Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Jun 20;73(Pt 7):1056–1061. doi: 10.1107/S2056989017008817

Crystal structures of the three closely related compounds: bis­[(1H-tetra­zol-5-yl)meth­yl]nitramide, tri­amino­guanidinium 5-({[(1H-tetra­zol-5-yl)meth­yl](nitro)­amino}­meth­yl)tetra­zol-1-ide, and di­ammonium bis­[(tetra­zol-1-id-5-yl)meth­yl]nitramide monohydrate

Lauren A Mitchell a, Gregory H Imler a, Damon A Parrish a,*, Jeffrey R Deschamps a, Philip W Leonard b, David E Chavez b
PMCID: PMC5499290  PMID: 28775882

The crystal packing and inter­molecular hydrogen-bonding schemes vary greatly between the three compounds. In all three structures, the nitramide is mainly sp 2-hybridized and the bond lengths indicate delocalization of charges on the tetra­zole rings.

Keywords: crystal structure, tetra­zole, tri­amino­guandidinium, nitramide, energetic

Abstract

In the mol­ecule of neutral bis­[(1H-tetra­zol-5-yl)meth­yl]nitramide, (I), C4H6N10O2, there are two intra­molecular N—H⋯O hydrogen bonds. In the crystal, N—H⋯N hydrogen bonds link mol­ecules, forming a two-dimensional network parallel to (-201) and weak C—H⋯O, C—H⋯N hydrogen bonds, and inter­molecular π–π stacking completes the three-dimensional network. The anion in the molecular salt, tri­amino­guanidinium 5-({[(1H-tetra­zol-5-yl)meth­yl](nitro)­amino}­meth­yl)tetra­zol-1-ide, (II), CH9N6 +·C4H5N10O2 , displays intra­molecular π–π stacking and in the crystal, N—H⋯N and N—H⋯O hydrogen bonds link the components of the structure, forming a three-dimensional network. In the crystal of di­ammonium bis­[(tetra­zol-1-id-5-yl)meth­yl]nitramide monohydrate, (III), 2NH4 +·C4H4N10O2 2−·H2O, O—H⋯N, N—H⋯N, and N—H⋯O hydrogen bonds link the components of the structure into a three-dimensional network. In addition, there is inter­molecular π–π stacking. In all three structures, the central N atom of the nitramide is mainly sp 2-hybridized. Bond lengths indicate delocalization of charges on the tetra­zole rings for all three compounds. Compound (II) was found to be a non-merohedral twin and was solved and refined in the major component.

Chemical context  

Materials which release large amount of energy during chemical transformations are characterized as energetic materials. Inter­est is high in improving energetics to reduce environmental impact and to improve safety and performance (Talawar et al., 2009). These materials can pose a hazard if they have high sensitivities to friction, heat, electrostatic discharge or impact. Compounds containing both tetra­zole and nitro groups have frequently been used in the development of energetic materials (Klapötke et al., 2009; Wei et al., 2015). Tetra­zoles have been of special inter­est because of their high nitro­gen content, which lead to high heats of formation and to more environmentally benign decomposition products like N2 (Jaidann et al., 2010). Nitro groups have been commonly utilized to achieve an optimum oxygen balance (Wu et al., 2014). Herein is a discussion of the X-ray crystal structures of three nitro-containing tetra­zole complexes. Structure (I), bis­[(1H-tetra­zol-5-yl)meth­yl]nitramide, is the neutral form, structure (II), tri­amino­guanidinium 5-({[(1H-tetra­zol-5-yl)meth­yl](nitro)­amino}­meth­yl)tetra­zol-1-ide, has one deprotonated tetra­zole ring with a tri­amino­guandidinium counter-ion, and structure (III), di­ammonium bis­[(tetra­zol-1-id-5-yl)meth­yl]nitramide monohydrate, has both tetra­zole rings deprotonated with ammonium counter-ions.graphic file with name e-73-01056-scheme1.jpg

Structural commentary  

In the mol­ecule of complex (I), two intra­molecular hydrogen bonds, N4—H4⋯O15 and N10—H10⋯O16, both between tetra­zole donors and nitro acceptors are present (Fig. 1). This mol­ecule adopts a chair-like conformation where the tetra­zole rings are trans to one another. Mol­ecule (III) adopts a similar conformation, despite not having any similar intra­molecular hydrogen bonds (Fig. 2). Surprisingly, while structures (I) and (III) are both in a chair conformation, with respect to the tetra­zole rings, structure (II) is bent into a boat where the tetra­zole rings are cis to one another (Fig. 3).

Figure 1.

Figure 1

The mol­ecular structure of structure (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. (a) Front view, dashed lines indicate intra­molecular hydrogen bonds. (b) Side view, H atoms omitted for clarity.

Figure 2.

Figure 2

The mol­ecular structure of structure (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. (a) Front view. (b) Side view, H atoms, cations, and solvent omitted for clarity.

Figure 3.

Figure 3

The mol­ecular structure of structure (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. (a) Front view. (b) Side view, H atoms and cation omitted for clarity.

This unusual conformation is likely due to the intra­molecular π–π stacking inter­actions observed between the tetra­zole rings [centroid–centroid distance = 3.4978 (10) Å]. Both tetra­zole rings are nearly planar with an r.m.s. deviation of 0.0007 for the protonated ring and 0.00004 Å for the deprotonated ring.

For all three compounds, the C—N (ranging from 1.321 to 1.338 Å) and N—N (ranging from 1.301 to 1.362 Å) bond lengths for the tetra­zole rings were found to match more closely with bonds of multiple character than of discrete single and double bonds, signifying a delocalized aromatic system (Allen et al., 1987).

In structure (II), the N18—C17, N20—C17, and N22—C17 bond lengths for the tri­amino­guandidinium cation were all found to be relatively equal (maximum difference 0.006 Å), indicating delocalization of the charge over all three branches.

The pyramidality of the amine functionality for the central tertiary amine was examined for all three structures by examining χn, the angle between the Namine—Nnitro vector and the Cmethyl­ene1/Namine/Cmethyl­ene2 plane, described by Allen et al. (1995). Structure (I) has a χn of 13.1 (5)° for vector N2–N1 and plane C11/C5/N1, structure (II) has a χn of 26.11 (18)° for vector N14–N7 and plane C6/N7/C8, and structure (III) has a χn of 6.21 (11)° for vector N7A–N7 and plane C6/N7/C8. This indicated the hybridization of the central nitro­gen atom is mainly sp2 hybridized for all three structures (sp2 χn ≃ 0°, sp3 χn ≃ 60°).

Supra­molecular features  

The packing and inter­molecular hydrogen bonding vary greatly between the three structures. Structure (I) has four inter­molecular hydrogen bonds (Table 1). The tetra­zole rings of adjacent mol­ecules are linked via N—H⋯N bonds, forming a two-dimensional network parallel to (Inline graphic01). These inter­actions cause the tetra­zole rings to lie in the same plane, resulting in the alignment of the tetra­zole rings seen when viewed along the b axis (Fig. 4). Additionally, there is one weak C—H⋯N and one weak C—H⋯O hydrogen bond linking the mol­ecules into a three-dimensional network.

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯N2i 0.80 (6) 2.19 (6) 2.957 (5) 160 (4)
N4—H4⋯O15 0.80 (6) 2.45 (5) 2.924 (5) 119 (4)
C6—H6B⋯O15ii 0.99 2.37 3.264 (5) 150
C8—H8B⋯N11iii 0.99 2.44 3.316 (5) 147
N10—H10⋯N13iv 0.87 (1) 1.99 (3) 2.770 (5) 149 (4)
N10—H10⋯O16 0.87 (1) 2.28 (4) 2.796 (4) 118 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 4.

Figure 4

Packing diagram for structure (I) viewed along the b axis. Dashed lines indicate inter­molecular hydrogen bonds.

Structure (II) does not have any non-classical inter­molecular hydrogen bonds (Table 2). There are twelve N—H⋯N bonds and three N—H⋯O bonds, with the majority of the inter­actions between the main residue and the tri­amino-guandidinium counter-ion. The additional hydrogen bonds link the mol­ecules into a three-dimensional network. The compound packs into columns of alternating anions and cations along the c axis (Fig. 5).

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N10i 0.929 (19) 1.804 (19) 2.713 (2) 165.6 (17)
N1—H1⋯N11i 0.929 (19) 2.673 (19) 3.422 (2) 138.2 (14)
N1—H1⋯O16i 0.929 (19) 2.596 (18) 2.9952 (18) 106.5 (13)
N18—H18⋯O15 0.84 (2) 2.569 (19) 3.1451 (18) 126.4 (16)
N18—H18⋯N21 0.84 (2) 2.292 (19) 2.650 (2) 105.9 (15)
N19—H19A⋯N4 0.92 (2) 2.29 (2) 3.026 (2) 137.3 (17)
N19—H19B⋯N13ii 0.91 (2) 2.54 (2) 3.275 (2) 138.5 (16)
N20—H20⋯N13iii 0.86 (2) 2.09 (2) 2.867 (2) 149.0 (17)
N20—H20⋯N23 0.86 (2) 2.358 (18) 2.660 (2) 100.9 (14)
N21—H21A⋯N11ii 0.89 (2) 2.46 (2) 3.143 (2) 134.4 (16)
N21—H21B⋯O15iv 0.89 (2) 2.31 (2) 3.090 (2) 146.3 (18)
N22—H22⋯N2v 0.86 (2) 2.40 (2) 3.118 (2) 142.3 (17)
N22—H22⋯N19 0.86 (2) 2.325 (19) 2.650 (2) 102.9 (15)
N23—H23A⋯N11vi 0.89 (2) 2.22 (2) 3.087 (2) 166.5 (18)
N23—H23B⋯N3vi 0.92 (2) 2.38 (2) 3.091 (2) 133.9 (17)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Figure 5.

Figure 5

Packing diagram for structure (II) viewed along the a axis. Dashed lined indicate inter­molecular hydrogen bonds.

Structure (III) contains several inter­molecular hydrogen bonds, which also form a three-dimensional network (Table 3). There are seven N—H⋯N bonds between ammonium donors and tetra­zole acceptors, two O—H⋯N bonds between water donors and tetra­zole acceptors, two N—H⋯O bonds between ammonium donors and water acceptors, and one N—H⋯O bond between an ammonium donor and a nitro acceptor. The ions and mol­ecules pack into columns along the b axis (Fig. 6).

Table 3. Hydrogen-bond geometry (Å, °) for (III) .

D—H⋯A D—H H⋯A DA D—H⋯A
O1S—H1SA⋯N13i 0.88 (2) 2.06 (2) 2.9253 (12) 168.0 (18)
O1S—H1SB⋯N3ii 0.83 (2) 2.31 (2) 2.9498 (13) 134.8 (17)
N1A—H1A⋯N12iii 0.859 (16) 2.211 (16) 3.0533 (13) 166.7 (14)
N1A—H1B⋯O16 0.847 (16) 2.388 (16) 3.0079 (13) 130.5 (13)
N1A—H1B⋯N13iv 0.847 (16) 2.540 (15) 3.2862 (14) 147.6 (13)
N1A—H1B⋯N12iv 0.847 (16) 2.585 (15) 3.2472 (14) 136.0 (13)
N2A—H2A⋯O1S 0.880 (16) 2.030 (16) 2.9062 (14) 173.2 (14)
N2A—H2B⋯N1v 0.854 (16) 2.179 (16) 3.0243 (13) 170.3 (14)
N1A—H1C⋯N2v 0.882 (16) 2.107 (16) 2.9654 (12) 164.2 (14)
N2A—H2C⋯O1S vi 0.849 (17) 2.147 (17) 2.9766 (13) 165.2 (14)
N2A—H2D⋯N1 0.896 (16) 2.117 (16) 3.0096 (13) 174.0 (13)
N1A—H1D⋯N10vii 0.906 (16) 2.045 (16) 2.9273 (13) 164.2 (13)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Figure 6.

Figure 6

Packing diagram for structure (III) viewed along the b axis. Dashed lined indicate inter­molecular hydrogen bonds.

Although compounds (I) and (III) do not exhibit any intra­molecular π–π stacking, inter­molecular π–π stacking is present between tetra­zole rings of adjacent mol­ecules. Compound (I) displays head-to-tail stacking inter­actions with a centroid–centroid distance of 3.627 (2) Å. Compound (II) displays head-to-head and tail-to-tail stacking with a centroid–centroid distance of 3.8472 (10) Å for plane N1/N2/N3/N4/C5 to N1/N2/N3/N4/C5 and 4.0025 (8) Å for plane C9/N10/N11/N12/N13 to C9/N10/N11/N12/N13. There is no inter­molecular π–π stacking for compound (II), which contains the larger counter-ion, tri­amino­guandidinium.

The neutral complex, compound (I), has a density of 1.825 g cm−3 (173 K). This is similar to the density, determined by X-ray crystallography, of the well known energetics RDX (α-hexa­hydro-1,3,5-tri­nitro-1,3,5-triazine) and HMX (1,3,5,7-tetra- nitro-1,3,5,7-tetra­aza­cyclo­octa­ne) at 1.794 g cm−3 (298 K) and 1.948 g cm−3 (120 K) respectively (Zhurov et al., 2011). The ionic compounds have much lower densities. The density of compound (II) is 1.611 g cm−3 (293 K), and the density of compound (III) is 1.579 g cm−3 (296 K).

Database survey  

A search of the Cambridge Structural Database (version 5.36, last updated May 2015; Groom et al., 2016) found 392 complexes that contained both tetra­zole and nitro groups. The most similar compounds were 5-nitro-2H-tetra­zole (Klapötke et al., 2009), ammonium 5-nitro­tetra­zolate (Klapötke et al., 2008), and tri­amino­guanidinium 5-nitro­tetra­zolate (Klapötke et al., 2008). A search for tri­amino­guandidinium containing compounds found 47 hits. The compounds from the CSD had similar bond lengths and angles to the tri­amino­guandidinium cation in complex (II). The average difference in C—N bond lengths for the tri­amino­guandidinium complexes in the CSD was found to be 0.015 Å, indicating a high level of charge delocalization, similar to that seen in complex (II).

Synthesis and crystallization  

Compound (I):

A 100 ml round-bottom flask was charged with N,N-bis(cyano­meth­yl)nitramide (2.5 g, 18 mmol), zinc bromide (3.9 g, 17 mmol), 30 ml water, and a magnetic stirbar. The reaction was heated to 323 K with stirring. Sodium azide (2.5 g, 38 mmol) was dissolved in 30 ml water and added to the heated reaction. A reflux condenser was fitted to the flask and the reaction was heated to 363 K for 1 h causing a gradual color change to light brown and the formation of a precipitate. The reaction was allowed to cool to room temperature, then 37% HCl (5 ml) was added and the mixture was allowed to stir for 30 min. The product was collected by vacuum filtration using a Buchner funnel and recrystallized from hot water. Yield 95%, 4 g. Melting point 475–477 K (dec.). CHN: Expected: C, 21.24; H, 2.67; N, 61.93. Found: C, 21.82(0.08); H, 2.96(0.08); N, 62.20(0.30). 1H NMR (DMSO-d 6): 4.15 (2, s), 5.49 (4, s) ppm. 13C NMR (DMSO-d 6): 40.33, 152.74 ppm. IR: 637, 685, 765, 875, 933, 1042, 1088, 1111, 1246, 1284, 1408, 1481, 1524, 1557, 2864, 3022 cm−1.

Compound (II):

A 50 ml round-bottom flask was charged with a stir bar, barium hydroxide octa­hydrate (3.2 g, 10 mmol) and 20 mmol water. The base was stirred until fully dissolved. Compound (I) (4.5 g, 20 mmol) was added to the basic solution, dissolved, and the mixture was stirred 30 min as the color darkened to brown. The brown mixture was filtered to remove insoluble material, the filtrate was returned to the 50 ml round-bottom flask and stirred. Tri­amino­guanidinium sulfate (3.06 g, 10 mmol) was added to the stirring solution, causing immediate precipitation of barium sulfate. The mixture was stirred for 30 min and then allowed to stand for 10 min. Barium sulfate was removed by Buchner filtration and the filtrate was rotovapped until a precipitate formed. After isolating the product by filtration, it was recrystallized from water/ethanol solution. Yield 34%, 1.35 g. Melting point 428–430 K (dec.). 1H NMR (DMSO-d 6): 4.65 (8, s), 5.20 (4, s), 8.6 (1, s) ppm. 13C NMR (DMSO-d 6): 46.95, 157.60, 159.64 ppm. IR: 637, 685, 765, 875, 933, 1042, 1088, 1111, 1246, 1284, 1408, 1481, 1524, 1557, 2864, 3022 cm−1.

Compound (III):

A 50 ml round-bottom flask was charged with (I) (2.5 g, 11 mmol), 10 ml water, and a magnetic stir bar and then stirred. An ammonium hydroxide solution (30%, 3 ml) was added to the reaction. After stirring for 1 h at 298 K, 10 ml ethanol was added and the resulting precipitate was collected by Buchner filtration. The product was recrystallized from water/methanol solution. Yield 80%, 2.3 g. Melting point 389–393 K (dec.). 1H NMR (DMSO-d 6): 5.13 (4, s), 3.70 (broad) ppm. 13C NMR (DMSO-d 6): 40.05; 155.80 ppm. IR: 2908; 2149; 1869; 1844; 1717; 1700; 1684; 1676; 1653; 1636; 1617; 1540; 1521; 1456; 1419; 1364; 1270; 1209; 1159; 1140; 1113; 1076; 920; 877; 809; 706; 612 cm−1.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4. The methyl­ene H atoms were positioned geometrically and refined using a riding model, with C—H = 0.99 Å and U iso(H) = 1.2U eq(C). All other H atoms were located in a difference Fourier map using. Compound (II) was found to be a non-merohedral twin and was solved and refined in the major component. The N10—H10 bond length in structure (I) was restrained.

Table 4. Experimental details.

  (I) (II) (III)
Crystal data
Chemical formula C4H6N10O2 CH9N6 +·C4H5N10O2 2NH4 +·C4H4N10O2 2−·H2O
M r 226.19 330.32 278.27
Crystal system, space group Monoclinic, P21 Monoclinic, P21/c Triclinic, P Inline graphic
Temperature (K) 173 100 296
a, b, c (Å) 6.3640 (17), 9.627 (3), 6.8627 (18) 6.5312 (11), 12.682 (2), 16.183 (3) 7.5893 (11), 7.6077 (11), 11.2319 (15)
α, β, γ (°) 90, 101.805 (4), 90 90, 97.118 (3), 90 85.564 (4), 85.555 (4), 65.007 (4)
V3) 411.57 (19) 1330.0 (4) 585.29 (14)
Z 2 4 2
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.15 0.13 0.13
Crystal size (mm) 0.36 × 0.32 × 0.01 0.52 × 0.06 × 0.02 0.75 × 0.63 × 0.24
 
Data collection
Diffractometer Bruker SMART APEXII CCD Bruker SMART APEXII CCD Bruker SMART APEXII CCD
Absorption correction Multi-scan (TWINABS; Bruker, 2008) Multi-scan (SADABS; Bruker, 2008) Multi-scan (SADABS; Bruker, 2008)
T min, T max 0.615, 0.745 0.674, 0.745 0.687, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 889, 889, 835 11821, 2733, 2141 38379, 3178, 3000
R int 0.038 0.037 0.057
(sin θ/λ)max−1) 0.625 0.628 0.688
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.036, 0.102, 1.14 0.037, 0.093, 1.00 0.036, 0.106, 1.12
No. of reflections 889 2733 3178
No. of parameters 151 238 202
No. of restraints 2 0 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.32 0.23, −0.25 0.29, −0.27

Computer programs: APEX2, SAINT and XPREP (Bruker, 2008), SHELXTL (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) within WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, II, III. DOI: 10.1107/S2056989017008817/lh5843sup1.cif

e-73-01056-sup1.cif (1.5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017008817/lh5843Isup2.hkl

e-73-01056-Isup2.hkl (72.7KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989017008817/lh5843IIsup3.hkl

e-73-01056-IIsup3.hkl (218.7KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989017008817/lh5843IIIsup4.hkl

e-73-01056-IIIsup4.hkl (253.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017008817/lh5843Isup5.cml

Supporting information file. DOI: 10.1107/S2056989017008817/lh5843IIsup6.cml

Supporting information file. DOI: 10.1107/S2056989017008817/lh5843IIIsup7.cml

CCDC references: 1555912, 1555911, 1555910

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

(I) Bis[(1H-tetrazol-5-yl)methyl]nitramide . Crystal data

C4H6N10O2 F(000) = 232
Mr = 226.19 Dx = 1.825 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 6.3640 (17) Å Cell parameters from 2717 reflections
b = 9.627 (3) Å θ = 3.0–26.2°
c = 6.8627 (18) Å µ = 0.15 mm1
β = 101.805 (4)° T = 173 K
V = 411.57 (19) Å3 Thin plate, colorless
Z = 2 0.36 × 0.32 × 0.01 mm

(I) Bis[(1H-tetrazol-5-yl)methyl]nitramide . Data collection

Bruker SMART APEXII CCD diffractometer 889 independent reflections
Radiation source: fine focus sealed tube 835 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.038
ω scans θmax = 26.4°, θmin = 3.0°
Absorption correction: multi-scan (TWINABS; Bruker, 2008) h = −7→7
Tmin = 0.615, Tmax = 0.745 k = 0→12
889 measured reflections l = 0→8

(I) Bis[(1H-tetrazol-5-yl)methyl]nitramide . Refinement

Refinement on F2 2 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0513P)2 + 0.4169P] where P = (Fo2 + 2Fc2)/3
S = 1.14 (Δ/σ)max < 0.001
889 reflections Δρmax = 0.25 e Å3
151 parameters Δρmin = −0.32 e Å3

(I) Bis[(1H-tetrazol-5-yl)methyl]nitramide . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(I) Bis[(1H-tetrazol-5-yl)methyl]nitramide . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.0174 (5) 0.3550 (3) 0.2473 (5) 0.0132 (7)
N2 −0.0013 (5) 0.3439 (4) 0.0467 (5) 0.0133 (7)
N3 0.0000 (5) 0.4659 (4) −0.0356 (5) 0.0124 (7)
N4 0.0208 (5) 0.5581 (4) 0.1139 (5) 0.0117 (7)
H4 0.028 (7) 0.640 (7) 0.099 (6) 0.014*
C5 0.0317 (6) 0.4901 (4) 0.2851 (5) 0.0108 (7)
C6 0.0466 (6) 0.5533 (4) 0.4880 (5) 0.0125 (7)
H6A −0.0542 0.6326 0.4769 0.015*
H6B 0.0009 0.4834 0.5768 0.015*
N7 0.2620 (5) 0.6017 (3) 0.5783 (5) 0.0122 (7)
C8 0.4251 (6) 0.5139 (4) 0.6986 (5) 0.0129 (8)
H8A 0.5573 0.5178 0.6438 0.015*
H8B 0.3738 0.4165 0.6889 0.015*
C9 0.4788 (5) 0.5559 (5) 0.9148 (5) 0.0113 (7)
N10 0.5184 (5) 0.6848 (3) 0.9857 (5) 0.0118 (7)
H10 0.510 (7) 0.764 (3) 0.924 (6) 0.014*
N11 0.5665 (5) 0.6792 (3) 1.1860 (5) 0.0128 (7)
N12 0.5574 (5) 0.5489 (4) 1.2341 (4) 0.0127 (7)
N13 0.5023 (5) 0.4701 (4) 1.0666 (4) 0.0110 (7)
N14 0.3273 (5) 0.7226 (3) 0.5122 (4) 0.0112 (7)
O15 0.2034 (4) 0.7844 (3) 0.3794 (4) 0.0142 (6)
O16 0.5086 (4) 0.7636 (3) 0.5919 (4) 0.0154 (6)

(I) Bis[(1H-tetrazol-5-yl)methyl]nitramide . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0148 (14) 0.0102 (17) 0.0139 (15) −0.0015 (13) 0.0011 (12) −0.0015 (13)
N2 0.0141 (15) 0.0093 (18) 0.0164 (17) 0.0004 (13) 0.0029 (12) 0.0010 (13)
N3 0.0141 (14) 0.0082 (17) 0.0144 (16) −0.0017 (13) 0.0017 (12) −0.0040 (13)
N4 0.0139 (15) 0.0074 (16) 0.0135 (15) −0.0021 (13) 0.0021 (11) −0.0019 (14)
C5 0.0104 (16) 0.0071 (18) 0.0139 (17) −0.0023 (14) 0.0003 (13) 0.0004 (15)
C6 0.0139 (18) 0.0113 (18) 0.0122 (16) −0.0044 (16) 0.0020 (13) 0.0004 (16)
N7 0.0152 (16) 0.0061 (15) 0.0142 (15) −0.0045 (13) 0.0003 (12) −0.0008 (13)
C8 0.022 (2) 0.0062 (18) 0.0093 (16) 0.0041 (14) 0.0013 (14) 0.0004 (13)
C9 0.0091 (16) 0.0115 (18) 0.0130 (17) 0.0008 (15) 0.0015 (13) −0.0036 (16)
N10 0.0171 (16) 0.0060 (17) 0.0131 (15) 0.0011 (13) 0.0049 (12) 0.0014 (13)
N11 0.0155 (16) 0.0101 (17) 0.0122 (14) 0.0020 (13) 0.0013 (11) 0.0001 (13)
N12 0.0136 (15) 0.0112 (15) 0.0131 (15) −0.0003 (14) 0.0019 (11) 0.0003 (15)
N13 0.0131 (15) 0.0079 (18) 0.0112 (15) −0.0010 (13) 0.0007 (11) −0.0005 (13)
N14 0.0147 (15) 0.0078 (15) 0.0115 (14) −0.0016 (12) 0.0037 (12) −0.0003 (12)
O15 0.0182 (13) 0.0099 (13) 0.0136 (12) 0.0031 (12) 0.0012 (10) 0.0029 (11)
O16 0.0165 (13) 0.0148 (14) 0.0144 (12) −0.0052 (10) 0.0021 (10) −0.0007 (11)

(I) Bis[(1H-tetrazol-5-yl)methyl]nitramide . Geometric parameters (Å, º)

N1—C5 1.326 (5) C8—C9 1.508 (5)
N1—N2 1.361 (4) C8—H8A 0.9900
N2—N3 1.304 (5) C8—H8B 0.9900
N3—N4 1.343 (5) C9—N13 1.314 (5)
N4—C5 1.334 (5) C9—N10 1.338 (5)
N4—H4 0.80 (6) N10—N11 1.347 (4)
C5—C6 1.505 (5) N10—H10 0.867 (11)
C6—N7 1.460 (5) N11—N12 1.301 (5)
C6—H6A 0.9900 N12—N13 1.362 (5)
C6—H6B 0.9900 N14—O15 1.230 (4)
N7—N14 1.346 (4) N14—O16 1.236 (4)
N7—C8 1.457 (5)
C5—N1—N2 105.2 (3) N7—C8—C9 113.2 (3)
N3—N2—N1 111.1 (3) N7—C8—H8A 108.9
N2—N3—N4 105.8 (3) C9—C8—H8A 108.9
C5—N4—N3 109.1 (4) N7—C8—H8B 108.9
C5—N4—H4 127 (3) C9—C8—H8B 108.9
N3—N4—H4 124 (3) H8A—C8—H8B 107.8
N1—C5—N4 108.7 (4) N13—C9—N10 108.2 (3)
N1—C5—C6 124.5 (3) N13—C9—C8 125.3 (4)
N4—C5—C6 126.7 (3) N10—C9—C8 126.5 (4)
N7—C6—C5 113.4 (3) C9—N10—N11 108.7 (3)
N7—C6—H6A 108.9 C9—N10—H10 130 (3)
C5—C6—H6A 108.9 N11—N10—H10 121 (3)
N7—C6—H6B 108.9 N12—N11—N10 106.6 (3)
C5—C6—H6B 108.9 N11—N12—N13 109.9 (3)
H6A—C6—H6B 107.7 C9—N13—N12 106.7 (3)
N14—N7—C8 117.4 (3) O15—N14—O16 124.9 (3)
N14—N7—C6 117.4 (3) O15—N14—N7 118.2 (3)
C8—N7—C6 123.6 (3) O16—N14—N7 116.9 (3)
C5—N1—N2—N3 −0.4 (4) N7—C8—C9—N13 135.9 (4)
N1—N2—N3—N4 0.3 (4) N7—C8—C9—N10 −46.8 (5)
N2—N3—N4—C5 0.0 (4) N13—C9—N10—N11 −0.4 (4)
N2—N1—C5—N4 0.3 (4) C8—C9—N10—N11 −178.1 (3)
N2—N1—C5—C6 177.6 (3) C9—N10—N11—N12 0.5 (4)
N3—N4—C5—N1 −0.2 (4) N10—N11—N12—N13 −0.4 (4)
N3—N4—C5—C6 −177.4 (3) N10—C9—N13—N12 0.1 (4)
N1—C5—C6—N7 104.7 (4) C8—C9—N13—N12 177.8 (3)
N4—C5—C6—N7 −78.6 (5) N11—N12—N13—C9 0.2 (4)
C5—C6—N7—N14 77.3 (4) C8—N7—N14—O15 165.5 (3)
C5—C6—N7—C8 −87.9 (4) C6—N7—N14—O15 −0.6 (5)
N14—N7—C8—C9 82.6 (4) C8—N7—N14—O16 −15.0 (4)
C6—N7—C8—C9 −112.2 (4) C6—N7—N14—O16 178.9 (3)

(I) Bis[(1H-tetrazol-5-yl)methyl]nitramide . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N4—H4···N2i 0.80 (6) 2.19 (6) 2.957 (5) 160 (4)
N4—H4···O15 0.80 (6) 2.45 (5) 2.924 (5) 119 (4)
C6—H6B···O15ii 0.99 2.37 3.264 (5) 150
C8—H8B···N11iii 0.99 2.44 3.316 (5) 147
N10—H10···N13iv 0.87 (1) 1.99 (3) 2.770 (5) 149 (4)
N10—H10···O16 0.87 (1) 2.28 (4) 2.796 (4) 118 (4)

Symmetry codes: (i) −x, y+1/2, −z; (ii) −x, y−1/2, −z+1; (iii) −x+1, y−1/2, −z+2; (iv) −x+1, y+1/2, −z+2.

(II) Triaminoguanidinium 5-({[(1H-tetrazol-5-yl)methyl](nitro)amino}methyl)tetrazol-1-ide . Crystal data

CH9N6+·C4H5N10O2 F(000) = 688
Mr = 330.32 Dx = 1.650 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 6.5312 (11) Å Cell parameters from 2664 reflections
b = 12.682 (2) Å θ = 3.0–25.8°
c = 16.183 (3) Å µ = 0.13 mm1
β = 97.118 (3)° T = 100 K
V = 1330.0 (4) Å3 Thin plate, colorless
Z = 4 0.52 × 0.06 × 0.02 mm

(II) Triaminoguanidinium 5-({[(1H-tetrazol-5-yl)methyl](nitro)amino}methyl)tetrazol-1-ide . Data collection

Bruker SMART APEXII CCD diffractometer 2733 independent reflections
Radiation source: fine focus sealed tube 2141 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.037
ω scans θmax = 26.5°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −8→8
Tmin = 0.674, Tmax = 0.745 k = −15→15
11821 measured reflections l = −20→17

(II) Triaminoguanidinium 5-({[(1H-tetrazol-5-yl)methyl](nitro)amino}methyl)tetrazol-1-ide . Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.044P)2 + 0.6423P] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
2733 reflections Δρmax = 0.23 e Å3
238 parameters Δρmin = −0.25 e Å3

(II) Triaminoguanidinium 5-({[(1H-tetrazol-5-yl)methyl](nitro)amino}methyl)tetrazol-1-ide . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(II) Triaminoguanidinium 5-({[(1H-tetrazol-5-yl)methyl](nitro)amino}methyl)tetrazol-1-ide . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.8295 (2) 0.71404 (10) 0.35827 (9) 0.0141 (3)
H1 0.937 (3) 0.7311 (14) 0.3283 (12) 0.017*
N2 0.8025 (2) 0.61115 (11) 0.37468 (9) 0.0181 (3)
N3 0.6329 (2) 0.60429 (11) 0.40878 (9) 0.0178 (3)
N4 0.5480 (2) 0.70155 (10) 0.41515 (9) 0.0162 (3)
C5 0.6732 (2) 0.76797 (12) 0.38346 (10) 0.0128 (3)
C6 0.6426 (2) 0.88578 (12) 0.37832 (11) 0.0142 (3)
H6A 0.697088 0.918049 0.432299 0.017*
H6B 0.721587 0.914793 0.335095 0.017*
N7 0.42480 (19) 0.91361 (10) 0.35817 (9) 0.0132 (3)
C8 0.3282 (2) 0.90418 (12) 0.27155 (10) 0.0151 (3)
H8A 0.416201 0.939648 0.234379 0.018*
H8B 0.192815 0.940317 0.265472 0.018*
C9 0.2981 (2) 0.79121 (12) 0.24561 (10) 0.0128 (3)
N10 0.1481 (2) 0.72878 (10) 0.26607 (9) 0.0152 (3)
N11 0.1891 (2) 0.63274 (11) 0.23517 (9) 0.0164 (3)
N12 0.3573 (2) 0.63861 (11) 0.19785 (9) 0.0176 (3)
N13 0.4297 (2) 0.73864 (11) 0.20361 (9) 0.0165 (3)
N14 0.3000 (2) 0.89963 (10) 0.41915 (9) 0.0140 (3)
O15 0.38074 (18) 0.89379 (9) 0.49195 (7) 0.0185 (3)
O16 0.11190 (17) 0.89812 (9) 0.39797 (8) 0.0189 (3)
C17 −0.0806 (2) 0.68873 (12) 0.58804 (10) 0.0133 (3)
N18 0.0711 (2) 0.72677 (11) 0.54903 (9) 0.0170 (3)
H18 0.086 (3) 0.7929 (16) 0.5481 (12) 0.020*
N19 0.2228 (2) 0.65585 (12) 0.52819 (11) 0.0209 (3)
H19A 0.255 (3) 0.6740 (16) 0.4767 (14) 0.027*
H19B 0.337 (3) 0.6698 (16) 0.5647 (14) 0.027*
N20 −0.2213 (2) 0.75296 (10) 0.61240 (9) 0.0145 (3)
H20 −0.311 (3) 0.7310 (14) 0.6435 (12) 0.017*
N21 −0.1977 (2) 0.86203 (11) 0.59874 (10) 0.0181 (3)
H21A −0.139 (3) 0.8920 (16) 0.6454 (14) 0.024*
H21B −0.324 (3) 0.8875 (15) 0.5871 (13) 0.024*
N22 −0.0899 (2) 0.58573 (11) 0.60267 (9) 0.0160 (3)
H22 −0.002 (3) 0.5432 (15) 0.5856 (12) 0.019*
N23 −0.2648 (2) 0.54700 (12) 0.63607 (11) 0.0212 (3)
H23A −0.221 (3) 0.4982 (17) 0.6733 (14) 0.028*
H23B −0.346 (3) 0.5116 (16) 0.5941 (14) 0.028*

(II) Triaminoguanidinium 5-({[(1H-tetrazol-5-yl)methyl](nitro)amino}methyl)tetrazol-1-ide . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0119 (6) 0.0132 (7) 0.0177 (8) −0.0008 (5) 0.0036 (6) −0.0010 (6)
N2 0.0145 (7) 0.0147 (7) 0.0253 (9) −0.0003 (5) 0.0024 (6) −0.0011 (6)
N3 0.0144 (7) 0.0140 (7) 0.0249 (8) 0.0012 (5) 0.0026 (6) 0.0029 (6)
N4 0.0144 (7) 0.0144 (7) 0.0202 (8) 0.0007 (5) 0.0036 (6) −0.0001 (6)
C5 0.0110 (7) 0.0148 (8) 0.0122 (8) −0.0010 (6) 0.0002 (6) −0.0010 (6)
C6 0.0097 (7) 0.0134 (8) 0.0195 (9) −0.0002 (6) 0.0017 (6) −0.0005 (7)
N7 0.0112 (6) 0.0136 (7) 0.0151 (7) 0.0000 (5) 0.0031 (5) 0.0009 (5)
C8 0.0158 (8) 0.0152 (8) 0.0140 (9) −0.0002 (6) 0.0012 (6) 0.0019 (6)
C9 0.0130 (7) 0.0153 (8) 0.0095 (8) 0.0007 (6) −0.0015 (6) 0.0007 (6)
N10 0.0145 (7) 0.0145 (7) 0.0163 (8) −0.0004 (5) 0.0010 (6) −0.0007 (6)
N11 0.0171 (7) 0.0158 (7) 0.0161 (8) −0.0004 (5) 0.0015 (6) −0.0013 (6)
N12 0.0167 (7) 0.0168 (7) 0.0196 (8) −0.0012 (5) 0.0038 (6) −0.0020 (6)
N13 0.0168 (7) 0.0169 (7) 0.0159 (8) −0.0007 (6) 0.0029 (6) −0.0002 (6)
N14 0.0144 (7) 0.0103 (6) 0.0180 (8) −0.0004 (5) 0.0042 (6) −0.0007 (5)
O15 0.0210 (6) 0.0207 (6) 0.0135 (6) 0.0011 (5) 0.0013 (5) −0.0004 (5)
O16 0.0098 (6) 0.0205 (6) 0.0267 (7) −0.0007 (4) 0.0032 (5) −0.0027 (5)
C17 0.0137 (8) 0.0148 (8) 0.0104 (8) −0.0011 (6) −0.0021 (6) 0.0000 (6)
N18 0.0167 (7) 0.0125 (7) 0.0233 (8) 0.0000 (5) 0.0082 (6) 0.0006 (6)
N19 0.0184 (8) 0.0223 (8) 0.0240 (9) 0.0020 (6) 0.0104 (7) −0.0017 (7)
N20 0.0141 (7) 0.0115 (7) 0.0186 (8) 0.0001 (5) 0.0049 (6) 0.0020 (6)
N21 0.0183 (7) 0.0113 (7) 0.0237 (9) 0.0015 (6) −0.0016 (6) 0.0005 (6)
N22 0.0142 (7) 0.0127 (7) 0.0226 (8) 0.0013 (5) 0.0081 (6) 0.0014 (6)
N23 0.0197 (8) 0.0147 (7) 0.0312 (10) −0.0033 (6) 0.0112 (7) 0.0024 (7)

(II) Triaminoguanidinium 5-({[(1H-tetrazol-5-yl)methyl](nitro)amino}methyl)tetrazol-1-ide . Geometric parameters (Å, º)

N1—C5 1.334 (2) N12—N13 1.3530 (19)
N1—N2 1.3475 (19) N14—O15 1.2319 (18)
N1—H1 0.929 (19) N14—O16 1.2337 (17)
N2—N3 1.300 (2) C17—N20 1.324 (2)
N3—N4 1.3614 (19) C17—N18 1.330 (2)
N4—C5 1.321 (2) C17—N22 1.330 (2)
C5—C6 1.508 (2) N18—N19 1.410 (2)
C6—N7 1.463 (2) N18—H18 0.84 (2)
C6—H6A 0.9900 N19—H19A 0.92 (2)
C6—H6B 0.9900 N19—H19B 0.91 (2)
N7—N14 1.3673 (19) N20—N21 1.4123 (19)
N7—C8 1.469 (2) N20—H20 0.86 (2)
C8—C9 1.499 (2) N21—H21A 0.89 (2)
C8—H8A 0.9900 N21—H21B 0.89 (2)
C8—H8B 0.9900 N22—N23 1.4112 (19)
C9—N10 1.333 (2) N22—H22 0.86 (2)
C9—N13 1.338 (2) N23—H23A 0.89 (2)
N10—N11 1.3558 (19) N23—H23B 0.92 (2)
N11—N12 1.3196 (19)
C5—N1—N2 108.22 (13) N12—N11—N10 109.37 (13)
C5—N1—H1 134.4 (11) N11—N12—N13 108.97 (13)
N2—N1—H1 117.0 (11) C9—N13—N12 105.14 (13)
N3—N2—N1 106.71 (13) O15—N14—O16 123.94 (14)
N2—N3—N4 110.36 (13) O15—N14—N7 118.36 (13)
C5—N4—N3 105.71 (13) O16—N14—N7 117.62 (14)
N4—C5—N1 109.01 (14) N20—C17—N18 120.25 (15)
N4—C5—C6 124.68 (14) N20—C17—N22 120.16 (15)
N1—C5—C6 126.31 (14) N18—C17—N22 119.59 (15)
N7—C6—C5 111.70 (12) C17—N18—N19 117.99 (14)
N7—C6—H6A 109.3 C17—N18—H18 117.6 (13)
C5—C6—H6A 109.3 N19—N18—H18 122.9 (13)
N7—C6—H6B 109.3 N18—N19—H19A 107.8 (13)
C5—C6—H6B 109.3 N18—N19—H19B 105.4 (13)
H6A—C6—H6B 107.9 H19A—N19—H19B 106.1 (18)
N14—N7—C6 117.27 (13) C17—N20—N21 117.55 (14)
N14—N7—C8 117.01 (13) C17—N20—H20 121.3 (12)
C6—N7—C8 118.94 (13) N21—N20—H20 120.1 (12)
N7—C8—C9 111.78 (13) N20—N21—H21A 109.3 (13)
N7—C8—H8A 109.3 N20—N21—H21B 105.9 (13)
C9—C8—H8A 109.3 H21A—N21—H21B 108.4 (19)
N7—C8—H8B 109.3 C17—N22—N23 117.82 (14)
C9—C8—H8B 109.3 C17—N22—H22 120.9 (13)
H8A—C8—H8B 107.9 N23—N22—H22 120.6 (13)
N10—C9—N13 111.61 (14) N22—N23—H23A 107.1 (13)
N10—C9—C8 124.97 (14) N22—N23—H23B 107.8 (13)
N13—C9—C8 123.25 (14) H23A—N23—H23B 105.5 (19)
C9—N10—N11 104.91 (13)
C5—N1—N2—N3 0.17 (18) C8—C9—N10—N11 −175.43 (14)
N1—N2—N3—N4 −0.10 (18) C9—N10—N11—N12 −0.01 (17)
N2—N3—N4—C5 −0.01 (18) N10—N11—N12—N13 0.01 (18)
N3—N4—C5—N1 0.11 (18) N10—C9—N13—N12 0.00 (18)
N3—N4—C5—C6 −179.14 (15) C8—C9—N13—N12 175.53 (14)
N2—N1—C5—N4 −0.18 (19) N11—N12—N13—C9 0.00 (17)
N2—N1—C5—C6 179.06 (15) C6—N7—N14—O15 20.04 (19)
N4—C5—C6—N7 −38.1 (2) C8—N7—N14—O15 170.96 (13)
N1—C5—C6—N7 142.82 (16) C6—N7—N14—O16 −162.96 (13)
C5—C6—N7—N14 72.31 (18) C8—N7—N14—O16 −12.05 (19)
C5—C6—N7—C8 −78.03 (17) N20—C17—N18—N19 176.83 (15)
N14—N7—C8—C9 −78.88 (16) N22—C17—N18—N19 −3.0 (2)
C6—N7—C8—C9 71.53 (17) N18—C17—N20—N21 −2.8 (2)
N7—C8—C9—N10 77.91 (19) N22—C17—N20—N21 177.00 (15)
N7—C8—C9—N13 −97.02 (18) N20—C17—N22—N23 6.8 (2)
N13—C9—N10—N11 0.01 (18) N18—C17—N22—N23 −173.34 (15)

(II) Triaminoguanidinium 5-({[(1H-tetrazol-5-yl)methyl](nitro)amino}methyl)tetrazol-1-ide . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···N10i 0.929 (19) 1.804 (19) 2.713 (2) 165.6 (17)
N1—H1···N11i 0.929 (19) 2.673 (19) 3.422 (2) 138.2 (14)
N1—H1···O16i 0.929 (19) 2.596 (18) 2.9952 (18) 106.5 (13)
N18—H18···O15 0.84 (2) 2.569 (19) 3.1451 (18) 126.4 (16)
N18—H18···N21 0.84 (2) 2.292 (19) 2.650 (2) 105.9 (15)
N19—H19A···N4 0.92 (2) 2.29 (2) 3.026 (2) 137.3 (17)
N19—H19B···N13ii 0.91 (2) 2.54 (2) 3.275 (2) 138.5 (16)
N20—H20···N13iii 0.86 (2) 2.09 (2) 2.867 (2) 149.0 (17)
N20—H20···N23 0.86 (2) 2.358 (18) 2.660 (2) 100.9 (14)
N21—H21A···N11ii 0.89 (2) 2.46 (2) 3.143 (2) 134.4 (16)
N21—H21B···O15iv 0.89 (2) 2.31 (2) 3.090 (2) 146.3 (18)
N22—H22···N2v 0.86 (2) 2.40 (2) 3.118 (2) 142.3 (17)
N22—H22···N19 0.86 (2) 2.325 (19) 2.650 (2) 102.9 (15)
N23—H23A···N11vi 0.89 (2) 2.22 (2) 3.087 (2) 166.5 (18)
N23—H23B···N3vi 0.92 (2) 2.38 (2) 3.091 (2) 133.9 (17)

Symmetry codes: (i) x+1, y, z; (ii) x, −y+3/2, z+1/2; (iii) x−1, −y+3/2, z+1/2; (iv) x−1, y, z; (v) −x+1, −y+1, −z+1; (vi) −x, −y+1, −z+1.

(III) Diammonium bis[(tetrazol-1-id-5-yl)methyl]nitramide monohydrate. Crystal data

2NH4+·C4H4N10O22·H2O Z = 2
Mr = 278.27 F(000) = 292
Triclinic, P1 Dx = 1.579 Mg m3
a = 7.5893 (11) Å Mo Kα radiation, λ = 0.71073 Å
b = 7.6077 (11) Å Cell parameters from 9690 reflections
c = 11.2319 (15) Å θ = 3.0–29.3°
α = 85.564 (4)° µ = 0.13 mm1
β = 85.555 (4)° T = 296 K
γ = 65.007 (4)° Irregular, colorless
V = 585.29 (14) Å3 0.75 × 0.63 × 0.24 mm

(III) Diammonium bis[(tetrazol-1-id-5-yl)methyl]nitramide monohydrate. Data collection

Bruker SMART APEXII CCD diffractometer 3178 independent reflections
Radiation source: fine-focus sealed tube 3000 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.057
ω and φ scans θmax = 29.3°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −10→10
Tmin = 0.687, Tmax = 0.746 k = −10→10
38379 measured reflections l = −15→15

(III) Diammonium bis[(tetrazol-1-id-5-yl)methyl]nitramide monohydrate. Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0606P)2 + 0.0988P] where P = (Fo2 + 2Fc2)/3
S = 1.12 (Δ/σ)max < 0.001
3178 reflections Δρmax = 0.29 e Å3
202 parameters Δρmin = −0.27 e Å3

(III) Diammonium bis[(tetrazol-1-id-5-yl)methyl]nitramide monohydrate. Special details

Experimental. Output from intergration and final cell refinement: A B C Alpha Beta Gamma Vol 7.59208 7.60543 11.22509 85.5941 85.5165 64.9686 584.79 0.00008 0.00008 0.00012 0.0004 0.0004 0.0004 0.01 Corrected for goodness of fit: 0.00040 0.00041 0.00058 0.0020 0.0022 0.0019 0.07
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(III) Diammonium bis[(tetrazol-1-id-5-yl)methyl]nitramide monohydrate. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.63637 (12) 0.17356 (11) −0.03243 (7) 0.02642 (17)
N2 0.74077 (12) 0.11482 (12) −0.13592 (7) 0.02770 (18)
N3 0.86114 (14) −0.06786 (13) −0.12320 (8) 0.0330 (2)
N4 0.84018 (14) −0.13474 (12) −0.01067 (8) 0.03243 (19)
C5 0.70207 (12) 0.01714 (12) 0.04216 (7) 0.02088 (17)
C6 0.62734 (14) 0.01115 (14) 0.16882 (8) 0.02520 (18)
H6A 0.4887 0.0929 0.1739 0.030*
H6B 0.6459 −0.1207 0.1923 0.030*
N7 0.72326 (12) 0.07574 (11) 0.25251 (7) 0.02516 (17)
C8 0.88186 (13) −0.06259 (14) 0.32289 (8) 0.02571 (18)
H8A 0.9528 0.0041 0.3523 0.031*
H8B 0.9712 −0.1626 0.2717 0.031*
C9 0.81243 (12) −0.15606 (13) 0.42648 (8) 0.02285 (17)
N10 0.76291 (15) −0.08633 (13) 0.53514 (7) 0.0334 (2)
N11 0.70900 (16) −0.21454 (14) 0.59893 (8) 0.0382 (2)
N12 0.72763 (14) −0.35383 (13) 0.53058 (8) 0.0343 (2)
N13 0.79270 (14) −0.32036 (13) 0.41982 (8) 0.03096 (19)
N14 0.65021 (12) 0.26410 (12) 0.27363 (7) 0.02663 (17)
O15 0.52737 (13) 0.37956 (11) 0.20606 (7) 0.03769 (19)
O16 0.71072 (13) 0.31354 (12) 0.35853 (7) 0.03772 (19)
O1S 0.02418 (14) 0.53216 (13) −0.20467 (7) 0.0398 (2)
H1SA 0.086 (3) 0.482 (3) −0.2719 (18) 0.060*
H1SB −0.028 (3) 0.650 (3) −0.2242 (18) 0.060*
N1A 0.36192 (14) 0.69706 (13) 0.37735 (8) 0.02941 (18)
H1A 0.317 (2) 0.615 (2) 0.4054 (13) 0.035*
H1B 0.484 (2) 0.643 (2) 0.3830 (13) 0.035*
H1C 0.336 (2) 0.730 (2) 0.3016 (14) 0.035*
H1D 0.318 (2) 0.807 (2) 0.4177 (13) 0.035*
N2A 0.24096 (13) 0.50259 (13) 0.00386 (9) 0.03122 (19)
H2A 0.184 (2) 0.504 (2) −0.0618 (14) 0.037*
H2B 0.267 (2) 0.601 (2) 0.0049 (14) 0.037*
H2C 0.181 (2) 0.493 (2) 0.0693 (15) 0.037*
H2D 0.356 (2) 0.399 (2) −0.0029 (13) 0.037*

(III) Diammonium bis[(tetrazol-1-id-5-yl)methyl]nitramide monohydrate. Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0331 (4) 0.0229 (4) 0.0194 (3) −0.0083 (3) −0.0005 (3) 0.0001 (3)
N2 0.0362 (4) 0.0283 (4) 0.0188 (3) −0.0141 (3) 0.0003 (3) −0.0004 (3)
N3 0.0396 (4) 0.0297 (4) 0.0238 (4) −0.0096 (3) 0.0059 (3) −0.0034 (3)
N4 0.0401 (4) 0.0235 (4) 0.0250 (4) −0.0057 (3) 0.0027 (3) −0.0005 (3)
C5 0.0251 (4) 0.0211 (4) 0.0183 (4) −0.0112 (3) −0.0024 (3) −0.0011 (3)
C6 0.0331 (4) 0.0290 (4) 0.0186 (4) −0.0181 (4) 0.0001 (3) −0.0009 (3)
N7 0.0336 (4) 0.0236 (4) 0.0188 (3) −0.0122 (3) −0.0026 (3) −0.0015 (3)
C8 0.0245 (4) 0.0294 (4) 0.0217 (4) −0.0103 (3) 0.0015 (3) −0.0005 (3)
C9 0.0242 (4) 0.0232 (4) 0.0196 (4) −0.0082 (3) −0.0023 (3) −0.0009 (3)
N10 0.0513 (5) 0.0298 (4) 0.0210 (4) −0.0194 (4) 0.0034 (3) −0.0031 (3)
N11 0.0540 (6) 0.0349 (5) 0.0256 (4) −0.0203 (4) 0.0061 (4) 0.0008 (3)
N12 0.0430 (5) 0.0329 (4) 0.0302 (4) −0.0197 (4) −0.0012 (3) 0.0038 (3)
N13 0.0420 (5) 0.0293 (4) 0.0251 (4) −0.0181 (3) −0.0024 (3) −0.0016 (3)
N14 0.0365 (4) 0.0257 (4) 0.0188 (3) −0.0147 (3) 0.0027 (3) −0.0019 (3)
O15 0.0502 (5) 0.0281 (4) 0.0272 (4) −0.0092 (3) −0.0055 (3) 0.0028 (3)
O16 0.0533 (5) 0.0357 (4) 0.0295 (4) −0.0222 (4) −0.0043 (3) −0.0086 (3)
O1S 0.0512 (5) 0.0321 (4) 0.0275 (4) −0.0099 (3) 0.0021 (3) 0.0005 (3)
N1A 0.0372 (4) 0.0266 (4) 0.0222 (4) −0.0108 (3) −0.0040 (3) −0.0008 (3)
N2A 0.0307 (4) 0.0263 (4) 0.0381 (5) −0.0132 (3) −0.0010 (4) −0.0022 (3)

(III) Diammonium bis[(tetrazol-1-id-5-yl)methyl]nitramide monohydrate. Geometric parameters (Å, º)

N1—C5 1.3325 (11) N10—N11 1.3475 (13)
N1—N2 1.3480 (11) N11—N12 1.3095 (14)
N2—N3 1.3051 (12) N12—N13 1.3485 (12)
N3—N4 1.3488 (12) N14—O16 1.2373 (11)
N4—C5 1.3312 (12) N14—O15 1.2375 (11)
C5—C6 1.4948 (12) O1S—H1SA 0.88 (2)
C6—N7 1.4611 (12) O1S—H1SB 0.83 (2)
C6—H6A 0.9700 N1A—H1A 0.859 (16)
C6—H6B 0.9700 N1A—H1B 0.847 (16)
N7—N14 1.3334 (11) N1A—H1C 0.882 (16)
N7—C8 1.4593 (12) N1A—H1D 0.906 (16)
C8—C9 1.4935 (12) N2A—H2A 0.880 (16)
C8—H8A 0.9700 N2A—H2B 0.854 (16)
C8—H8B 0.9700 N2A—H2C 0.849 (17)
C9—N13 1.3284 (12) N2A—H2D 0.896 (16)
C9—N10 1.3315 (12)
C5—N1—N2 104.67 (7) N13—C9—C8 123.16 (8)
N3—N2—N1 109.51 (7) N10—C9—C8 124.72 (8)
N2—N3—N4 109.43 (8) C9—N10—N11 104.58 (8)
C5—N4—N3 104.71 (8) N12—N11—N10 109.26 (8)
N4—C5—N1 111.67 (8) N11—N12—N13 109.62 (8)
N4—C5—C6 124.00 (8) C9—N13—N12 104.41 (8)
N1—C5—C6 124.32 (8) O16—N14—O15 123.83 (8)
N7—C6—C5 113.19 (7) O16—N14—N7 118.24 (8)
N7—C6—H6A 108.9 O15—N14—N7 117.93 (8)
C5—C6—H6A 108.9 H1SA—O1S—H1SB 102.1 (18)
N7—C6—H6B 108.9 H1A—N1A—H1B 107.3 (14)
C5—C6—H6B 108.9 H1A—N1A—H1C 111.5 (14)
H6A—C6—H6B 107.8 H1B—N1A—H1C 108.9 (14)
N14—N7—C8 119.43 (8) H1A—N1A—H1D 114.4 (14)
N14—N7—C6 118.69 (8) H1B—N1A—H1D 106.7 (14)
C8—N7—C6 121.50 (8) H1C—N1A—H1D 107.9 (13)
N7—C8—C9 112.80 (7) H2A—N2A—H2B 111.5 (14)
N7—C8—H8A 109.0 H2A—N2A—H2C 116.2 (14)
C9—C8—H8A 109.0 H2B—N2A—H2C 108.9 (15)
N7—C8—H8B 109.0 H2A—N2A—H2D 103.5 (13)
C9—C8—H8B 109.0 H2B—N2A—H2D 106.1 (14)
H8A—C8—H8B 107.8 H2C—N2A—H2D 110.1 (14)
N13—C9—N10 112.13 (8)
C5—N1—N2—N3 0.47 (10) N7—C8—C9—N13 90.37 (11)
N1—N2—N3—N4 −0.27 (12) N7—C8—C9—N10 −89.46 (11)
N2—N3—N4—C5 −0.06 (12) N13—C9—N10—N11 −0.21 (12)
N3—N4—C5—N1 0.37 (11) C8—C9—N10—N11 179.64 (9)
N3—N4—C5—C6 179.15 (8) C9—N10—N11—N12 0.43 (12)
N2—N1—C5—N4 −0.52 (11) N10—N11—N12—N13 −0.50 (13)
N2—N1—C5—C6 −179.30 (8) N10—C9—N13—N12 −0.08 (11)
N4—C5—C6—N7 95.25 (11) C8—C9—N13—N12 −179.93 (8)
N1—C5—C6—N7 −86.12 (11) N11—N12—N13—C9 0.35 (11)
C5—C6—N7—N14 88.66 (10) C8—N7—N14—O16 −5.08 (12)
C5—C6—N7—C8 −98.39 (9) C6—N7—N14—O16 168.02 (8)
N14—N7—C8—C9 96.03 (10) C8—N7—N14—O15 174.04 (8)
C6—N7—C8—C9 −76.87 (10) C6—N7—N14—O15 −12.86 (12)

(III) Diammonium bis[(tetrazol-1-id-5-yl)methyl]nitramide monohydrate. Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1S—H1SA···N13i 0.88 (2) 2.06 (2) 2.9253 (12) 168.0 (18)
O1S—H1SB···N3ii 0.83 (2) 2.31 (2) 2.9498 (13) 134.8 (17)
N1A—H1A···N12iii 0.859 (16) 2.211 (16) 3.0533 (13) 166.7 (14)
N1A—H1B···O16 0.847 (16) 2.388 (16) 3.0079 (13) 130.5 (13)
N1A—H1B···N13iv 0.847 (16) 2.540 (15) 3.2862 (14) 147.6 (13)
N1A—H1B···N12iv 0.847 (16) 2.585 (15) 3.2472 (14) 136.0 (13)
N2A—H2A···O1S 0.880 (16) 2.030 (16) 2.9062 (14) 173.2 (14)
N2A—H2B···N1v 0.854 (16) 2.179 (16) 3.0243 (13) 170.3 (14)
N1A—H1C···N2v 0.882 (16) 2.107 (16) 2.9654 (12) 164.2 (14)
N2A—H2C···O1Svi 0.849 (17) 2.147 (17) 2.9766 (13) 165.2 (14)
N2A—H2D···N1 0.896 (16) 2.117 (16) 3.0096 (13) 174.0 (13)
N1A—H1D···N10vii 0.906 (16) 2.045 (16) 2.9273 (13) 164.2 (13)

Symmetry codes: (i) −x+1, −y, −z; (ii) x−1, y+1, z; (iii) −x+1, −y, −z+1; (iv) x, y+1, z; (v) −x+1, −y+1, −z; (vi) −x, −y+1, −z; (vii) −x+1, −y+1, −z+1.

Funding Statement

This work was funded by Office of Naval Research grant N00014–15-WX-0–0149. the Naval Research Laboratory grant . the American Society for Engineering Education grant . Department of Defense (DOD) at Los Alamos National Laboratory (LANL grant .

References

  1. Allen, F. H., Bird, C. M., Rowland, R. S., Harris, S. E. & Schwalbe, C. H. (1995). Acta Cryst. B51, 1068–1081.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Bruker (2008). APEX2, SADABS, SAINT, and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Jaidann, M., Roy, S., Abou-Rachid, H. & Lussier, L.-S. (2010). J. Hazard. Mater. 176, 165–173. [DOI] [PubMed]
  7. Klapötke, T. M., Mayer, P., Sabaté, C. M., Welch, J. M. & Wiegand, N. (2008). Inorg. Chem. 47, 6014–6027. [DOI] [PubMed]
  8. Klapötke, T. M., Sabaté, C. M. & Stierstorfer, J. (2009). New J. Chem. 33, 136–147.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Sheldrick, G. M. (2015). Acta Cryst C71, 3–8.
  11. Talawar, M. B., Sivabalan, R., Mukundan, T., Muthurajan, H., Sikder, A. K., Gandhe, B. R. & Rao, A. S. (2009). J. Hazard. Mater. 161, 589–607. [DOI] [PubMed]
  12. Wei, H., Zhang, J., He, C. & Shreeve, J. M. (2015). Chem. Eur. J. 21, 8607–8612. [DOI] [PubMed]
  13. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  14. Wu, Q., Zhu, W. & Xiao, H. (2014). J. Mater. Chem. A, 2, 13006–13015.
  15. Zhurov, V. V., Zhurova, E. A., Stash, A. I. & Pinkerton, A. A. (2011). Acta Cryst. A67, 160–173. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, III. DOI: 10.1107/S2056989017008817/lh5843sup1.cif

e-73-01056-sup1.cif (1.5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017008817/lh5843Isup2.hkl

e-73-01056-Isup2.hkl (72.7KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989017008817/lh5843IIsup3.hkl

e-73-01056-IIsup3.hkl (218.7KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989017008817/lh5843IIIsup4.hkl

e-73-01056-IIIsup4.hkl (253.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017008817/lh5843Isup5.cml

Supporting information file. DOI: 10.1107/S2056989017008817/lh5843IIsup6.cml

Supporting information file. DOI: 10.1107/S2056989017008817/lh5843IIIsup7.cml

CCDC references: 1555912, 1555911, 1555910

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES