In this article, we utilized
PCA to decrease the number of features.

Therefore, the extracted feature from DTCWT is sent to
the PCA for the feature reduction. For each image, there
are 768 features after 5th level of decomposition. As we have
employed 32 slices for each patient, the total number of fea-
tures becomes 32× 768. Now, the image is reformed into a
row vector of 1× 24,576. The row vectors of 126 subjects
are arranged into an “input matrix” with dimensions of
126× 24,576. It is still too large for calculation. So, the input
data matrix is now decomposed into the principal compo-
nent “score matrix” and the “coefficient matrix.” The score
matrix size after decomposition is 126× 125. Here, the rows
and columns of “score matrix” correspond to subjects and
components, respectively.

The variance with the number of principal components
from 1 to 18 is listed in Table 5. Experimenting with different

Table 4: Pseudocode of the proposed system.

Step 1: Import.

(a) Import the OASIS dataset.

(b) Ensure MRI as normal or abnormal brain.

Step 2: Resample the image into 256× 256.
Step 3: Compute 5-level DTCWT on the preprocessed images.

Step 4: Perform PCA on the obtained matrix. The selected number
of principal component (PC) should preserve at least 90% of total
variances.

Step 5: Train feed-forward neural network by taking input as
reduced set of feature vectors and their corresponding class labels.

Step 6: Evaluation

(a) Obtain the confusion matrix.

(b) Calculate the classification accuracy and other essential
parameters.

Input layer Hidden layer Output layer

I1

Ii

Im

O1

Oj

On

H1

Hj

Ht

w1(i, j) w
2(i, j)

w1 (1,1) w1( 1,2) ... w1 (1,Ht)
w1 (2,1) w1 (2,1) ... w1 (2,Ht)

... ... ... ...
w1 (Im,1) w1 (Im,2) w1 (Im,Ht)

w1 =

...

...
... ... ... ...

w2 (1,1) w2 (1,2) w2 (1,On)
w2 (2,1) w2 (2,2) w2 (2,On)w2 =

w2 (Ht,1) w2 (Ht,2) w2 (Ht,On)

(a) (b)

Figure 6: Connection weight matrix between (a) input layer and hidden layer and (b) hidden layer and output layer.
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numbers of principal components (PCs) revealed that accu-
racy with PC=14 provided the best classification accuracy
preserving 90.44% of the total variance. The curve of cumu-
lative sum of variances with the number of principal compo-
nent is shown in Figure 7. We did not set the energy
threshold as 95% because that would cost too many features,
along with computational burden.

3.4. BPNN Training. The 14 PCs are directly sent to BPNN.
Thus, the number of input neurons NI is 14. Then, the num-
ber of hidden layer neurons (NH) is determined as 10 accord-
ing to the information entropy method [32]. Therefore, the
architecture of the neural network becomes 14-10-1. The
SCG method is employed because it is extremely faster than
BP, MBP, and ABP [28].

3.5. Performance Measures. There are several techniques to
evaluate the efficiency of classifiers. The performance is cal-
culated on the essence of the overall confusion matrix. It
holds the correct and incorrect classification results. Table 6
shows a confusion matrix for binary classification, where
TP, TN, FP, and FN depict true positive, true negative, false
positive, and false negative, respectively, as illustrated in
Table 7.

Here, AD brains are assumed to hold the value “true” and
NC ones are assumed to hold the value “false” following nor-
mal convention.

The accuracy is the most accepted empirical measure to
access effectiveness of classifier. It is formulated by

Accuracy = TP + TN
TP + TN + FP + FN

10

Sensitivity is the measure of the proportion of true posi-
tives that are correctly classified, and specificity is the mea-
sure of the proportion of negatives which are correctly
classified. These are calculated by

Sensitivity =
TP

TP + FN
,

Specif icity = TN
TN + FP

11

The precision and the recall are formulated by

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN

12

3.6. Statistical Analysis. In order to execute a strict statistical
analysis, stratified cross-validation (SCV) is used. We apply a
10-fold CV technique in this experiment because of two rea-
sons: (1) to make balance between reliable estimate and com-
putational cost and (2) for providing a fair comparison
because the common convention was to take the value of K
equal to 10 [33].

A 10-fold CV means we have to divide our dataset ran-
domly into ten mutually exclusively folds of approximately
equal size and almost the same distribution. In each run, 9
subsets will be used for training, and the remaining one will
be utilized for the validation. This process is repeated 10
times, in which every subset is utilized for validation once.
The 10-fold CV is repeated 50 times; namely, a 50x 10-fold
CV is implemented.

The accuracies, sensitivities, and specificities obtained
from the 50 runs of 10-fold CV are presented in Table 8.

Table 5: Detailed data of PCA.

No. of prin. comp. 1 2 3 4 5 6 7 8 9

Variance (%) 63.18 72.15 77.08 80.28 83.05 84.55 85.68 86.59 87.47

No. of prin. comp. 10 11 12 13 14 15 16 17 18

Variance (%) 88.18 88.28 89.41 89.96 90.44 90.86 91.23 91.58 91.91
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Figure 7: Variances versus number of principal component.

Table 6: Confusion matrix for a binary classifier to discriminate
between two classes (A1 and A2).

True class Predicted class
A1 (patients) A2 (controls)

A1 (patients) TP FN
A2 (controls) FP TN

Table 7: Evaluation indicators.

Indicator Explanation

TP True positive, anticipating an AD to AD

FP False positive, anticipating an HC to AD

TN True negative, anticipating an HC to HC

FN False negative, anticipating an AD to HC
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Our method achieved an accuracy of 90.06± 0.01%, a sensi-
tivity of 92.00± 0.04%, a specificity of 87.78± 0.04%, and a
precision of 89.6± 0.03%.

3.7. Comparison to Other State-of-the-Art Approaches. To
further determine the effectiveness of the proposed
“DTCWT+PCA+FNN,” we compared it with seven state-
of-the-art approaches in Table 8. Some of these approaches
utilized different statistical settings, making direct compari-
son difficult. The results in Table 8 show that study [34–37]
did not present standard deviations (SD) of three standards.
The specificities of study [34–36] are lower than those dem-
onstrated by other methods. Therefore, these three methods
are not worthy for further study. Similarly, study [37]
obtained a classification specificity of 100%. In spite of its
high specificity, both the accuracy and sensitivity achieved
by this algorithm are poor. Hence, this method is also not
considered further for the study. Three other methods
reported both mean values and standard deviation values.
They also achieved satisfying results. Study [38] obtained
promising results because of the voxel-based morphometry
(VBM). Indeed, VBM has frequently been employed to study

brain changes. Study [37] demonstrated that a taxi driver will
normally have a larger back section of the posterior hippo-
campus. Study [39] concluded that global gray matter
decreases linearly with old age but global white matter
remains in the same amount. Nevertheless, VBM requires
an accurate spatial normalization, or the classification
accuracy may decrease significantly. Study [40] was based
on a novel approach called the displacement field (DF).
This study measured and estimated the displacement field
of various slices between AD and HC subjects. There are
other methods that have distinguished AD from HC; how-
ever, they dealt with images formed by other modalities:
PET, SPECT, DTI, and so forth. Hence, they are also
not considered in this study.

Finally, the proposed “DTCWT+PCA+FNN” achieved
an accuracy of 90.06± 0.01%, a sensitivity of 92.00± 0.04%,
a specificity of 87.78± 0.04%, and a precision of 89.60±
0.03%. With respect to classification accuracy, our approach
outperforms five other methods and is almost equal to
the accuracies of the remaining two methods that did
not account for means and standard deviations. We also
achieved a promising sensitivity and a promising specificity.

Table 8: Algorithm performance comparison for MRI brain image.

Algorithm Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)

DTCWT+PCA+ FNN (proposed) 90.06± 0.01 92.00± 0.04 87.78± 0.04 89.6± 0.03

VBM+RF [38] 89.0± 0.7 87.9± 1.2 90.0± 1.1 N/A

DF+PCA+ SVM [40] 88.27± 1.9 84.93± 1.21 89.21± 1.6 69.30± 1.91
EB+WTT+ SVM+RBF [56] 86.71± 1.93 85.71± 1.91 86.99± 2.30 66.12± 4.16
BRC+ IG+ SVM [34] 90.00 96.88 77.78 N/A

BRC+ IG+VFI [34] 78.00 65.63 100.00 N/A

Curvelet + PCA+KNN [35] 89.47 94.12 84.09 N/A

US + SVD-PCA+ SVM-DT [36] 90.00 94.00 71.00 N/A
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Figure 8: Bar plot of the algorithm comparison ([34–36, 38] did not mention its precision).
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Hence, our results are either better than or comparable to
those of the other methods. The bar plot of the algorithm
comparison is shown in Figure 8. The acronyms list is
depicted in Table 9.

4. Conclusions and Future Research

We presented an automated and accurate method for AD
identification based on a DTCWT, PCA, and FNN. The
results showed that the proposed method achieved an accu-
racy of 90.06± 0.01%, a sensitivity of 92.00± 0.04%, a speci-
ficity of 87.78± 0.04%, and a precision of 89.6± 0.03% and
outperformed 7 state-of-the-art algorithms.

Wewill focus our future research on the following aspects:
(i) testing other advanced variants of wavelet such as 3D-
DTCWT, wavelet packet analysis, and fractional calculus;
(ii) utilizing different feature reduction techniques such as
independent component analysis (ICA) [41], linear discrimi-
nant analysis (LDA) [42], probabilistic PCA [43], or sparse-
autoencoders [44]; (iii) testing our data with least-square
techniques [45], kernel support vector machine (k-SVM),
such as fuzzy SVM [46], radial basis function neural network
(RBFNN) [47], deep learning methods such as convolutional
neural network (CNN) [48], and other alternative pattern
recognition tool for classification; (iv) utilizing advanced
swarm intelligence techniques such as particle swarm optimi-
zation [49], artificial bee colony [50], genetic pattern search
[51], ant colony optimization [52], and biogeography-based
optimization [53] to find the optimal kernel; (v) testing

the proposed method on images obtained from different
modalities such as computed tomography (CT) [54], ultra-
sound, spectrum imaging [55], and 3D MRI; (vi) utilizing
other advance image preprocessing technique to enhance
the classification performance, such as image denoising,
image enhancement, and image segmentation; and (vii) clas-
sification may be carried out on the sparsity domain.
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