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Abstract

The prevalence of interval censored data is increasing in medical studies due to the growing use of 

biomarkers to define a disease progression endpoint. Interval censoring results from periodic 

monitoring of the progression status. For example, disease progression is established in the 

interval between the clinic visit where progression is recorded and the prior clinic visit where there 

was no evidence of disease progression. A methodology is proposed for estimation and inference 

on the regression coefficients in the Cox proportional hazards model with interval censored data. 

The methodology is based on estimating equations and uses an inverse probability weight to select 

event time pairs where the ordering is unambiguous. Simulations are performed to examine the 

finite sample properties of the estimate and a colon cancer data set is used to demonstrate its 

performance relative to the conventional partial likelihood estimate that ignores the interval 

censoring.
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1 Introduction

In medical studies, radiographic scans and blood based biomarkers are increasingly being 

accepted as clinical endpoints in measuring the time to progression. In contrast to survival 

time, where patient death is the single determining point, disease progression is established 

in an interval between the clinic visit where progression is recorded and the prior clinic visit 

where there was no evidence of disease progression. To estimate the relationship between 

progression free survival time and covariates, it is common to employ the proportional 

hazards model, using a partial likelihood analysis based on the recorded progression time. 

However, if the interval width between clinic visits is significant relative to the variability of 

the true (but unobserved) progression times, then the ranks of the recorded progression times 

may be substantially different from the ranks of the true progression times, resulting in an 

inaccurate partial likelihood estimate of the proportional hazards regression coefficients.
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Incorporation of interval censoring into the proportional hazards model does not enable 

canceling of the baseline hazard function, and as a result, estimation of the regression 

coefficients and the derivation of its asymptotic properties have proven challenging. Full 

likelihood approaches that require estimation of the baseline hazard to estimate the 

regression coefficient were developed by partitioning the time axis based on the endpoints of 

the event time intervals (Finkelstein 1986); employment of an EM algorithm based on 

piecewise constant event times (Goetghebeur and Ryan 2000); and use of a local likelihood 

to jointly estimate the regression coefficient and the baseline hazard function (Betensky et al. 

2002). Although these methods do not require a global parametric distribution for the 

survival time, the need to estimate the baseline hazard offsets a key benefit of the 

semiparametric proportional hazards framework.

Monte Carlo methods have been explored to avoid baseline hazard estimation in the Cox 

model with interval censored data. Pan (2000) uses a multiple imputation procedure to fill-in 

failure times for the interval censored events and then applies the standard partial likelihood 

analysis. Satten (1996) considers a marginal likelihood approach, using Gibbs sampling to 

generate possible event time ranks. Simulations are used to demonstrate the small sample 

properties of the regression estimates, but the distribution theory for the estimated regression 

coefficients has not been developed. Satten, Datta, and Williamson (1998) derive an 

asymptotic distribution for the regression estimates, but require a parametric specification of 

the baseline hazard to impute failure times.

Estimating equations have been used to avoid estimation of the baseline hazard function. 

Zhang et al. (2005) proposed a solution under the constraint that the covariate in the 

proportional hazards model are discrete. In addition, due to the complexity of the regression 

estimate, they rely on a heuristic derivation of its asymptotic distribution and suggest a 

bootstrap estimate for the asymptotic variance (Zhang 2009). An excellent survey of 

statistical approaches applied to interval censored data is found in Sun (2006).

Software for the interval censored proportional hazards model is sparse (Gomez et al. 2009). 

In R, there exists one package (Henschel, Heiss, and Mansmann 2009), derived from an 

algorithm based on the joint maximization of the baseline survival function and the 

regression coefficient (Pan 1999). However, under the standard assumption that the baseline 

survival function S0 is piecewise constant, the number of parameters grows with the sample 

size and the asymptotic distribution of the coefficient estimate β̂ is unclear. Huang and 

Wellner (1997) consider a profile likelihood approach L(Ŝ0β, β) to estimate the var(β̂), but 

note that the high dimensional inverse Hessian required for the variance estimate may lead to 

computational issues. In addition, they note that it remains uncertain whether Ŝ0βis a smooth 

function of β, which would argue against a bootstrap estimate of var(β̂).

Thus to date, although endpoints such as progression free survival that produce interval 

censored data are increasing, the application of these approaches is not routinely 

incorporated into a Cox model analysis. As noted, the reasons include: either concurrent 

estimation of the infinite dimensional baseline hazard, computational dificulty, or the lack of 

an asymptotic distribution for the regression coefficient estimate.
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In this paper, an alternative methodology is proposed to estimate the proportional hazards 

regression coefficient and to derive the asymptotic distribution of this estimate when interval 

censoring is present. The method does not require estimation of the baseline hazard and uses 

standard estimating equation techniques to produce the estimate and its asymptotic 

distribution. Sections 2 and 3 develop the methodology for estimation and inference. In 

Section 4, simulations are performed to examine the finite sample adequacy of the parameter 

estimate and coverage based on asymptotic confidence intervals. An analysis of colon cancer 

data is undertaken in Section 5 and Section 6 contains concluding remarks.

2 An estimating equation under proportional hazards

The proportional hazards relationship between the event time T and covariate vector X is 

specified by

(1)

where h(t|x) represents the subject-specific conditional hazard function, h0(t) is an 

unspecified baseline hazard function, common for all subjects, and exp(xT β1) is the relative 

risk for an individual with k-dimensional covariate vector x. As a result, the proportional 

hazards specification contains a finite dimensional parameter β1 and an infinite dimensional 

parameter h0(t).

With right censored data, each individual is associated with an event time, censoring time, 

and covariate vector {Ti, Ci, Xi}. It is assumed that the event time and censoring time are 

independent conditional on the covariate vector. The minimum time and censoring indicator 

are observed for each subject and are denoted by

Estimation and inference for , the true value of β1, is accomplished through the partial 

likelihood function (Cox, 1975). The score equation, derived from the partial likelihood, is 

based on the ranks of the observed times and does not contain the infinite dimensional 

parameter h0(t).

With interval censored data, however, the precise event times are not observed, and thus the 

ranks of these event times are unknown. Instead, the event time Ti for the ith subject is 

known to lie in an interval [Li, Ri]. For example, when scheduled clinic visits are used to 

assess disease progression, Ri represents the time from the start of treatment to the visit 

when disease progression is determined and Li represents the time to the previous clinic 

visit. If the event has not occurred at the time of analysis, the event time is subject to right 

censoring. The notation used to indicate whether right censoring occurs is di = I[Ri < Ci]. 

The event time interval for a right censored subject is [Li, +∞], where Li represents the 

follow up time to the last negative recording. If the failure time is known precisely, when for 
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example a death has occurred, the interval may be denoted as [Ri, Ri]. Finally, it is assumed 

that conditional on the covariate vector, the scheduling times are independent of the event 

time. This conditional independence assumption is common with interval censored data.

An alternative specification of the proportional hazards model is

where εi are independent, identically distributed, standard extreme value random variables, 

and m is an unknown, but monotone function of the survival times. This specification shows 

that the proportional hazards model is a member of the linear transformation family 

(Dabrowska and Doksum 1988; Cheng, Wei, and Ying 1995). Under the proportional 

hazards specification, for any pair of observations

(2)

where xji = xj − xi. This result suggests an alternative estimating equation approach for 

inference on . Using the notation Sij = I[Ti > Tj], with no censoring, an unbiased 

estimating equation is

An additional component is needed to account for the finite follow up period typical with 

survival time data. For an event time pair ordering to be observed, the minimum of the pair 

must be less than the maximum follow up time of the study, τ. Denoting the bounded 

ordering of the event time pair as , then under proportional hazards 

(Fine, Ying, and Wei 1998),

where . Thus, accounting for the finite follow up period requires one 

additional parameter β2 and the (k +1) parameters are represented as .
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3 Inverse probability weighted estimating equation

With interval censoring, the ordering of the event time pairs ( ) may not be observed. A 

sufficient condition for observing {Ti > Tj, Tj < τ } is {Li > Rj, Rj < Cj}. This condition or 

its complementary event is indicated by

Li and Pu (2003) considered this condition of nonoverlapping event time interval pairs to 

estimate β. Their proposal, however, was limited to the accelerated failure time model with a 

single covariate and required a strong independence assumption between the covariate and 

the assessment schedule.

A weighted unbiased estimating equation within the proportional hazards frame-work, based 

on the selected event time pairs is

(3)

where  is the selection probability and 

.

If π* is known, then inference for β can be accomplished through the estimating equation 

(3). If π* is unknown, but the unobserved  are missing at random, i.e. 

, then either setting π* = 1 or using a working model for π* would 

produce an unbiased estimating equation. The unobserved ordered pairs, however, are not 

missing at random. Specifically, note that I(Li > Rj) = I(Li > Rj)I(Ti > Tj) and

An instructive approach for the missing not at random case is to incorporate an observable 

auxillary variable that essentially captures the information in  for predicting Δij (Ibrahim, 

Lipsitz, and Horton 2001). Since  informs the order between (Ti, Tj), an observable 

auxiliary variable that orders the event time interval pair [Li, Ri] and [Lj, Rj] is

The proposal is to use the observable Aij in place of  to model the selection probability; 

the inverse probability weight component in the estimating equation (3). This replacement is 

Heller Page 5

Lifetime Data Anal. Author manuscript; available in PMC 2017 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



based on an estimating equation modified to include the auxillary variables and still retain its 

mean zero property

(4)

where 0/0 is defined as zero for any term in the summand and throughout the paper. To 

create an observable estimating equation, the selection probability in (4) is replaced by Pr[Δij 

= 1|Aij = aij, Aji = aji, Xi = xi, Xj = xj]. If aij + aji = 0, this replacement is trivial since Δij = 0 

with probability 1. If aij + aji = 1, a critical assumption for the viability of this substitution is 

that conditional on (Aij, Aji, Xi, Xj),  is ignorable for the prediction of Δij. This 

ignorability assumption essentially transforms the problem into a missing at random 

framework. Although it is likely that this condition is only an approximation, the simulations 

in this paper suggest that the approximation is reasonable.

To implement this alternative specification of the selection probability, data pairs are 

eliminated when right censoring masks the potential ordering of the intervals [Li, Ri], [Lj, 
Rj]. The indication that right censoring obscures the ordering is denoted by

and the selection probability conditional on the complementary space where (Aij, Aji, Xi, Xj) 

is informative for Δij is

Incorporation of the selection probability enables the use of the observed event time pairs to 

create an asymptotic mean zero estimating equation in the presence of interval censored data

(5)

Use of this estimating equation requires an estimate for the selection probability component 

π(aij, aji, xi, xj). A common approach is to apply a logistic regression model, which is 

specified as

(6)
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Estimation of the Cox regression coefficient is accomplished through two estimating 

equations. First,  is the solution to the estimating equation

(7)

where Dij(γ) = ∂π(aij, aji, xi, xj; γ)/∂γ. The estimated selection probabilities are used to 

estimate β from the profile estimating equation

(8)

The estimating equations (7) and (8), as a function of the true parameter values, are U-

statistics of degree 2. As a result, the following theorem summarizes the asymptotic 

distribution of the parameter estimates determined by the estimating equations.

Theorem

Let θ = (βT, γT )T and Qθ(θ) be the 2k +2 vector of estimating functions defined in (7) and 

(8). Under the following conditions:

(C1) The proportional hazards assumption (1) between the unobserved event time T 
and the covariate vector X is valid.

(C2) The selection probability in (4) is approximated by π(aij, aji, xi, xj), creating a 

missing at random structure.

(C3) The logistic regression model (6) is the proper specification for the selection 

probability π(aij, aji, xi, xj).

Then n1/2(θ̂ − θ0) converges in distribution to N(0, U−1V U−1), where U = limn→∞ 
E{n−1/2∂Qθ(θ0)/∂θ} and V = limn→∞ n−1var{Qθ(θ0)}. In addition, the asymptotic variance 

of β̂1 is the upper left k×k submatrix of U−1V U−1. The proof is standard and follows from a 

one-term Taylor expansion of Qθ(θ). The estimate of the matrix U is computed by replacing 

the expectation with the sample average and the parameters with the parameter estimates. 

The variance-covariance matrix V is obtained through U-statistic theory. Letting qijl denote 

the (i, j) element in the summand of the lth component of Qθ(θ), the (l, m) element of V is
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4 Simulations

A set of simulations were generated to assess the performance of the interval censored 

estimating equation estimates β̂ee. A comparable set of simulations were produced using the 

conventional partial likelihood estimate β̂pl, choosing the time of the first recorded positive 

event as the failure time, and an estimate of β using Pan’s joint maximization algorithm (Pan 

1999). Pan’s method, however, does not produce an asymptotic variance for the coefficient 

estimate. The underlying event time data were generated to satisfy the proportional hazards 

specification

where β = 1, xi was generated as a standard normal random variable, and εi was distributed 

as a Weibull random variable with shape parameter λ and scale parameter equal to 1. The 

shape parameter λ was varied as {0.693, 1.1, 1.386, 1.609} and the Cox coefficient is β1 = 

−λβ. This choice of shape parameters results in odds parameters equal to {2, 3, 4, 5}, based 

on the odds concordance interpretation of the Cox coefficient

This sequence of shape parameters translates into event times with decreasing variability.

The monitoring schedule was developed under the clinical scenario that scans to detect 

disease progression were scheduled either every 12 months or every 24 months. Thus, for 

subject i, the simulated 12 month scan schedule was

where the Uik(−2, 2) represent independent uniform random variables, with support between 

−2 and 2, and K indicates the maximum number of scans. The uniform random variable is 

included to signify the scenario that a subject would arrive for the scan within a 2 month 

neighborhood of the scheduled visit. To examine the effect of the length of follow up on the 

regression estimates, the number of scans (K) was varied as {5, 10, 25} for scans scheduled 

every 12 months and {3, 6, 15} for scans scheduled every 24 months. The left and right 

endpoints for each subject’s event time interval were computed as
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In the simulations, the right endpoint of a subject whose underlying event time was greater 

than the maximum follow up time was assigned a very large value (M). In addition, a 

uniform censoring random variable was generated as Ci ~ U(0, τ) to simulate the clinical 

trial scenario of subjects entering the study at different time points and lost to follow up. If C 
was less than the scan time where the progression was observed, then the follow-up time 

was censored at the scan time just prior to C. The maximum follow up time of the study τ is 

equal to the scan interval width times the maximum number of scans scheduled. The sample 

size for each simulation was 100 and the results of each simulation were based on 5,000 

replications.

The estimating equation removes data pairs that do not meet the selection criteria. To assess 

the potential loss of information with this procedure, the simulation estimated root mean 

squared error of β̂ee was compared to the simulation estimated root mean squared error of 

the partial likelihood estimate and Pan’s regression coeffcient estimate. Pan’s approach, 

based on a full likelihood, is used to gauge the efficiency of the proposed estimate.

The results for β̂ee are accurate over the range of simulations examined (Table 1). The bias 

was small. The average asymptotic standard error of the β̂ee provided a good approximation 

to its simulation standard error. The 95% empirical coverage was uniformly good based on 

the confidence interval β̂±1.96×se(β̂). In contrast, the conventional partial likelihood 

approach produced a bias in β̂pl and poorer coverage rates, which were magnified when the 

scan interval width was larger and the variability of the event times was smaller (Table 2).

The quality of the estimate βêe decreased as the scan interval width increased and the 

variability of the underlying event time decreased. These parameter settings, along with 

higher censoring rates, tended to reduce the number of unambiguously ordered event time 

pairs. A comparison of the root mean squared error for the estimating equation estimator and 

the partial likelihood estimator shows that when the scan interval width is 12, the root mean 

squared error of the partial likelihood estimator is always smaller. The results are mixed 

when the scan interval is 24, where β̂ee has a smaller root mean square error when the 

censoring is either 25% or 45% and the variability of the underlying event times is low. 

These results suggest an additional weight incorporated into the estimating equations, 

targeted to reduce the variability of βêe, would prove useful. Surprisingly, the root mean 

squared error for Pan’s full likelihood does not dominate. The Pan estimate incurs 

significant bias when the event time variability is small.

5 Colon cancer data analysis

Ninety patients with locally advanced colorectal cancer were treated surgically at Memorial 

Sloan-Kettering Cancer Center. Patients were monitored for their time to recurrence or 

death. Tumors of the colon produce the protein Carcinoembryonic Antigen (CEA). The 

prognostic value of CEA for predicting the risk of recurrence in this population is unclear, 

since CEA may also be elevated in response to other diseases.

An analysis was undertaken to explore the prognostic significance of the baseline CEA 

measure, taken just after surgery, in assessing the risk of recurrence. The purpose of the 
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analysis was to determine whether the clinician should use CEA in the assessment of peri-

surgical treatment options. To determine recurrence, patients underwent a CT scan at six 

months and one year after surgery, and were subsequently scheduled for yearly scans. 

Although follow up scans were intended for the life of the patient, patients with no cancer 

related health problems typically ceased returning to the clinic at some point in their follow 

up. As a result of the scan schedule, the event tumor recurrence is interval censored. An 

analysis based on the partial likelihood estimate, using the time of the first recorded positive 

recurrence on the CT scan as the event, was compared to the estimating equation estimate to 

explore the differences in the two approaches. Approximately 50% of the patients recurred 

and no patient died prior to their recurrence. The estimated probability of remaining alive 

and recurrence free at 10 years was 0.36. This calculation was based on a Kaplan-Meier 

estimate that accounts for interval censoring (Wellner and Zhan 1997). The relationship 

between baseline CEA and the time to recurrence was first summarized through the partial 

likelihood estimate. CEA values ranged from (0.0, 52.6), with the median value equal to 3.7. 

The distribution of CEA was right skewed and a square root transformation was applied. The 

estimated coefficient was βp̂l = 0.171 and the estimated se(β̂pl) = 0.078, suggesting a positive 

relationship between baseline CEA and the risk of recurrence.

Accounting for the interval censoring and applying the estimating equation approach 

produced βêe = 0.235 and the estimated se(β̂ee) = 0.114. The results of the partial likelihood 

and the estimating equation methods are summarized in Table 3. Interestingly, both the 

estimate and its standard error are greater than the partial likelihood estimates. One 

explanation is that the estimating equation approach uses only data pairs where there is a 

definitive event time ordering. In contrast, the partial likelihood approach ignores the 

uncertainty in the event time ordering and uses all the events in the estimation process. This 

can produce an event time ordering that is partially dictated by the visitation schedule to the 

clinic, resulting in an attenuation of the partial likelihood estimate βp̂l. In addition, by 

implicitly assuming more information in the event time ordering than exists in the presence 

of interval censored data, the standard error of β̂pl is expected to be smaller, giving a false 

sense of confidence as to the location of the true regression coefficients.

6 Discussion

Interval censored data methods applied to the proportional hazards model have not gained 

widespread acceptance. Methodology that has incorporated interval censoring requires either 

estimation of the baseline hazard or a computationally intensive approach. Due to this 

inadequacy, interval censoring is often ignored, and the right endpoint of the event time 

interval is used to compute the partial likelihood estimate. The result is a biased estimate, 

with the bias increasing as a function of the interval censoring width combined with the 

precision of the underlying event times. In this paper, the proportional hazards specification 

is used to create an estimating equation that incorporates an inverse selection probability 

weight. If the selection probability model and the proportional hazards model are properly 

specified, then a set of unbiased estimating equations can be formed under a surrogacy 

condition. The asymptotic distribution of the estimated regression coefficients follows 

directly from the estimating equations. This proposal, which produces a Cox model estimate 
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that is computationally straightforward and has an estimable asymptotic distribution, is 

timely due to the increasing use of clinical endpoints that are subject to interval censoring.
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Table 3

Estimated coefficients and standard errors for the square root of CEA from the partial likelihood and 

estimating equations.

Method

sqrt(CEA)

Coef SE

Partial likelihood 0.171 0.078

Estimating Equation 0.235 0.114
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