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Abstract

Purpose of review—Once and obscure disease, recent studies have transformed our 

understanding of angioimmunoblastic T-cell lymphoma (AITL). In this review we summarize new 

major advances in the genetics and biology of AITL.

Recent findings—Genome wide sequencing studies have dissected the repertoire of the genetic 

alterations driving AITL uncovering a highly recurrent Gly17Val somatic mutation in the small 

GTPase RHOA and major role for mutations in epigenetic regulators, such as TET2, DNMT3A 
and IDH2, and signaling factors (e.g. FYN and CD28). These findings support a multistep model 

of follicular T helper cell transformation in AITL and pinpoint novel candidates for the 

development of targeted therapies in this disease.

Summary—AITL originates from follicular T helper cells and is characterized by the presence of 

RHOA G17V mutation together with genetic alterations in TET2, DNMT3A and IDH2. Research 

efforts now focus on the elucidation of the specific roles and interplay of these genetic alterations 

in the pathogenesis of AITL.
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Introduction

Angioimmunoblastic T-cell lymphoma (AITL) is a clinically aggressive lymphoma derived 

from the malignant transformation of follicular T-helper (TFH) cells. AITL affects mostly 

elderly adults and accounts for 20% of peripheral T-cell lymphomas (1). Despite intensive 

therapy, 5 year overall survival rates in AITL are only about 30% (2), with little progress in 

the last two decades (3). However, recent studies have shed new light on the 

pathophysiology and genetics of this disease opening the field for the development of novel 

animal models and targeted therapies. Here we review the most recent advances on normal 

normal TFH cell development and the genetics of AITL.
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Gene expression profiling insights in the classification and biology of AITL

Peripheral T-cell lymphomas are a highly heterogeneous and relatively poorly defined group 

of mature T-cell malignancies. Limitations in diagnosis and classification represent a clinical 

challenge that affects therapeutic options and clinical management. Systematic efforts to 

improve the classification of PTCLs using gene expression profiling has been instrumental 

in defining distinct molecular groups of PTCL and has provided new information on the 

pathobiology of these tumors (4–12).

Transcriptional characterization of PTCL tumor samples and their normal lymphocyte 

counterparts identified a unique transcriptional profile for AITL (7, 8). Importantly, this 

AITL-associated signature can be found in about 20% of tumors diagnosed as PTCL not 

otherwise specified (PTCL NOS) supporting that gene expression profiling provides a more 

accurate classification than histology for the diagnosis of PTCL (12–14). In addition, AITL 

gene expression programs reflect an important contribution of the tumor microenvironment 

and are enriched in B-cell and follicular dendritic cell (15). In this context, the AITL B-cell 

signature seems to be associated with a better outcome, while signatures related to 

immunosuppression could be linked to poor clinical outcome (13). Moreover, it is worth 

noting that AITL tumors show high levels of expression of VEGF, which may play a 

pathogenic role driving angiogenesis and stimulating lymphoma cell growth via autocrine or 

paracrine loops (16).

However, the most prominent finding of gene expression studies on the pathophysiology of 

AITL was the discovery of the cellular derivation of TFH cells, a subset of CD4+ T helper 

cells residing in the follicular centers, as the normal cellular counterpart of malignant AITL 

cells. This way, even though a relationship between AITL tumors cells and TFHs was first 

proposed based on the expression of the chemokine CXCL13 in AITLs samples (17, 18), 

this was ultimately and most clearly substantiated by gene expression studies, which 

established a close similarity between the expression signatures of TFH cells and AITL 

tumor biopsies (7, 8). In addition to CXCL13, TFH-characteristic genes highly expressed in 

AITL include the CD28-related inducible T-cell co-stimulator ICOS, CD154, CD40L and 

NFATC1 (7, 18).

TFH development and AITL

TFH cells were initially described as a separate CD4+ T-cell population characterized by 

high levels of expression of the chemokine receptor CXCR5 (19–21). Since then, TFH have 

emerged as a distinct subset of effector T helper cells with a characteristic gene expression 

signature and functionally separate from other known CD4 T-cell subsets (22–24). TFHs are 

required for germinal center formation and play important roles in germinal center B-cell 

differentiation and survival and in the development of long-lived plasma cells and memory 

T-cells (25).

TFH cell differentiation is initiated by the interaction of a naïve CD4+ T-lymphocyte with 

dendritic cells in a developing germinal center (26) (Figure 1). This interaction involves the 

activation of ICOS in the T-cell (27, 28), and the consequent activation of the PI3K pathway, 
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which leads to expression of the BCL6 transcription factor, a critical regulator of TFH 

development (29–31). The master regulator role of BCL6 in TFH development is 

demonstrated by the failure of Bcl6−/− cells to differentiate into TFH cells in vivo (32, 33). 

Moreover, constitutive expression of Bcl6 enhances T cell differentiation towards the TFH 

lineage (32, 34) and transcriptional repression defective forms of BCL6 block TFH cells 

differentiation (35). Although the precise mechanisms operating downstream of Bcl6 are not 

fully clarified yet, this transcriptional repressor seems to participate in the restriction of 

alternative cell fates during TFH cell development via repression of critical factors 

implicated in Th1 (T-bet), Th2 (GATA3) and Th17 (RORγt) development (31, 32, 35, 36). 

Following ICOS activation and induction of BCL6 expression, activated T cells upregulate 

the expression of PD1 and CXCR5 becoming TFH precursors, which migrate to the border 

of the B-cell follicle to engage in secondary cell-cell interactions with antigen-specific B-

cells (32, 37). Then, and as antigen stimulation builds up a germinal center reaction, these 

precursors complete maturation and acquire a definitive TFH phenotype characterized by 

expression of high levels of CXCR5, PD1, BCL6, MAF and SAP (37) (Figure 1). In addition 

to BCL6, TFH development depends on multiple other transcription factors including 

ASCL2, c-MAF, IRF4, and AP-1 (25, 32, 33, 35, 38–40). Moreover, in addition to ICOS 

engagement, activation of JAK-STAT signaling by IL6, IL21 and IL12 play important roles 

in TFH cell development (25, 41–47).

Genomic analysis of AITL

Genomic profiling studies have started to dissect the repertoire of genetic alterations driving 

the pathogenesis of AITL and PTCL, NOS tumors. These studies have already uncovered a 

major role for mutations in the small GTPase RHOA and in epigenetic factor genes –

including TET2, DNMT3A and IDH2– in the pathogenesis of these tumors and pointed to 

additional relevant pathways in these diseases.

The RHOA G17V mutation in AITL

The RHOA small GTPase protein regulates multiple biological processes, including 

cytoskeleton remodeling, cell adhesion, migration, proliferation and survival (48, 49). As 

other small GTPases, RHOA cycles between an active GTP-bound state and an inactive 

GDP-bound configuration. RHOA activation is catalyzed by RHO GEFs (Guanine 

Nucleotide Exchange Factors), which facilitate the incorporation of GTP. Conversely, 

RHOA GAPs (GTPase Activating Proteins), which stimulate the conversion of GTP to GDP 

to promote the transition of the RHOA protein to the inactive state (48, 49). Early studies 

using transgenics expressing dominant negative forms of RHOA or suppressing RhoA via 

expression of the exoenzyme C3 transferase, an ADP ribosyl transferase that selectively 

ribosylates and inactivates RhoA, RhoB and RhoC proteins, pointed to an essential role for 

RHOA in multiple T-cell functions including polarization, migration and signaling through 

the TCR (50–54). Moreover, RHOA inactivation causes a developmental blockade during 

thymocyte progression (55–57) and inactivation of RhoA in the thymus has been linked to 

development of T-cell lymphomas (58). More recently, the analysis of conditional RhoA 
knockout mice has demonstrated a role of RhoA in thymocyte proliferation and survival, 

beta-selection, positive selection, early single positive lineage commitment, and notably, 

Rodríguez-Cortés and Palomero Page 3

Curr Opin Hematol. Author manuscript; available in PMC 2017 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mitochondrial function (59). Moreover, altered Rho GTPase activity has been linked with 

the development of autoimmunity (60), one of the hallmarks of AITL.

A central role of RHOA in the pathogenesis of AITL is supported by the identification of 

recurrent, highly prevalent heterozygous missense mutations in the RHOA gene in about 

70% of AITLs (61–66). Among these, the RHOA G17V allele accounts for over 90% of 

RHOA mutations in AITL (61–63) (Figure 2). Biochemical analysis and cellular assays 

demonstrated that the RHOA G17V mutant does not bind GTP and functions as an inactive 

and dominant negative protein which interferes with the activity of wild type RHOA (61–

63), most probably by sequestering and interfering with the activity of RHOA GEFs (61). 

The RHOA G17V mutation is highly characteristic of AITL. Thus, presence of RHOA 

G17V mutation in about 25% of PTCL NOS cases suggests that these tumors probably 

represent misdiagnosed AITLs (61). However, RHOA mutations have also been identified in 

Burkitt lymphoma, gastric carcinoma, and adult T-cell leukemia lymphoma samples (67–

70).

Mutations in epigenetic regulators: TET2, DNMT3A and IDH2

Mutations in TET2, DNMT3A and IDH2 are common in hematological malignancies. 

Originally described in myeloid malignancies, they were subsequently found in PTCL, being 

especially high in AITL and in a subgroup of PTCL, NOS with TFH features (71–73). 

Mutations in these epigenetic regulators are strongly associated with the expression of the 

RHOA G17V allele. In fact, analysis of 120 AITL samples from published data identifies 

mutations in at least one of these genes in 94% of RHOA G17V positive cases (Figure 3).

The Ten-Eleven Translocation 2 (TET2) encodes a 2 oxoglutarate/Fe2+–dependent 

oxygenase that participates in the epigenetic control of gene expression through the 

oxidation of methylated cytosines and DNA demethylation by catalyzing the oxidation of 

DNA 5-methylcytosine to 5-hydroxymethylcytosine (74–76). TET2 was originally identified 

as a tumor suppressor in myeloid malignancies (77, 78); however, several later studies have 

also demonstrated a high frequency of loss of function mutations in TET2 in 70–80% of 

PTCLs (61, 62, 72, 79, 80), being particularly prevalent in AITL and PTCL, NOS (Figure 

2). In PTCL, TET2 mutations are associated with advanced stage disease, adverse clinical 

parameters at presentation and shorter progression free survival (80).

The role of loss of function mutations in Tet2 has been investigated using mouse models, 

which showed that loss of Tet2 leads to higher frequency of hematopoietic stem cells, 

increased competitive repopulation abilities and biased differentiation towards the myeloid 

lineage (71, 81–87). Knockout mouse models of Tet2 are also associated with the 

development of hematopoietic malignancies, of both myeloid (71, 81, 82) and T-cell origin 

(88).

The DNA (cytosine-5) methyltransferase 3A (DNMT3A) gene encodes a methyltransferase 

involved in the epigenetic regulation of gene expression via methylation of cytosines in the 

DNA. Mutations in DNMT3A gene were originally described as highly recurrent in acute 

myeloid leukemia (AML) (89, 90), where they are associated with adverse survival (91). 
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Analysis of DNMT3A in PTCL identified the presence of recurrent loss of function 

mutations in this gene in 10%–40% of AITL samples (61–64, 72) (Figure 2), frequently co-

occurring with TET2 mutations and maybe even predating them in the process of malignant 

transformation (72) (Figure 3).

The Isocitrate Dehydrogenase 2 (IDH2) gene is mutated in about 30–40% of AITL cases 

(64, 73) (Figure 2). IDH2 encodes a metabolic mitochondrial enzyme physiologically 

involved in the oxidative decarboxylation of isocitrate to 2-oxoglutarate. Notably, the 

resulting mutant enzymes have a neomorphic enzymatic activity catalyzing the conversion of 

alpha ketoglutarate to 2 hydroxyglutarate (2-HG), an oncometabolite that antagonizes the 

activity of alpha ketoglutarate dependent dioxygenases, including the TET family enzymes, 

leading to impairment of DNA and histone demethylation and abnormal regulation of gene 

transcription (64, 92). While recurrent mutations in IDH2 can be frequently identified in 

other types of cancer, including AML, AITL is the only PTCL subgroup where IDH2 
mutations are found, and remarkably, they occur exclusively in position R172 (R172K, 

R172S) (64, 93), which is associated to increased production of 2-HG compared to other 

IDH2 mutants alleles (94, 95). Of note, the presence of IDH2 mutations is associated with 

poor prognosis in a subset of AML patients (96), but there is no significant association of 

IDH2 mutations with survival in AITL (64). In contrast to AML, where IDH2 and TET2 
mutations are mutually exclusive, AITLs frequently present co-occurring mutations in these 

epigenetic regulators (64) (Figure 3). Specifically, analysis of an AITL cohort (N=120) 

indicates than over 90% of the IDH2 mutated samples also harbor mutations in TET2 
(Figure 3). Although methylation profiling reflected only a moderate effect of the double 

TET2/IDH2 versus the TET2 only mutant cases, gene expression profiling supports a 

cooperative effect of IDH2 and TET2 mutations on the regulation of the expression of TFH 

specific genes leading to a more polarized TFH signature that achieved by the presence of 

TET2 mutations alone (64).

Loss of function mutations in TET2 and DNMT3A seem to occur at an early stage of 

hematopoietic development, as mutations in those genes have been found in normal elderly 

individuals and as germline events in AML and PTCL patients (62, 71, 72, 97). Actually, the 

presence of somatic mutations in the blood of otherwise healthy individuals is associated 

with a higher risk of developing hematopoietic tumors (98, 99). Clonality and germline 

analysis in the context of AITL supports a transformation model in which TET2 and 

DNMT3A mutations constitute an initial or pre-malignant lesion in hematopoietic 

progenitors that could eventually lead to clonal expansion and malignant transformation both 

within the T-cell and myeloid lineages. In this context, the presence of mutations in IDH2 
and RHOA, usually at a lower allelic frequency (62, 64) reflects a second hit that likely 

modulates lineage specification towards TFH cells orchestrating the cells into developing 

AITL.

Additional mutations in the TCR pathway

Gene expression profiling studies have proposed that AITL tumors may be driven by 

increased T-cell receptor signaling (12). Consistently, genomic studies have uncovered the 
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presence of recurrent, albeit relatively rare, genetic alterations affecting the FYN and CD28 
genes, two important elements in the TCR signaling cascade (61, 100).

The FYN tyrosine kinase is, together with LCK, the predominant SRC family kinase found 

in T lymphocytes and plays an important role in T-cell activation upon T-cell receptor 

stimulation (101). FYN mutations found in PTCL NOS and AITL cases specifically disrupt 

the intramolecular inhibitory interaction of the FYN SH2 domain with C-terminal 

phosphorylated FYN Tyr531 resulting in increased tyrosine kinase signaling (61) (Figure 2).

Recurrent mutations in CD28, a member of the immunoglobulin subfamily and the major 

co-stimulatory molecule for TCR-mediated activation, have been recently described in AITL 

(100, 102). PTCL-associated CD28 mutations affect the D124 and T195 residues (Figure 2) 

and result in increased signaling via increased ligand-receptor interaction and signal 

transduction (100). CD28-mutated AITL patients have inferior survival to non-mutated cases 

(100). Given the prominent role of CD28 signaling in normal TFH development, and the 

presence of activating mutations in CD28 in AITL, it is possible that CD28 directed 

therapies may be of relevance for the treatment of this disease.

The promise for targeted therapies

Understanding the mechanisms relevant for TFH differentiation, proliferation or function 

offers a number of novel therapeutic opportunities for targeting malignant TFH cells (Figure 

4). In this perspective, BCL6 arises as one the most promising targets, since within T cells; 

BCL6 expression is restricted to TFH subset and is necessary for TFH survival (103). Thus, 

blocking BCL6 is an attractive targeted therapy for AITL. Indeed, small molecule or 

peptomimetic BCL6 inhibitors have been developed as targeted therapies in diffuse large cell 

lymphoma (104–106) and breast cancer (106).

Given the close relationship between TFH cells and AITL tumor lymphocytes, potentially 

same therapies evaluated for autoimmune disorders where TFH cells are involved might be 

relevant for AITL. Thus, Abatacept, a recombinant antibody which blocks both CTLA4 and 

CD28 signaling, suppresses TFH generation in an experimental model of autoimmunity 

(107), suggesting a potential therapeutic use in AITL. However, recent studies have shown 

the prominent role of ICOS in the development and maintenance of TFH cells (27–29, 37), 

indicating that ICOS could be a more specific target for therapy in AITL. A phase I trial of 

ICOS blockade in systemic lupus erythematosus demonstrates the feasibility of 

administering this antibody to human subjects (108). As ICOS function is critically 

dependent on the activity of phosphoinositide 3-kinase (PI3K), small molecule inhibitors of 

this kinase offers an alternative approach to abrogate ICOS signaling. Pharmacological 

inhibition of the PI3K/AKT signaling pathway has already shown promise as an effective 

therapy in experimental models of autoimmunity and is currently being evaluated in clinical 

trials in CLL and follicular lymphoma (109). Both CD28 and ICOS function as co-

stimulators of TCR, consequently, the inhibition of FYN, a key molecule in TCR signaling 

could also be evaluated in AITL. In this sense, PTCL-associated mutant active FYN proteins 

can be effectively inhibited with dasatinib, a multikinase inhibitor with activity against 

ABL1 and SRK kinases supporting a potential role for this inhibitor as targeted therapy (61).
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IL6 and IL21 are key cytokines required for TFH induction and differentiation through a 

STAT3 dependent mechanism, therefore, inhibition of those signals may abrogate TFH 

differentiation and survival. Tocilizimab, an anti-IL6R antibody reduces circulating TFH cell 

numbers and IL21 production in patients with rheumatoid arthritis (110) and IL-21R 

blockade arrested the disease progression and mortality in a mouse model of SLE (111). An 

alternative may be the use of STAT3 specific inhibitors. Thus, Stattic, a specific STAT3 

small molecule inhibitor has been shown to induce apoptosis in Sézary syndrome cells (112) 

and AZD9150, an antisense oligonucleotide inhibitor of STAT3 has been reported to have 

effect in vivo in lymphoma models (113).

CXCL13 determines TFH homing by engaging with the cell surface receptor CXCR5, higly 

expressed in AITL tumor cells. Anti-CXCL13 treatment diminishes the number of germinal 

centers in immunized mice and demonstrates efficacy in models of rheumatoid arthritis and 

multiple sclerosis (114). Currently pre-clinical studies have been initiated with anti-CXCL13 

antibodies (VX5).

Finally, both IDH2 and TET2 mutations can lead to promoter hypermethylation, suggesting 

a potential role for hypomethylating agents as possible therapy for AITL. In this regard, the 

use of hypomethylating agents has already been reported to induce responses in TET2 
mutated myelodysplastic syndromes (115), and a recent case report showed efficacy of 5-

AZT in an AITL patient whose tumor carried a TET2 mutation (116). Additionally, AG-221, 

a small molecule inhibitor targeting mutant IDH2, has shown promising results in AML 

(117), and its use as a targeted therapy in AITL is being currently tested in a clinical trial 

(118). In the case of AITL, the frequent co-occurrence of TET2 mutations in IDH2 mutated 

cases might support the combination of hypomethylating agents with IDH2 inhibitors to 

increase efficacy for targeting AITL (64).

Conclusion

AITLs constitute a group of poor prognosis lymphoma derived from T-cell follicular helper 

cells, a subset of T-cells normally present in germinal centers with a helper function to 

germinal center B-cells. Gene expression profiling has improved the diagnosis and 

classification of PTCLs, demonstrating the association of AITL, as well as a subgroup of 

AITL-like PTCL NOS cases, with a TFH-like gene expression signature. Genomic analyses 

have identified multiple genes frequently mutated in AITL, including mutations epigenetic 

regulators TET2, DNMT3A and IDH2; the small GTPase RHOA gene, and components of 

the TCR pathway, including CD28 and FYN. The process of malignant transformation 

leading to AITL fits a multistep model with pre-malignant mutations in TET2 or DNMT3A 
occurring as initiating events followed by the acquisition of the RHOA G17V or IDH2 R172 
mutation (Figure 1). Significant efforts are underway to develop cell and animal models for 

AITL. These models will provide powerful tools for the study of the pathogenesis of AITL 

and the identification and development of molecularly targeted therapies to treat this disease.
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Key points

• Mutations in the small GTPase RHOA gene, specifically the dominant 

negative G17V allele, are present in over 70% of the patients with AITL and 

almost 20% of PTCL, NOS cases.

• Loss of function mutation in epigenetic regulators TET2 and DNMT3A are a 

frequent event in the pathogenesis of AITL

• IDH2 R172 is the only mutated allele found in AITL, is generally associated 

with TET2 mutations and define a specific subgroup within this disease

• Mutations in elements of the TCR pathway –CD28 and FYN- lead to 

increased TCR signaling in AITL

• The current model for AITL development suggest the existence of a pre-

malignant lesion in the TET2 or DNMT3A epigenetic regulators, followed by 

a secondary mutation in RHOA G17V or IDH2 R172 that results in the 

malignant transformation of mature T-cells with a TFH phenotype.
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Figure 1. Normal development and malignant transformation of TFH cells
TFH cell differentiation is initiated by activation of CD4 naïve T cells by dendritic cells in 

presence of IL6, IL21 and IL12 leading to STAT3/STAT4 activation. Activation of ICOS 

induces the upregulation of BCL6 and CXCR5, allowing them to migrate to B cell follicles 

to induce germinal centers formation. Stimulation of TFH cells and antigen presentation by 

B cells leads to full development of TFH cells, whose mission is supporting B-cells and 

facilitating the generation of long-lived plasma cells and memory B cells. Malignant 

transformation of TFH leads to the development of AITL following a multistep tumor model 

where TET2 and/or DNMT3A mutations would be acquired first, followed by specification 

into the TFH lineage guided by expression of the RHOA G17V mutant and enhanced by 

hyper activation of the TCR signaling pathway. Deregulated expansion and/or function of 

TFH could induce the generation of cytokines (IL4, IL6, IL21 and IL10) which play a 

prominent role in the early stages of lymphoma progression and in setting the abundant 

inflammatory component of AITL tumor lesions.

Rodríguez-Cortés and Palomero Page 17

Curr Opin Hematol. Author manuscript; available in PMC 2017 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Recurrent mutations in AITL
Schematic representation of the structure of the most frequently mutated proteins in AITL: 

RHOA, TET2, DNMT3A, IDH2, FYN and CD28. (Data adapted from Palomero et al, 2014 

(for RHOA, TET2, DNMT3A, IDH2 and FYN) or Wang et al, 2015 (for CD28)).Black 

circles represent amino acid substitutions while open red circles indicate truncating 

mutations. G:GTP/GDP binding domain; Effector: effector interaction domain; NKXD: 

NKXD GTP-binding domain; CAAX: CAAX box prenylation domain; Cys: cysteine-rich 

domain; DSBH: double-stranded beta helix fold domain; PWWP: PWWP domain; PHD: 
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plant homeodomain; Immunoglobulin domain: Ig variable region-like domain CD28 and 

CTLA4; TM, transmembrane domain. L: ligand interaction site; S2: SH2-binding motif; 

pink: S3: SH3-binding motifs; SH3: SH3 domain; SH2: SH2 domain.
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Figure 3. Co-occurrence of frequent mutations in AITL
(a) Analysis of the mutational status of RHOA G17V, TET2, DNMT3A and IDH2 in a 

cohort of 120 AITL (information extracted from published data (61–64)). Each column 

represents a patient sample; each row represent mutations in each of the genes of interest. (b) 

Quantification of the co-occurrence of mutations in RHOA G17V and epigenetic regulators. 

In the column on the right are represented the cases mutated for RHOA G17V, TET2, 

DNMT3A and IDH2 R172; on the upper row the co-occurrence indicated by the number of 

cases on the left category that also carry the mutation in the genes indicated on the top (n) 

and the percentage of co-occurrence calculated from the total number of cases [(%) in bold].

Rodríguez-Cortés and Palomero Page 20

Curr Opin Hematol. Author manuscript; available in PMC 2017 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Targeted therapies in AITL
Schematic diagram depicting pharmacologic agents that target relevant proteins in AITL and 

TFH cells that could be used for personalized therapies against AITL lymphomas.
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