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Applications
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Mutualistic networks, the full set of interactions between mu-
tually beneficial species in an ecosystem, have been recognized 
as a key driver of the creation and maintenance of biodiversity 
(Thompson, 1994). Mutualistic networks include plant–seed dis-
perser networks and plant–pollinator networks and have been 
found to have a consistent “nested” structure, where more spe-
cialist species interact with a subset of the species interacting 
with the more generalist species, across many habitat types, plant 
and disperser/pollinator taxa, and geographic areas (Bascompte 
et al., 2003). This structure may help make these networks robust 
to perturbations (Memmott et al., 2004; Allesina and Tang, 2012; 
Staniczenko et al., 2013), although the relationship between 

mutualistic network structure and stability is a subject of con-
tentious debate (Allesina and Tang, 2012; James et al., 2012; 
Staniczenko et al., 2013). It is important to better understand the 
structure and dynamics of pollination networks, particularly em-
pirical networks (as opposed to models), to prevent their degra-
dation or collapse (e.g., Lever et al., 2014) due to anthropogenic 
stressors (Potts et al., 2010; Ferreira et al., 2013).

Pollination networks are typically characterized by plant-
focused visitation observations where pollinator visits to a sin-
gle plant individual or to a defined area are observed and the 
pollinators are captured for finer-scale taxonomic classification. 
This method works well but is relatively inefficient because ob-
servers must wait for pollinators to arrive, limiting the number 
of interactions that can be characterized. Alternatively, pollina-
tion interaction networks focus on pollinators rather than on 
plants, given that each individual pollinator carries pollen grains 
that yield a record of the plants that a pollinator has visited. 
Bosch et al. (2009) were the first to try this approach, using vi-
sual microscopic identification of pollen, and compared it ex-
plicitly with plant-focused visitation surveys. They found that 
networks constructed from pollen carriage data were better char-
acterized than those from plant visitation data; pollen carriage 
identified more interactions in the network, leading to higher 
connectance and fewer specialist plants and pollinators. Further-
more, better characterization allowed for the identification of clear 
phenological modules in the network that were not apparent 
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•	 Premise of the study: To study pollination networks in a changing environment, we need accurate, high-throughput methods. 
Previous studies have shown that more highly resolved networks can be constructed by studying pollen loads taken from bees, 
relative to field observations. DNA metabarcoding potentially allows for faster and finer-scale taxonomic resolution of pollen 
compared to traditional approaches (e.g., light microscopy), but has not been applied to pollination networks.

•	 Methods: We sampled pollen from 38 bee species collected in Florida from sites differing in forest management. We isolated 
DNA from pollen mixtures and sequenced rbcL and ITS2 gene regions from all mixtures in a single run on the Illumina MiSeq 
platform. We identified species from sequence data using comprehensive rbcL and ITS2 databases.

•	 Results: We successfully built a proof-of-concept quantitative pollination network using pollen metabarcoding.
•	 Discussion: Our work underscores that pollen metabarcoding is not quantitative but that quantitative networks can be con-

structed based on the number of interacting individuals. Due to the frequency of contamination and false positive reads, isolation 
and PCR negative controls should be used in every reaction. DNA metabarcoding has advantages in efficiency and resolution 
over microscopic identification of pollen, and we expect that it will have broad utility for future studies of plant–pollinator 
interactions.
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from the plant visitation data. This approach was subsequently 
used by Burkle et al. (2013) to compare historical to contempo-
rary networks, given that pollen carried by insect specimens is 
often maintained in insect collections.

While network characterization with pollen carriage clearly 
has advantages, it has not been widely used, partly because the 
identification of pollen via visual microscopy has a number of 
drawbacks. It requires highly specialized expertise, is time-
consuming, and is often of low taxonomic resolution (in many 
or most cases pollen grains can only be identified to family or 
genus) (Bell et al., 2016). In addition, pollen is often only identi-
fied from a subsample of the available grains in a given pollen 
load, and thus may fail to detect rarer taxa (Bosch et al., 2009; 
Bell et al., 2016). Among other issues, this could potentially 
make networks appear to be less connected and less nested than 
they truly are, given that rare plant and pollinator species tend 
to interact with common, generalist species of the other group 
(e.g., Blüthgen, 2010).

A potential alternative methodology for the construction of 
pollen-carriage-based pollination networks involves the DNA 
barcoding of pollen (Keller et al., 2015; Sickel et al., 2015; Bell 
et al., 2016). DNA barcoding is the use of small regions of DNA 
that have a “barcoding gap,” defined as low intraspecific varia-
tion but high interspecific variation, to identify the species com-
position of a sample (Hebert et al., 2003). DNA metabarcoding 
is based on pollen-carriage-based methods but identifies multi-
ple species in mixed-species samples using high-throughput 
sequencing. Pollen DNA metabarcoding offers a number of po-
tential advantages over visual identification of pollen, including 
much greater speed; more comprehensive characterization of all 
grains in a sample; use of methods and equipment that are stan-
dard in any basic molecular biology laboratory (as opposed to 
the highly specialized knowledge needed to identify pollen visu-
ally); and higher taxonomic resolution, with 70–90% or more of 
plant taxa identified to the species level (CBOL Plant Working 
Group, 2009; Chen et al., 2010). This method, however, is still 
relatively new and, although the potential use in pollination net-
works has been discussed (Pornon et al., 2016), pollen DNA 
barcoding has not been widely used to characterize pollination 
networks.

Here we develop and describe basic methodology for pollina-
tion network characterization via DNA metabarcoding of pollen 
carriage. A key development is altering standard methods for 
often very small pollen loads carried by insects by maximizing 
the quantity of DNA extraction added to the PCR reaction and 
increasing the number of PCR cycles. We used pollinators sam-
pled from a study of managed forests in Florida, USA, to show 
proof-of-concept of this method. Using DNA metabarcoding, 
we successfully identified mixed-species pollen loads collected 
from bees and used this information to construct a pollinator 
network. We compared our results to past research on pollinator 
network construction and have highlighted several areas for fu-
ture work.

MATERIALS AND METHODS

Bee sampling and identification—Our aim in this work was to show proof-
of-concept of using DNA metabarcoding to construct a pollination network, 
rather than to exhaustively document a particular network. The specimens we 
used consist only of bees, and thus do not represent a taxonomically complete 
pollination network from the flower-visitor perspective. The bee specimens we 
used came from a larger project investigating the impacts of biofuel production 
on bee communities across the southeastern USA. Here, we sampled pollen from 

bees collected in Florida from late April to early July 2014. We used bees from 
13 field sites representing seven land use types (Appendix 1). We sampled bees 
via aerial netting along 200 × 2-m transects. We conducted aerial net sampling 
between the hours of 10:00 A.m. and 11:00 A.m. We collected each bee specimen 
into its own separate ethyl acetate kill jar to prevent pollen cross-contamination 
between specimens. We identified pinned bee specimens using Michener (2007) 
and Discover Life keys (http://www.discoverlife.org). A complete list of bee 
specimens is presented in Appendix S1.

Pollen collection from bees—We extracted pollen from the bees by placing 
them each in a separate microcentrifuge tube containing water and a small 
amount (approximately 2 g/L) of liquid dish soap and vortexing the tube repeat-
edly until no pollen visibly remained on the bee. We examined bees under a 
stereomicroscope to ensure that the bulk of visible pollen was removed, and 
continued this process until any pollen remaining on the bee was considered 
negligible. We removed the bee (to be pinned and identified later) and then cen-
trifuged the microcentrifuge tube containing the suspended pollen until the su-
pernatant was clear or a definite pellet had formed at the bottom of the tube. We 
removed the supernatant and stored the pollen pellet at −20°C.

DNA isolations—We isolated the DNA from the majority of the pollen 
samples in April–July 2016 using the Macherey-Nagel NucleoSpin Food kit 
(Macherey-Nagel, Düren, North Rhine-Westphalia, Germany). A minority of pol-
len samples (marked with an asterisk in Appendix S1) were isolated in February–
March 2015 using the MP Biomedicals FastDNA SPIN Kit for Soil (MP 
Biomedicals, Santa Ana, California, USA). We used the Machery-Nagel kit for 
the majority of samples, because we found it to have higher yields. The subset 
of samples isolated with the MP Biomedicals kit was representative of all bee 
species, habitat types, and localities, so the change in DNA isolation method 
is unlikely to bias our results. When isolating DNA with the Macherey-Nagel 
NucleoSpin Food kit, we followed the “isolation of genomic DNA from honey 
or pollen” supplementary protocol designed to isolate genomic DNA from 10 g 
honey or a small pellet of pollen. The homogenization step was conducted in a 
Mini-BeadBeater-96 (BioSpec Products, Bartlesville, Oklahoma, USA) for 2 min, 
following the addition of Buffer CF from the NucleoSpin Food kit (Macherey-
Nagel). To prevent tube breakage, we added the buffer prior to homogenization, 
rather than after, which increased the volume of liquid in the tubes during the 
homogenization step. Equivalent changes were also made to the protocol from 
the MP Biomedicals FastDNA SPIN Kit for Soil. We included “isolation nega-
tive” controls in each batch using water in place of a pollen sample.

PCR and sequencing—We used the dual-indexing pollen DNA metabar-
coding strategy of Sickel et al. (2015), which is based on a method developed for 
the mixed-amplicon sequencing of bacterial 16S rRNA (Kozich et al., 2013). In 
addition to the ITS2 marker used by Sickel et al. (2015), we also included one of 
the standard DNA barcoding markers, part of the rbcL gene region of the chlo-
roplast genome (CBOL Plant Working Group, 2009). For ITS2 amplification, 
we used the primers of Sickel et al. (2015). For rbcL, we used existing universal 
rbcL primers, rbcL2 (Palmieri et al., 2009) and rbcLaR (Kress and Erickson, 
2007), which bind near the 5′ end of the rbcL gene and the middle of the rbcL 
gene, respectively. All primers were appended with MiSeq-specific adapters and 
Illumina index sequences (Kozich et al., 2013; Sickel et al., 2015). The forward 
primers included the index sequences SA501–SA508 and SB501–SB508, while 
the reverse primers included the index sequences SA701–SA712 and SB701–
706, allowing for up to 288 possible primer combinations.

PCR was conducted as a duplex, combining both gene regions into a single 
PCR reaction. The PCR reactions contained 12.5 μL of KAPA HiFi ReadyMix 
(KAPA Biosystems, Boston, Massachusetts, USA), 0.25 μL of each primer 
(20 μM), and 11.5 μL of the template DNA (up to 20 ng/μL) for a total volume 
of 25 μL per reaction. To increase the chance of detecting all species in the mix-
ture, each DNA extraction was included in three PCR reactions that were ampli-
fied separately, i.e., the reaction contents described above were divided between 
three PCR tubes. PCR cycles included an initial period of heat activation for 
3 min at 95°C; followed by 35 cycles of 30 s at 95°C, 30 s at 55°C, and 1 min at 
72°C; followed by a final extension of 10 min at 72°C and then held at 10°C. To 
investigate the effects of increased PCR cycles, which may be necessary to am-
plify small pollen samples, we performed additional reactions with 25 or 40 PCR 
cycles for a subset of three samples, each divided into three reactions as de-
scribed above, covering a range of DNA concentrations (FL796 with a con-
centration of 2 ng/μL, FL765 with 17.6 ng/μL, and FL179 with 33.9 ng/μL). 
Reactions that were previously divided into three were recombined, and the 
success of the PCR reactions was confirmed using agarose gel electrophoresis. 
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We included a PCR negative control for each batch of PCR, in addition to the 
“isolation negative” control described in the previous section. The PCR products 
were purified using Agencourt AMPure XP magnetic beads (Beckman Coulter, 
Danvers, Massachusetts, USA). At the Georgia Genomics Facility (Athens, 
Georgia, USA), DNA was quantified for each recombined and purified reaction, 
then an appropriate amount of each of these reactions was added to a pooled 
mixture so that the DNA quantities coming from each reaction were equal (ex-
cept the negative controls from which the maximum volume of any pooled PCR 
product was added). The pooled mixture was sequenced at the Georgia Genomics 
Facility in a single flow cell on a 600-cycle run of the Illumina MiSeq instrument 
(Illumina, San Diego, California, USA). Sequence data have been deposited in 
the National Center for Biotechnology Information (NCBI; project number 
PRJNA344894).

Bioinformatics pipeline—We used the bioinformatics pipeline of Sickel 
et al. (2015) for species identification. This pipeline includes steps for joining 
forward and reverse reads using QIIME version 1.8.0 (Caporaso et al., 2010), 
removing low-quality reads with USEARCH version 8.0.1477 (Edgar, 2010), 
and taxonomic classification using Ribosomal Database Project (RDP) Classi-
fier (Wang et al., 2007), separately for each marker. For ITS2 taxonomic classi-
fications, we used the previously trained database for RDP Classifier described 
in Sickel et al. (2015). For taxonomic classifications using rbcL, we used the 
database described in Bell et al. (2017), currently available at https://github.com/
KarenBell/rbcL-dual-index-metabarcoding. We used our negative controls to set 
threshold values for sequence removals; any taxonomic classifications recorded 
from fewer reads than the maximum read number we obtained from a negative 
control were considered to be either sequencing errors or sample contamination 
occurring in the DNA isolation, PCR, or sequencing stages, and were removed 
from further analysis. This may have the unintended consequence of removing 
any rare species from a particular pollen sample, favoring the species that an 
individual bee has been more frequently visiting. However, we decided that this 
was preferable to unintentionally including species that the bee had not actually 
visited.

Network construction and analysis—We constructed a pollination network 
by matching bee specimens to the plant taxa present in their pollen loads (from 
the bioinformatics pipeline) and pooling interactions within plant and bee taxa 
for the ITS2-based taxonomic classification to generate a quantitative network. 
This approach of using presence-absence data at the level of the individual pol-
len load and pooling data among individuals to build quantitative networks is 
also the typical approach with networks based on visual identification of pollen 
loads (e.g., Bosch et al., 2009). We did not use the combined rbcL and ITS2 
classifications for this analysis because they did not give identical species-level 
results, and there is no straightforward method for combining the two separate 
data sets (although such conjoining is an interesting area for future research). We 
chose to use the ITS2 data, as this marker has greater coverage in its reference 
database and its taxonomic resolution is higher. We plotted the subsequent net-
work and calculated a series of standard bipartite network metrics using the 
“bipartite” package (Dormann et al., 2009) for the R statistical programming 
language (R Core Team, 2016). We assessed the statistical significance of nest-
edness (measured as temperature), weighted NODF (nestedness metric based 
on overlap and decreasing fill), and H2′ using permutation tests with 9999 null 
models generated by randomly swapping matrix values, keeping both con-
nectance and marginal row and column sums equivalent to those in the observed 
empirical network (Vázquez and Aizen, 2003).

RESULTS

Pollen DNA barcoding 

Species identification—After joining and filtering raw data 
from Illumina MiSeq, we obtained 4,786,075 total sequenc-
ing reads. Of these, analysis using RDP Classifier identi-
fied 3,174,999 (66.3%) as ITS2 and 1,565,373 (32.7%) as rbcL, 
leaving 45,703 (1.0%) unable to be classified with either marker. 
With ITS2, most identifications were to the level of species (40% 
of taxa) or genus (38% of taxa), whereas with rbcL, only 55% of 
taxa were identified to genus or higher, with many more family-
level identifications (33%; Fig. 1; Appendices S2, S3). Overall, 
the most commonly identified taxon from ITS2 sequencing 

reads was a family-level identification of Cleomaceae (24% of 
total reads). Other common identifications were to the family 
Fabaceae, the genus Hypericum L. (Hypericaceae), the genus 
Ilex L. (Aquifoliaceae), and the genus Callicarpa L. (Lamiaceae). 
The most commonly identified plant taxon from rbcL data was 
a family-level identification of Fabaceae (13% of total reads). 
Other common identifications were to the species Haemodorum 
laxum R. Br. (Haemodoraceae), the family Lamiaceae, the ge-
nus Polanisia Raf. (Cleomaceae), and the genus Ilex (Aquifolia-
ceae). We did not identify any species in our samples that were 
solely dependent on wind pollination.

False positives—Negative control samples did not amplify 
enough PCR product to visualize using agarose gel electropho-
resis. Sequencing of negative control samples yielded between 
21 and 936 sequences identified as rbcL, between 42 and 1124 
ITS2 sequences, and two to 99 sequences unable to be classified 
with either marker (Appendix S4). On average, negative con-
trols had 1.6% of the total number of reads in an average sample. 
Most of these sequencing reads were a subset of the frequently 
recorded species in pollen samples, and were likely from small 
quantities of cross-contamination (Appendices S5, S6). The ex-
ceptions were Fagopyrum Mill. ITS2 sequences and Populus 
L. rbcL sequences, which were present in negative controls, but 
rarely occurred in pollen samples. Neither of these species were 
present in any samples above the false positive threshold, so 
they were not included in any analyses. A small number of taxa 
were identified from a greater number of sequencing reads in 
negative controls than in samples and may have been the result 
of contamination from airborne pollen or DNA within the 
laboratory. For rbcL these were Picea abies (L.) H. Karst, 
Chamaecrista fasciculata (Michx.) Greene, Richardia scabra 
L., Populus deltoides W. Bartram ex Marshall, Poa pratensis L., 
Passiflora serratodigitata L., Teucrium scorodonia L., Vitex trifo-
lia L., and Prunus davidiana Carrière; genus-level identifications 
to Populus, Prunus L., and Fagopyrum; family-level identifica-
tions to Rutaceae and Salicaceae; and order-level identification 
to Gentianales. For ITS2 these were Broussonetia papyrifera 
(L.) Vent., Alnus incana (L.) Moench, Poa trivialis L., Morus 
alba L., Allium ramosum L., Zea mays L., Amaranthus hybridus 
L., Fagopyrum esculentum Moench, and Populus alba L.; 
genus-level identifications to Fagopyrum, Musa L., Amaranthus 

Fig. 1. Proportions of classified taxa (i.e., those identified at least to 
phylum) identifiable to each taxonomic rank from DNA metabarcoding with 
rbcL and ITS2.

http://www.bioone.org/loi/apps
https://github.com/KarenBell/rbcL-dual-index-metabarcoding
https://github.com/KarenBell/rbcL-dual-index-metabarcoding
http://www.bioone.org/doi/suppl/10.3732/apps.1600124/suppl_file/apps.1600124_s2.xlsx
http://www.bioone.org/doi/suppl/10.3732/apps.1600124/suppl_file/apps.1600124_s3.xlsx
http://www.bioone.org/doi/suppl/10.3732/apps.1600124/suppl_file/apps.1600124_s4.docx
http://www.bioone.org/doi/suppl/10.3732/apps.1600124/suppl_file/apps.1600124_s5.docx
http://www.bioone.org/doi/suppl/10.3732/apps.1600124/suppl_file/apps.1600124_s6.docx


Applications in Plant Sciences 2017 5(6): 1600124 Bell et al.—DNA barcoding pollinator networks
doi:10.3732/apps.1600124

http://www.bioone.org/loi/apps 4 of 10

L., Allium L., Alnus Mill., and Broussonetia L’Hér. ex Vent.; and 
family-level identifications to Polygonaceae and Amaranthaceae.

Effect of PCR cycles on species identifications—The impact 
of changing the number of PCR cycles on species-level identifi-
cations, proportions of species, and genetic markers was vari-
able but small for most samples (Fig. 2). We found little effect 
of altering the number of PCR cycles for the sample with the 
highest DNA concentration (FL179). Increasing the number of 
PCR cycles for the sample having an intermediate DNA con-
centration (FL765) resulted in a higher proportion of ITS2 se-
quences compared to higher proportions of rbcL sequences 
detected when fewer PCR cycles were employed. However, for 
this sample, we only identified one family (Hypericaceae), so 
we cannot comment on the effects of the number of PCR cycles 
on inferred species composition or their relative proportions. By 
contrast, for the sample with the lowest DNA concentration 
(FL796), we detected only rbcL sequences of Haemodoraceae 
when the number of PCR cycles was 25 or 35, but when the 
number of cycles was increased to 40 we also detected ITS2 
sequences of Hypericaceae.

Time and cost—For analysis of 90 pollen samples (+ six neg-
ative controls for isolation and PCR; combined into one 96-well 
plate) with rbcL and ITS2 in a duplex reaction, reagents cost 

approximately US$700 (excluding Illumina reagents), Illumina 
cost US$2300 (assuming PCR purification, DNA quantification, 
pooling, and sequencing are all outsourced to a sequencing facil-
ity), and approximately 42 h of labor were required (32 h for 
DNA isolation; 9 h for PCR; and 1 h for bioinformatics/pipeline 
loading, assuming that all required software has previously been 
installed). The minimum turnaround time from pollen samples to 
molecular identification following our protocol is 2 weeks, assum-
ing two people working no more than 8-h days, five days a week; 
two PCR thermocyclers; overnight shipping to (or onsite avail-
ability of) the sequencing facility; no wait or delay at the sequenc-
ing facility; and a reasonably fast computer cluster for use in the 
bioinformatics analyses. This turnaround time increases with 
a single person, a single thermocycler, wait times at the sequenc-
ing facility, and use of a standard desktop computer for the bio-
informatics analyses. Without labor, the cost is approximately 
US$30 per sample. Some savings could be achieved by using 
alternative reagents, although typically at the cost of additional 
labor. Further cost savings could be achieved by including more 
than 96 samples per Illumina flow cell. In the current study, we 
included 248 samples and 35 negative controls for two markers, 
and Sickel et al. (2015) used 384 samples with a single marker 
(ITS2). The practical limitations for multiplexing have not been 
assessed, but as the number of samples increases, the probability 
of detection of low-count pollen types decreases.

Fig. 2. Proportion of sequencing reads for family-level taxonomic identifications from samples FL179 (high DNA content), FL765 (moderate DNA 
content), and FL796 (low DNA content), with varying numbers of PCR cycles. Sequencing reads from rbcL are horizontally striped, sequencing reads from 
ITS2 are diagonally striped, and different families are represented in different colors.
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Pollinator network structure— Because our aim was proof-
of-concept of using DNA metabarcoding of pollen to construct 
pollination networks, we removed pollen only from bees and not 
from a taxonomically comprehensive set of flower visitors. The 
network metrics we report on should thus be considered to arise 
from one network module or subset, rather than an entire pol-
lination network per se. From our Illumina sequence reads, we 
obtained a bipartite network with 37 pollinators and 51 plant 
taxa based on ITS2 taxonomic classification using RDP Classi-
fier (Fig. 3). We report on network metrics in Table 1. Network 
connectance (realized proportion of possible links) was 0.069. 
Network “temperature” (a measure of nestedness) was 4.97, which 
was not statistically significant via permutation tests (P = 0.133). 
Weighted nestedness was 0.555, which is quite low compared 
to 25 empirical networks with a mean of 0.853 ± 0.047 SE 
(Bascompte et al., 2003). Weighted NODF was 7.372, which 
was statistically significant via permutation tests (P = 0.0001). 
H2′, a weighted measure of specialization, was 0.459 and statis-
tically significant based on permutation tests (P = 0.000).

DISCUSSION

We successfully identified mixed-species pollen loads col-
lected from bees using DNA metabarcoding to show proof-
of-concept for constructing quantitative pollination networks 
with molecular methods. Our work highlights several issues of 
particular interest, including areas for future work in many of 
them: comparison with traditional microscopic methods of pol-
len identification; variation in PCR cycle number; false posi-
tives; quantitation in DNA metabarcoding (i.e., relating sequence 
read numbers to pollen grain proportions); and differences in 
barcoding markers (rbcL vs. ITS2). As with all network studies, 
it is important to design the fieldwork to ensure successful pol-
linator network construction. Concerns such as which pollinator 
species to collect, whether to collect pollen from the pollen 
sac or the pollinator body, what time of day to collect, study site 
delimitation, and collecting methods are important, and are 
likely to depend on what questions are being addressed by the 
study. These are all worthwhile considerations, but are not lim-
ited to DNA metabarcoding, as they are also common consider-
ations for network studies based on morphological identifications.

There may be situations where visual identification of pollen 
is more appropriate. This could be the case for small-scale studies, 
where only a small number of pollen grains need to be identified, 
eliminating any advantage of efficiency with DNA barcoding. 
If strict quantification of pollen grains on individual bees is 
required, then visual identification may be necessary. Overall 
though, our results suggest the strong utility of DNA metabar-
coding as a method for constructing pollination networks via 
pollen carriage, and we expect that it will be increasingly used in 
pollination network studies in the future.

Comparison with microscopic pollen identification— DNA 
metabarcoding has a number of clear advantages compared with 
microscopic pollen identification. It is beyond the scope of this 
paper to quantitatively assess taxonomic resolution of the two 
methods, but such resolution is often limited to the family or 
genus level with microscopic identification (Rahl, 2008; Salmaki 
et al., 2008; Khansari et al., 2012). We identified 36% and 38% 
of taxa to species level with rbcL and ITS2, respectively. This 
level of success is remarkably high, given that currently only 
around 9% of known plant species are represented in the rbcL 

database, and 16% are represented in the ITS2 database (Bell 
et al., 2017). Previous studies have shown that, depending on the 
flora and the barcoding marker employed, 70–90% or more of 
taxa can be identified to the species level with barcoding when 
the barcode sequence for the species is known (Burgess et al., 
2011; Hollingsworth et al., 2011). Certain lineages are likely to 
be better diagnosed with both DNA barcoding and morphologi-
cal identification. Taxonomic resolution is also dependent on the 
presence of the species in databases for both DNA metabar-
coding and visual identification. Certain geographic regions and 
plant groups are likely to be understudied, leading to a lack of 
representation in either DNA barcode or pollen morphology da-
tabases, or both. The latter should be considered to be temporary 
shortcomings of both DNA metabarcoding and visual pollen 
identification. Metabarcoding has a potentially faster turnaround 
time—around 12 days in a best-case scenario for 90 samples—
which can be substantially longer in many contexts for micro-
scopic identification. In terms of time allocation, microscopic 
identification involves essentially 100% hands-on time, whereas 
in metabarcoding, much of the time is hands-off (e.g., wait times 
during PCR, Illumina sequencing, and bioinformatics process-
ing), during which researchers can work on other tasks. Meta-
barcoding also has the advantage that all pollen grains in a sample 
can be included in processing, in contrast to microscopic identi-
fication, in which often only a subset of pollen grains are iden-
tified due to the time costs involved (e.g., Bosch et al., 2009). 
Both DNA metabarcoding and microscopic pollen identification 
involve intensive training and learning, but the molecular meth-
ods involved in DNA metabarcoding are standard (DNA isola-
tion, PCR) and are known by perhaps tens of thousands of 
people in the United States alone, whereas pollen identification 
training is highly specialized and known by perhaps a few dozen 
people in the United States. Furthermore, additional training is 
needed for each flora or geographic area from which pollen is 
to be identified using standard morphological techniques. Per-
haps the major disadvantage of DNA metabarcoding is cost—
approximately US$3000 with roughly 42 h of additional labor 
costs for a 96-well plate (90 samples plus negative controls). 
While this is a nontrivial cost, microscopic pollen identification 
likely costs more in some (and perhaps many) contexts depend-
ing on the cost of paying a trained palynologist, as well as factors 
affecting microscopic identification speed including individual 
variation in palynologists, diversity of plant community, train-
ing time for new plant communities, etc. One clear economic 
advantage of metabarcoding is the much higher predictability of 
time and sample costs relative to microscopic identification.

PCR cycles— Frequently pollen loads from bees, particularly 
those with small body size, contain only a small number of pol-
len grains, which can, in turn, lead to DNA templates of relatively 
low concentration following standard DNA isolation techniques. 
This may be particularly apparent if samples have been stored 
for many years before analysis, although we found no difference 
in the ability to amplify DNA from pollen stored for 2 yr at 
−80°C wet, dried, or in ethanol, or at room temperature dried or 
in ethanol (K.L.B., E.K.D., and B.B., unpublished data). Other 
types of pollinating insects may carry even smaller pollen loads, 
and to date these have not been tested with DNA metabarcoding. 
If pollen loads are very small, it may be necessary to combine 
pollen pellets from multiple individuals of the same pollinator 
species. However, this would prevent quantification based on 
the number of interacting individuals, and the data would need 
to be treated as presence-absence, unless it could be demonstrated 
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Fig. 3. Bipartite pollination network of 37 bee specimens (top nodes) to the 51 plant taxa present in their pollen loads based on ITS2 taxonomic classi-
fication (bottom nodes). Interactions were pooled within plant and bee taxa. Links between plants and pollinators are represented with lines whose width is 
proportional to the number of interactions while the width of the nodes represents total abundance of that taxon across all of its interactions.
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that the read proportions were representative of pollen grain pro-
portions. To obtain similar numbers of reads across samples, the 
relative quantity of DNA from these samples needs to be stan-
dardized. Although it may be plausible to increase the volume of 
DNA isolate added to the PCR reaction or increase the volume 
of PCR product added to the pooled sequencing reaction, these 
approaches are often limited by the total volume of the PCR or 
sequencing reaction, respectively. An alternative approach is to 
increase the number of PCR cycles to obtain more PCR product, 
although this also involves a set of potential problems. First, in-
creasing the number of PCR cycles will increase the number 
of PCR products that are the result of contamination and PCR 
artifacts (Pinto and Raskin, 2012; Taberlet et al., 2012). One 

pollen-focused DNA metabarcoding study (Valentini et al., 
2009) recommended using no more than 35 PCR cycles for 
these reasons. Based on our results, however, this did not appear 
to be a problem in our study; an increase in PCR cycles did not 
increase the number of reads allocated to species that were more 
common in negative controls, nor did it increase the number 
of reads that were unable to be classified. This may be due to our 
relatively conservative contamination threshold. A second po-
tential problem is that the relative proportions of reads allocated 
to different species or different markers may change with the 
number of PCR cycles, due to the nonlinear nature of amplifica-
tion. We found little effect of PCR cycle number on the propor-
tions of sequencing reads in our sample that had the highest 
DNA concentration (FL179). For samples of moderate and low 
DNA concentration (FL765 and FL796), however, the number 
of PCR cycles did affect both the proportion of sequences as-
signed to different species (where multiple species were identi-
fied) and the proportion assigned to different markers. Notably, 
for the sample having the lowest DNA concentration (FL796), 
with 25 or 35 PCR cycles we detected only rbcL sequences of 
Haemodoraceae, but when the number of cycles was increased 
to 40, we also detected ITS2 sequences of Hypericaceae. This 
suggests either that Haemodoraceae is more readily amplified 
with rbcL primers than Hypericaceae is with ITS2 primers, or 
that Hypericaceae was present at a much lower quantity than 
Haemodoraceae, or that the copy number of Haemodoraceae 
rbcL is greater than the copy number of Hypericaceae ITS2. If 
the two loci were amplified separately, it is possible that both 
species would have been detected at a lower PCR cycle. Few 
other studies have explicitly tested the effect of the number of 
PCR cycles on species identification or quantification in a mixed-
amplicon genetic species-identification analysis. A study of bac-
terial communities in the human gut found little effect on species 
identification and quantification when they increased the num-
ber of PCR cycles from 20 to 30 (Wu et al., 2010). However, 
they used 100 ng of DNA in their PCR reactions, a quantity that 
may not always be achievable for pollen DNA barcoding. While 
our results may simply be the result of the stochastic nature of 
PCR (and this could potentially be corrected by running more 
than triplicate PCR reactions for samples of low DNA concen-
tration), we do not fully understand the mechanistic drivers of 
these results. Our results underscore that further experimenta-
tion with variation in PCR cycle number is certainly warranted, 
particularly for samples with low DNA concentrations.

False positives— False positives, due to contamination, are 
likely to be present in any pollen barcoding sample, and we 
strongly encourage the use of negative controls for both DNA 
isolation and for PCR. We also recommend sequencing these 
negative controls, even if no band is visible on a gel, to help es-
timate sample contamination. We suggest that negative controls 
be added to the flow cell at a volume no lower than the maxi-
mum volume added for any sample. Under these conditions, se-
quence reads from samples occurring at lower frequency than 
the highest-frequency reads from negative controls should be 
removed from subsequent analysis. In our study, this corre-
sponded to around 5% of rbcL reads and 15% of ITS2 reads for 
most samples. This is probably overly conservative considering 
that on average the negative controls contained 1.6% of the 
number of reads present in an average sample. This conserva-
tism may have had the unintended effect of removing rare inter-
actions, leaving only the species visited most frequently by the 
individual bee in its current foraging trip. In studies where it is 

tABle 1. Summary metrics for the bipartite plant–pollinator network. 
Network analysis was completed in R with the package bipartite. 
Summary indices and values were calculated with the function 
networklevel. Detailed explanations of these indices are available in 
the literature (e.g., Dormann et al., 2009).

Networklevel index or value Value

Connectance 0.069
Web asymmetry −0.146
Links per species 1.494
No. of compartments 1
Compartment diversity NA
Cluster coefficient 0.059
Nestedness 4.968
Weighted nestedness 0.555
Weighted NODF 7.372
Interaction strength asymmetry −0.032
Specialization asymmetry 0.029
Linkage density 4.697
Weighted connectance 0.053
Fisher alpha 97.066
Shannon diversity 4.269
Interaction evenness 0.564
Alatalo interaction evenness 0.406
H2′ 0.459
No. of pollinators 37
No. of plants 51
Mean no. of shared partners for pollinators 0.512
Mean no. of shared partners for plants 0.263
Cluster coefficient for pollinators 0.143
Cluster coefficient for plants 0.206
Weighted cluster coefficient for pollinators 0.243
Weighted cluster coefficient for plants 0.287
Niche overlap for pollinators 0.156
Niche overlap for plants 0.083
Togetherness for pollinators 0.046
Togetherness for plants 0.021
C-score for pollinators 0.702
C-score for plants 0.817
V ratio for pollinators 3.053
V ratio for plants 4.317
Discrepancy for pollinators 88
Discrepancy for plants 83
Extinction slope for pollinators 2.421
Extinction slope for plants 1.575
Robustness for pollinators 0.701
Robustness for plants 0.612
Functional complementarity for pollinators 189.673
Functional complementarity for plants 198.561
Partner diversity for pollinators 1.37
Partner diversity for plants 1.289
Generality for pollinators 4.545
Vulnerability for plants 4.849

Note: NA = not available; NODF = nestedness metric based on overlap 
and decreasing fill.
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necessary to document very rare interactions, this may be a prob-
lem. In such situations, the number of contaminating sequences, 
and hence the number of species removed from analysis, could 
be reduced with conditions such as separate pre- and post-PCR 
rooms, laminar flow pre-PCR areas, and filtering of ambient air. 
We suspect that exclusion of very rare samples will have a neg-
ligible effect on most pollination network studies. Finally, this 
problem is not unique to DNA metabarcoding as most studies 
focused on visual identification of pollen use some arbitrary cut-
off to decide which visually identified grains are legitimate vs. 
contamination.

Amplification of PCR products in our negative controls was 
too low to be visualized on a gel, but provided a few sequencing 
reads on the Illumina MiSeq. Sequencing of negative control 
samples yielded between 21 and 936 sequences identified as rbcL 
and between 42 and 1124 ITS2 sequences (containing between 
seven and 34 species). Two to 99 sequences were unable to be 
classified with either marker when analyzed with RDP Classifier 
(Appendix S4). Occasionally, the negative controls comprised a 
large number of sequences from the same species that was likely 
a contaminant from the laboratory (e.g., Fagopyrum, Populus), 
but the sequences of these species were never obtained from pol-
len samples above the threshold at which they would be included 
in analyses (Appendices S5, S6). Most high-throughput sequenc-
ing studies do not include negative controls at the sequencing 
stage, but instead select an arbitrary limit below which a taxon is 
not included in the analysis, as it is expected to be either con-
tamination, PCR artifact, or sequencing error (e.g., Cornman 
et al., 2015; Hawkins et al., 2015; Pornon et al., 2016). We found 
that including these samples allowed us to assess the impact of 
contamination, while using only a small proportion of the total 
sequencing reads provided by an Illumina MiSeq flow cell.

By contrast, other false positives may be the result of mis-
identifications from the bioinformatics pipeline. These false pos-
itives are more difficult to recognize, but in some cases very 
unlikely matches were returned. For example, we identified a 
large number of rbcL sequencing reads from 28 bee specimens 
from four sites, mostly in old, managed forest, long leaf pine 
reference sites (see Appendix 1 for details of habitat types), as 
Haemodorum laxum, a species that is endemic to southwestern 
Australia (FloraBase; https://florabase.dpaw.wa.gov.au/). While 
it is possible that this species may have been grown ornamen-
tally (it appears, for example, as an incomplete record on the 
website of the U.S. National Gardening Association: https://
www.garden.org), it is more likely, especially given their pres-
ence in less disturbed habitat types, that these sequences belong 
to another species of Haemodoraceae or a related family that is 
not present in the reference database. There are two species of 
Haemodoraceae recorded from North America, Lachnanthes 
caroliniana (Lam.) Dandy and Lophiola aurea Ker Gawl. (Flora 
of North America Editorial Committee, 1993). Both of these 
species occur in low, wet areas in savannas and pine forests in 
eastern North America, and could be expected to occur at our 
study sites. Neither of these species is in the rbcL database, and 
the family Haemodoraceae is not represented in the ITS2 data-
base. This result points to the need for work that explicitly as-
sesses false positives in DNA metabarcoding using known 
pollen samples.

Quantitation with pollen metabarcoding— One of the ulti-
mate goals of pollen DNA metabarcoding is to record not only 
which species are interacting, but also which plant species are 
most frequently visited by each pollinator species. We quantified 

these interactions based on the number of interacting individu-
als, that is, the frequency at which a plant species was detected 
qualitatively in the mixed pollen load of a bee. Our work did not 
explicitly assess the quantitative efficacy of DNA metabarcod-
ing, or how well the proportion of sequence reads matched the 
proportion of pollen grains in a sample. Other researchers have 
attempted to quantify the composition of mixed-species pollen 
loads carried by pollinators, and although most have found some 
correlation between the number of sequence reads and number 
of visually identified pollen grains (Pornon et al., 2016), most 
have found that this correlation is only moderate and that some 
species are found in vastly different proportions in different data 
sets (Keller et al., 2015; Kraaijeveld et al., 2015; Richardson 
et al., 2015). This may be due to biases among species in DNA 
isolation efficiency, pollen durability during storage, PCR effi-
ciency, and copy number of ITS2 and rbcL (Bell et al., 2016). 
Other areas of bias are also common to visual pollen identifica-
tion, including biases in the amount of pollen a plant produces, 
and the effect of grooming. This result pertains very strongly to 
networks, as quantitative networks—those that include infor-
mation on visitation intensity—are often more informative than 
binary networks that include only presence-absence of a link 
(Blüthgen, 2010). For example, quantitative networks allow for 
the weighting of interactions to visitation intensity and decrease 
sensitivity to sampling effort, which in turn can lead to less bi-
ased estimates of network structure and topology (Blüthgen 
et al., 2008). We caution potential end-users of DNA metabar-
coding for network construction to not use sequencing read pro-
portions as if they were a precise quantification of visitation 
intensity. Rather, quantification can be achieved through record-
ing the frequency of these presence-absence interactions. In ad-
dition to avoiding biases in the DNA metabarcoding data, this 
method of quantification also avoids biases in pollen output of 
different plant species, which may also be a limitation of pollina-
tor networks based on microscopic pollen identification.

Relative success with ITS2 and rbcL— One clear outcome of 
our work is that the two barcoding markers employed in this 
study, rbcL and ITS2, did not give identical species-level results. 
This result is not surprising given that the markers have different 
taxonomic coverage in the DNA library to which our sequencing 
results were compared (38,409 plant species for rbcL and nearly 
twice as many—72,325—for ITS2 were present in our reference 
databases) and potentially different inherent levels of taxonomic 
resolution (up to ~92% for ITS2 [Chen et al., 2010] vs. ~72% for 
rbcL [CBOL Plant Working Group, 2009]). There could also be 
differences in the relative coverage of the two markers in our 
study flora in northern Florida. A detailed examination of three 
samples found that different species-level results obtained from 
rbcL and ITS2 were not due to different species-level identifica-
tions of the same pollen grains. Instead, the differences could be 
explained by differences in resolution due to a lack of species 
representation in the two databases, different levels of taxonomic 
resolution for the two markers, or differences in amplification 
success for the two markers. For example, although the species-
level match was likely incorrectly identified with rbcL, Haemo-
doraceae was entirely undetected using ITS2 because the entire 
family is not represented in the database. Samples where we  
detected only Haemodoraceae with rbcL had no ITS2 identifi-
cations below the level of phylum. Problems associated with dif-
ferent amplification success for two markers could be reduced  
by amplifying the markers in separate reactions. This would 
make the results more robust, but would increase the costs. In our 
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study, we obtained more reads for ITS2 than rbcL, which could 
also explain some of the differences in species-level resolution. 
Further research may be required to optimize the duplex PCR 
and compare results to separate amplifications. Optimizing the 
duplex PCR may have the added benefit of reducing potential 
primer-dimer issues, and hence increasing the number of reads 
that can be identified as rbcL or ITS2. Even without these minor 
improvements, using both markers certainly has the potential to 
increase taxonomic resolution. Combining markers could have 
even greater future potential if sequence reads from the same 
taxon can be quantitatively matched after development of quan-
titative correction factors as mentioned in the previous section.

In certain ecosystems, particularly those containing many 
closely related plant species, ITS2 and rbcL may be insufficient 
to identify all species present. In this case, other markers may be 
used. The most commonly used DNA barcoding markers include 
rbcL, matK, ITS2, trnL, and trnH-psbA. The relative merits of 
these markers have been discussed elsewhere (Fazekas et al., 
2008; CBOL Plant Working Group, 2009; Ford et al., 2009; 
Hollingsworth et al., 2009, 2011; Chen et al., 2010; Shokralla 
et al., 2012), including in the context of pollen DNA metabar-
coding (Bell et al., 2016). Using markers other than ITS2 and 
rbcL may also be useful when there are more existing data from 
other markers for species in the ecosystem. For example, in our 
study, including matK as a third marker may have identified 
Haemodoraceae to species level, because both North American 
species of Haemodoraceae have matK sequence data (https://
www.ncbi.nlm.nih.gov, accessed 21 September 2016).

Conclusions— In this study, we have demonstrated the feasi-
bility of using pollen DNA metabarcoding in the construction of 
pollinator networks, but have also highlighted some caveats and 
cautionary recommendations. We underscore that DNA metabar-
coding is not quantitative in that sequence read proportions can-
not be interpreted to reflect proportions of pollen grains in a 
sample. We therefore recommend either that any metrics calcu-
lated on networks constructed from barcoding should be based on 
binary, presence-absence networks, or that quantitative metrics 
(inferring interaction intensity) should be based on the frequency 
of these presence-absence data. Gene sequence reference li-
braries for barcode matching are not comprehensive in most 
geographic locations, and some taxonomic groups may not be 
represented even globally in such libraries. Usually this will lead 
to lower taxonomic resolution, but it may also lead to false posi-
tive identifications if a closely related species is present in the 
database. Results should be examined critically for identifica-
tions that are likely erroneous, and in some cases alternative 
matches could be inferred from knowledge of the local flora. Al-
ternatively, researchers may wish to sequence key species from 
the study system and add these to the database before analysis. 
This can be quite easily achieved using tissue from any part of 
the plant, not necessarily pollen. The use of two or more barcod-
ing markers can potentially improve taxonomic resolution, but 
there are no automated methods available at this time to recon-
cile identifications from multiple markers. Thus, multiple mark-
ers used in the same sample must be considered individually 
and will typically involve judgment calls on the part of the re-
searcher. Contamination is likely to be a recurrent issue given 
the ubiquity of pollen and its durability in the environment, 
and we suggest that both DNA isolation and PCR negative 
controls be included in every batch of samples to allow for 
identification of contaminants and for setting thresholds of 
rare-sequence removals.

Despite these minor caveats, DNA metabarcoding offers tre-
mendous advantages over visual microscopic identifications of 
pollen, in terms of taxonomic resolution and consistency of turn-
around time. High-throughput methods for pollen identification 
are critically needed given global pollinator declines and a lack 
of knowledge of how structural changes in pollination networks 
affect their resilience to perturbations in response to ongoing an-
thropogenic environmental change. Although still in its infancy, 
DNA metabarcoding technology can be used today for construc-
tion of pollination networks and, with potential methodological 
refinements, holds tremendous promise for transforming their 
empirical study in the future.
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AppenDix 1. Description of different management conditions at the study 
site.

Management condition Description of site

Longleaf pine (reference) Longleaf pine trees greater than 30 yr in age with 
low degree of disturbance and management

Clear cut, debris left All trees removed recently, woody debris remain 
at site

Clear cut, residues removed All trees removed recently, no woody debris 
remain at site

Unthinned, managed 12–15 yr of growth for slash or loblolly pine, no 
trees selectively removed during growth

Thinned, managed 12–15 yr of growth for slash or loblolly pine, 
trees selectively removed during growth

Young, managed Slash or loblolly pine stand 8–12 yr in age
Old, managed Slash or loblolly stand more than 15 yr in age
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