Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Jun 27;73(Pt 7):1073–1075. doi: 10.1107/S2056989017009148

Redetermination of the crystal structure of K2Hg(SCN)4

Jascha Bandemehr a, Matthias Conrad a, Florian Kraus a,*
PMCID: PMC5499294  PMID: 28775886

The redetermination of the crystal structure of potassium tetra­thio­cyanato­mercurate(II) reveals all atoms tombe located and shows much higher precision and accuracy in comparison with the previously determined structure.

Keywords: crystal structure, redetermination, mercury, thio­cyanate

Abstract

Single crystals of K2Hg(SCN)4 [dipotassium tetra­thio­cyanato­mercurate(II)] were grown from aqueous solutions of potassium thio­cyanate and mercury(II) thio­cyanate and studied by single-crystal X-ray diffraction. In comparison with the previously reported structure model [Zvonkova (1952). Zh. Fiz. Khim. 26, 1798–1803], all atoms in the crystal structure were located, with lattice parameters and fractional coordinates determined to a much higher precision. In the (crystal) structure, the HgII atom is located on a twofold rotation axis and is coordinated in the form of a distorted tetra­hedron by four S atoms of the thio­cyanate anions. The K+ cation shows a coordination number of eight.

Chemical context  

In search for suitable educts for fluorination we thought that K2Hg(SCN)4 would be a well-suited candidate. Once we had obtained the compound, we noticed that the original structure determination (Zvonkova, 1952) was of low precision with the light atoms (C and N) not determined, so we redetermined the crystal structure to much higher precision and accuracy.

K2Hg(SCN)4 was first synthesized in 1901 (Rosenheim & Cohn, 1901) by adding an aqueous solution of potassium thio­cyanate to a boiling solution of mercury(II) thio­cyanate and crystallization upon cooling to room temperature. The crystal structure has been known since 1952 (Zvonkova, 1952) and IR spectra were first measured in 1962 (Tramer, 1962). Related compounds of the type A 2Hg(SCN)4 with A = Rb, Cs, NH4, NMe4 are also known (Larbot & Beauchamp, 1973; Tramer, 1962). The HgII atom in K2Hg(SCN)4 is coordinated in the form of a distorted tetra­hedron by four S atoms in a fashion similar to the HgII atom in the structure of CoHg(SCN)4 (Jefferey & Rose, 1968). Such tetra­hedrally coordinated HgII atoms are also known, for example, for the halide and pseudo-halide compounds A 2HgX 4, viz. Cs2HgBr4 (Pakhomov et al., 1978; Altermatt et al., 1984; Pinheiro et al., 1998), Cs2HgCl4 (Linde et al., 1983; Pakhomov et al. 1992a ,b ; Bagautdinov & Brown, 2000), Cs2HgI4 (Zandbergen et al., 1979; Pakhomov & Fedorov, 1973), K2Hg(CN)4 (Gerlach & Powell, 1986; Dickinson, 1922) and Rb2Hg(CN)4 (Klüfers et al., 1981).

Structural commentary  

The lattice parameters obtained by our room-temperature single-crystal structure determination (Table 1) agree with those obtained previously (a = 11.04, b = 9.22, c = 13.18 Å, β = 106.30°, Z = 4; Zvonkova, 1952). K2Hg(SCN)4 crystallizes in the monoclinic crystal system in space group C2/c (No. 15). The HgII atom is located on a twofold rotation axis (Wyckoff position 4e) and is coordinated in the form of a distorted tetra­hedron by four S atoms of the thio­cyanate anions (Fig. 1). The S—Hg—S angles are in the range 105.02 (2)–114.67 (3)° and the Hg—S distances are 2.5380 (8) and 2.5550 (7) Å, both in good agreement with the previously reported data (S—Hg—S angle: 102–118°, Hg—S distance: 2.54 (2); Zvonkova, 1952). The Hg—S distance is slightly longer than those of the sixfold-coordinated HgII atom in Hg(SCN)2 [2.381 (6) Å] (Beauchamp & Goutier, 1972) and lies within the range of Hg—S distances [2.3954 (11)–2.7653 (6) Å] for the threefold coordinated HgII atom in KHg(SCN)3 (Weil & Häusler, 2014).

Table 1. Experimental details.

Crystal data
Chemical formula K2Hg(SCN)4
M r 511.11
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 10.8154 (9), 9.3243 (7), 13.3313 (11)
β (°) 106.648 (6)
V3) 1288.05 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 13.21
Crystal size (mm) 0.24 × 0.15 × 0.12
 
Data collection
Diffractometer Stoe IPDS 2T
Absorption correction Integration (X-RED32 and X-SHAPE; Stoe & Cie, 2009)
T min, T max 0.103, 0.344
No. of measured, independent and observed [I > 2σ(I)] reflections 14009, 2710, 2298
R int 0.043
(sin θ/λ)max−1) 0.798
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.024, 0.053, 1.08
No. of reflections 2710
No. of parameters 70
Δρmax, Δρmin (e Å−3) 1.15, −0.75

Computer programs: X-AREA (Stoe & Cie, 2011), X-RED (Stoe & Cie, 2009), SHELXT2014 (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ), DIAMOND (Brandenburg, 2015) and publCIF (Westrip, 2010).

Figure 1.

Figure 1

A section of the crystal structure of K2Hg(SCN)4, showing the [Hg(SCN)4]2− anion and the K+ cation. Displacement ellipsoids are shown at the 70% probability level at 293 K. [Symmetry code: (i) −x, y, Inline graphic − z].

As may be expected, the two unique SCN anions are almost linear [178.0 (3), 178.2 (3)°], and the angles are comparable with those reported for Hg(SCN)2 [177.5 (13)°; Beauchamp & Goutier, 1972] or KHg(SCN)3 [176.41 (4)–179.8 (3)°; Weil & Häusler, 2014]. The S—C [1.656 (3), 1.665 (3) Å] and C—N [1.153 (5), 1.152 (4) Å] distances are comparable as well [S—C: 1.62 (2), C—N: 1.18 (3) Å] (Beauchamp & Goutier, 1972) [S—C: 1.657 (4)–1.675 (3) Å, C—N: 1.140 (4)–1.145 (5) Å] (Weil & Häusler, 2014). The Hg—S—C angles in the title salt are 98.59 (10) and 97.06 (10)°, respectively. In comparison with the coordination polyhedron of the HgII atom and the structural feature of the SCN anions in CoHg(SCN)4 [Hg—S: 2.558–2.614 Å, S—C: 1.635–1.720 Å, C—N: 1.200–1.322 Å, S—Hg—S angles: 105.1 (1), 108.7 (1)°, Hg—S—C angle: 97.3 (5)°] (Jefferey & Rose, 1968), the respective angles and distances of the complex [Hg(SCN)4]2− anion presented here agree well. In total, a [Hg(SCN)4]2− anion is surrounded by twelve potassium atoms.

The K+ cation shows a coordination number of eight, with disparate bond lengths that can be associated with a [4 + 3 + 1] coordination. Four K—N distances are in the range 2.816 (4)–3.031 (5) Å, three K—S distances are in the range 3.4466 (11)–3.5315 (12) Å and there is one very long K—N distance of 3.793 (5) Å. Therefore, the resulting coordination polyhedron is of an odd shape. The K+ cation is coordinated in total by five [Hg(SCN)4]2− units, three of these in a monodentate manner (two via N atoms and one via the S atom of the thio­cyanate anions) and the other two in a bidentate mode (via the N and S atoms of neighboring thio­cyanate anions). Overall, a complex three-dimensional framework results. The crystal structure of the title compound is shown in Fig. 2.

Figure 2.

Figure 2

The crystal structure of K2Hg(SCN)4 viewed along [110]. Displacement ellipsoids are shown at the 70% probability level at 293 K. Bonds involving the K+ cation are omitted for clarity.

Synthesis and crystallization  

Potassium tetra­thio­cyanato­mercurate(II) was synthesized by slowly adding a potassium thio­cyanate solution (2.076 g, 21.36 mmol in 10 ml H2O) to a boiling solution of mercury(II) thio­cyanate (3.176 g, 10.03 mmol in 10 ml H2O). After the formed mercury sulfide had been filtered off through a Büchner funnel, the solution was concentrated on a hot plate until crystallization set in. The crystallized product was collected on a Büchner funnel and the filtrate was allowed to stand at room temperature until crystals of much better quality were obtained. A selected colorless single crystal was investigated by X-ray diffraction. Mercury(II) thio­cyanate was prepared as reported previously (Hermes, 1866) using mercury(II) nitrate and potasium thio­cyanate and was recrystallized out of ethanol.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 1. As a starting model for the structure refinement, the atomic coordinates of the previously reported K2Hg(SCN)4 structure model were used (Zvonkova, 1952). The positions of the C and N atoms were located from a difference-Fourier map.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017009148/wm5399sup1.cif

e-73-01073-sup1.cif (481.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017009148/wm5399Isup2.hkl

e-73-01073-Isup2.hkl (149KB, hkl)

CCDC reference: 1556957

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

FK thanks the DFG for his Heisenberg professorship, Dr Harms for X-ray measurement time and Julia Hassler for the sample preparation.

supplementary crystallographic information

Crystal data

K2Hg(SCN)4 F(000) = 936
Mr = 511.11 Dx = 2.636 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 10.8154 (9) Å Cell parameters from 25154 reflections
b = 9.3243 (7) Å θ = 2.9–35.0°
c = 13.3313 (11) Å µ = 13.21 mm1
β = 106.648 (6)° T = 293 K
V = 1288.05 (18) Å3 Block, colourless
Z = 4 0.24 × 0.15 × 0.12 mm

Data collection

Stoe IPDS 2T diffractometer 2710 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus 2298 reflections with I > 2σ(I)
Plane graphite monochromator Rint = 0.043
Detector resolution: 6.67 pixels mm-1 θmax = 34.6°, θmin = 2.9°
rotation method scans h = −17→17
Absorption correction: integration (X-RED32 and X-SHAPE; Stoe & Cie, 2009) k = −14→14
Tmin = 0.103, Tmax = 0.344 l = −21→21
14009 measured reflections

Refinement

Refinement on F2 Primary atom site location: other
Least-squares matrix: full Secondary atom site location: other
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.022P)2 + 1.7P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.053 (Δ/σ)max = 0.001
S = 1.08 Δρmax = 1.15 e Å3
2710 reflections Δρmin = −0.75 e Å3
70 parameters Extinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0086 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Hg 0.0000 0.52099 (2) 0.2500 0.03803 (7)
K 0.16185 (7) 1.04695 (8) 0.43195 (7) 0.04817 (17)
S1 0.10639 (7) 0.68302 (8) 0.40531 (6) 0.03720 (14)
S2 0.18135 (7) 0.36527 (10) 0.22498 (7) 0.04701 (18)
C1 −0.0130 (3) 0.6793 (3) 0.4611 (2) 0.0332 (5)
C2 0.3046 (3) 0.4505 (3) 0.3055 (3) 0.0387 (6)
N1 −0.0940 (3) 0.6801 (3) 0.5013 (3) 0.0462 (6)
N2 0.3926 (3) 0.5077 (4) 0.3607 (4) 0.0615 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Hg 0.02612 (7) 0.05275 (11) 0.03471 (8) 0.000 0.00789 (5) 0.000
K 0.0336 (3) 0.0491 (4) 0.0637 (4) −0.0053 (3) 0.0169 (3) −0.0164 (3)
S1 0.0294 (3) 0.0399 (3) 0.0426 (3) −0.0077 (2) 0.0107 (2) −0.0070 (3)
S2 0.0350 (3) 0.0567 (5) 0.0486 (4) 0.0053 (3) 0.0108 (3) −0.0162 (3)
C1 0.0307 (11) 0.0271 (11) 0.0399 (12) −0.0003 (9) 0.0070 (9) −0.0026 (9)
C2 0.0304 (12) 0.0385 (15) 0.0475 (14) 0.0066 (10) 0.0115 (10) 0.0066 (11)
N1 0.0408 (13) 0.0437 (14) 0.0586 (17) −0.0011 (11) 0.0215 (12) −0.0039 (12)
N2 0.0346 (14) 0.0530 (19) 0.087 (3) 0.0011 (12) 0.0023 (14) 0.0011 (16)

Geometric parameters (Å, º)

Hg—S2 2.5380 (8) K—Kiv 4.4669 (15)
Hg—S2i 2.5380 (8) S1—C1 1.665 (3)
Hg—S1i 2.5550 (7) S1—Kv 3.5316 (12)
Hg—S1 2.5551 (7) S2—C2 1.656 (3)
K—N2ii 2.816 (4) S2—Kviii 3.4865 (12)
K—N1iii 2.823 (3) C1—N1 1.152 (4)
K—N1iv 2.860 (3) C1—Kiv 3.529 (3)
K—N2v 3.031 (5) C2—N2 1.153 (5)
K—C2vi 3.408 (3) C2—Kviii 3.408 (3)
K—C2v 3.414 (3) C2—Kv 3.414 (3)
K—S1 3.4466 (11) N1—Kix 2.823 (3)
K—S2vi 3.4865 (12) N1—Kiv 2.860 (3)
K—S1v 3.5315 (12) N2—Kx 2.816 (4)
K—C1iv 3.529 (3) N2—Kv 3.031 (5)
K—Kvii 4.3913 (14)
S2—Hg—S2i 110.21 (4) S1—K—C1iv 131.89 (5)
S2—Hg—S1i 114.67 (3) S2vi—K—C1iv 161.89 (6)
S2i—Hg—S1i 105.02 (2) S1v—K—C1iv 121.11 (5)
S2—Hg—S1 105.02 (2) N2ii—K—Kvii 122.43 (8)
S2i—Hg—S1 114.67 (3) N1iii—K—Kvii 39.71 (6)
S1i—Hg—S1 107.50 (4) N1iv—K—Kvii 39.09 (6)
N2ii—K—N1iii 161.33 (10) N2v—K—Kvii 86.73 (7)
N2ii—K—N1iv 83.58 (10) C2vi—K—Kvii 117.52 (6)
N1iii—K—N1iv 78.80 (9) C2v—K—Kvii 70.39 (6)
N2ii—K—N2v 80.42 (13) S1—K—Kvii 159.02 (4)
N1iii—K—N2v 100.55 (9) S2vi—K—Kvii 116.01 (3)
N1iv—K—N2v 74.44 (9) S1v—K—Kvii 97.01 (3)
N2ii—K—C2vi 91.55 (12) C1iv—K—Kvii 53.40 (5)
N1iii—K—C2vi 94.70 (8) N2ii—K—Kiv 41.99 (10)
N1iv—K—C2vi 128.94 (9) N1iii—K—Kiv 136.17 (7)
N2v—K—C2vi 154.57 (9) N1iv—K—Kiv 75.38 (6)
N2ii—K—C2v 98.21 (12) N2v—K—Kiv 38.43 (7)
N1iii—K—C2v 81.16 (8) C2vi—K—Kiv 129.03 (5)
N1iv—K—C2v 68.68 (8) C2v—K—Kiv 56.66 (5)
N2v—K—C2v 19.47 (8) S1—K—Kiv 73.46 (2)
C2vi—K—C2v 161.02 (7) S2vi—K—Kiv 136.14 (3)
N2ii—K—S1 72.82 (7) S1v—K—Kiv 97.61 (3)
N1iii—K—S1 125.84 (7) C1iv—K—Kiv 58.43 (5)
N1iv—K—S1 148.83 (6) Kvii—K—Kiv 107.42 (3)
N2v—K—S1 81.66 (7) C1—S1—Hg 97.06 (10)
C2vi—K—S1 72.91 (5) C1—S1—K 96.25 (9)
C2v—K—S1 94.40 (6) Hg—S1—K 133.66 (3)
N2ii—K—S2vi 111.59 (10) C1—S1—Kv 102.56 (10)
N1iii—K—S2vi 80.81 (6) Hg—S1—Kv 102.38 (3)
N1iv—K—S2vi 146.21 (6) K—S1—Kv 117.55 (2)
N2v—K—S2vi 136.13 (7) C2—S2—Hg 98.59 (10)
C2vi—K—S2vi 27.76 (5) C2—S2—Kviii 73.50 (11)
C2v—K—S2vi 133.75 (5) Hg—S2—Kviii 109.15 (3)
S1—K—S2vi 63.89 (2) N1—C1—S1 178.0 (3)
N2ii—K—S1v 127.71 (8) N1—C1—Kiv 46.43 (18)
N1iii—K—S1v 68.47 (7) S1—C1—Kiv 131.85 (12)
N1iv—K—S1v 123.33 (7) N2—C2—S2 178.2 (3)
N2v—K—S1v 68.09 (7) N2—C2—Kviii 100.5 (3)
C2vi—K—S1v 99.48 (6) S2—C2—Kviii 78.74 (12)
C2v—K—S1v 61.72 (5) N2—C2—Kv 61.1 (3)
S1—K—S1v 62.45 (2) S2—C2—Kv 119.82 (14)
S2vi—K—S1v 72.06 (2) Kviii—C2—Kv 160.38 (10)
N2ii—K—C1iv 71.53 (9) C1—N1—Kix 127.6 (2)
N1iii—K—C1iv 92.39 (7) C1—N1—Kiv 116.6 (2)
N1iv—K—C1iv 16.96 (7) Kix—N1—Kiv 101.20 (9)
N2v—K—C1iv 61.48 (8) C2—N2—Kx 149.3 (3)
C2vi—K—C1iv 138.43 (8) C2—N2—Kv 99.4 (3)
C2v—K—C1iv 60.50 (7) Kx—N2—Kv 99.58 (13)

Symmetry codes: (i) −x, y, −z+1/2; (ii) x−1/2, y+1/2, z; (iii) x+1/2, y+1/2, z; (iv) −x, −y+2, −z+1; (v) −x+1/2, −y+3/2, −z+1; (vi) −x+1/2, y+1/2, −z+1/2; (vii) −x+1/2, −y+5/2, −z+1; (viii) −x+1/2, y−1/2, −z+1/2; (ix) x−1/2, y−1/2, z; (x) x+1/2, y−1/2, z.

References

  1. Altermatt, D., Arend, H., Gramlich, V., Niggli, A. & Petter, W. (1984). Acta Cryst. B40, 347–350.
  2. Bagautdinov, B. S. & Brown, I. D. (2000). J. Phys. Condens. Matter, 12, 8111–8125.
  3. Beauchamp, A. L. & Goutier, D. (1972). Can. J. Chem. 50, 977–981.
  4. Brandenburg, K. (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  5. Dickinson, R. G. (1922). J. Am. Chem. Soc. 44, 744–786.
  6. Gerlach, P. N. & Powell, B. M. (1986). J. Chem. Phys. 85, 6004–6009.
  7. Hermes, O. (1866). J. Prakt. Chem. 97, 465–482.
  8. Jeffery, J. W. & Rose, K. M. (1968). Acta Cryst. B24, 653–662.
  9. Klüfers, P., Fuess, H. & Haussühl, S. (1981). Z. Kristallogr. 156, 255–263.
  10. Larbot, A. & Beauchamp, A. L. (1973). Rev. Chim. Miner. 10, 465–472.
  11. Linde, S. A., Mikhailova, A. Y., Pakhomov, V. I., Kirilenko, V. V. & Shulga, V. G. (1983). Koord. Khim. 9, 998–999.
  12. Pakhomov, V. I. & Fedorov, P. M. (1973). Sov. Phys. Crystallogr. 17, 833–836.
  13. Pakhomov, V. I., Fedorova, N. M. & Ivanova Korfini, I. N. (1978). Sov. J. Coord. Chem. 4, 1356–1357.
  14. Pakhomov, V. I., Goryunov, A. V., Gladkii, V. V., Ivanova Korfini, I. N. & Kallaev, S. N. (1992b). Russ. J. Inorg. Chem. 37, 731–734.
  15. Pakhomov, V. I., Goryunov, A. V., Ivanova Korfini, I. N., Boguslavskii, A. A. & Lotfullin, R. S. (1992a). Russ. J. Inorg. Chem. 37, 259–261.
  16. Pinheiro, C. B., Jório, A., Pimenta, M. A. & Speziali, N. L. (1998). Acta Cryst. B54, 197–203.
  17. Rosenheim, A. & Cohn, R. (1901). Z. Anorg. Allg. Chem. 27, 270–303.
  18. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  19. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  20. Stoe & Cie (2009). X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.
  21. Stoe & Cie (2011). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.
  22. Tramer, A. (1962). J. Chem. Phys. 59, 637–654.
  23. Weil, M. & Häusler, T. (2014). Acta Cryst. E70, i46. [DOI] [PMC free article] [PubMed]
  24. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  25. Zandbergen, H. W., Verschoor, G. C. & IJdo, D. J. W. (1979). Acta Cryst. B35, 1425–1427.
  26. Zvonkova, Z. V. (1952). Zh. Fiz. Khim. 26, 1798–1803.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017009148/wm5399sup1.cif

e-73-01073-sup1.cif (481.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017009148/wm5399Isup2.hkl

e-73-01073-Isup2.hkl (149KB, hkl)

CCDC reference: 1556957

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES