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ABSTRACT

The use of RNA-seq as the preferred method for
the discovery and validation of small RNA biomark-
ers has been hindered by high quantitative vari-
ability and biased sequence counts. In this paper
we develop a statistical model for sequence counts
that accounts for ligase bias and stochastic varia-
tion in sequence counts. This model implies a lin-
ear quadratic relation between the mean and vari-
ance of sequence counts. Using a large number of
sequencing datasets, we demonstrate how one can
use the generalized additive models for location,
scale and shape (GAMLSS) distributional regression
framework to calculate and apply empirical correc-
tion factors for ligase bias. Bias correction could re-
move more than 40% of the bias for miRNAs. Empir-
ical bias correction factors appear to be nearly con-
stant over at least one and up to four orders of mag-
nitude of total RNA input and independent of sam-
ple composition. Using synthetic mixes of known
composition, we show that the GAMLSS approach
can analyze differential expression with greater accu-
racy, higher sensitivity and specificity than six exist-
ing algorithms (DESeq2, edgeR, EBSeq, limma, DSS,
voom) for the analysis of small RNA-seq data.

INTRODUCTION

Technological improvements and rapid reduction in costs
have resulted in the increasing adoption of RNA-seq for
the discovery of small RNAs as extracellular biomarkers
(ex-RNA). The use of RNA-seq as the preferred method
for the discovery and validation of small RNA biomark-
ers can be seriously hindered by high variability (1,2), poor
reproducibility and bias (3–8). In this paper we aim to mit-
igate these issues by developing a statistical model for se-
quence counts (9–19) that is grounded in the physical pro-
cesses of the measurement. By analyzing RNA-seq profiles
from samples of known composition, we demonstrate the

validity of the model. We also show that one can use this
modeling framework to explicitly address and account for
both systematic factors and random variation in RNA-seq
experiments.

We develop this framework in a step-wise manner. First,
we describe a conceptual stochastic model for the hierar-
chy of the distinct steps in an RNA-seq experiment, and the
relatively mild assumptions on which it depends. We then
use this model to demonstrate that the mean and variance
of sequence counts obey a linear quadratic (LQ) relation-
ship. This is a testable prediction, which we validate against
numerous public and novel datasets. Second, we derive the
parametric form for the distribution of sequence counts that
conforms to this LQ relationship. To do so, we consider sev-
eral distinct processes that account for measurement varia-
tion in sequence counts, i.e. sequence-dependent ligase bias,
the stochastic nature of library amplification by polymerase
chain reaction (PCR) and library depth variation in the
sequencing process. We handle these sources of noise and
bias, through a combination of analytical approximations,
stochastic simulations and exact calculation and determine
closed-form expressions for the distribution of counts in an
RNA-seq experiment. A major contribution of our work is
the derivation of a normal probability model for which the
variance is a LQ function of the mean and the negative bi-
nomial law (15,20). Both appear to be accurate, numerically
robust approximations to the underlying, intractable distri-
bution of RNA-seq counts over a wide range of parameters.

These developments lead us to introduce distribu-
tional regression approaches for the analyses of RNA-seq
datasets. In particular, our work highlights the generalized
additive models forlocation-scale-shape (GAMLSS) (21) as
the optimal regression framework for the analyses of RNA-
seq data. GAMLSS allows parametric, flexible and random
effects modeling of both the mean and the variance of the
underlying distribution. Such a flexible approach is required
for the analysis of RNA-seq data, because both the mean
and the variance carry important information and are in-
fluenced by initial RNA species abundance, the sequence
of the RNA species and PCR efficiency. We leverage the
flexibility of the GAMLSS to quantify systematic (ligase)
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Figure 1. Conceptual model of the steps in an HTS experiment. Each of
the n small RNAs present in the original sample (Xi) is ligated with vari-
able efficiency (fi) to generate an adapter ligated sequence (�i). After re-
verse transcription, these sequences are PCR amplified, with potentially
sequence-dependent efficiency (qi), over N cycles to generate amplified
products (LN

1 ). PCR products generate capture probes with probability si,
after variable dilution. These probes are either immobilized on the clusters
in flow-cells or are attached to beads. The abundance of probes that will
eventually detect sequences of the ith small RNA kind (Bi) is determined
by si, which in turn is determined by the dilution factor (d), the number of
probes (K) that are available to capture small RNAs and the relative abun-
dance of the ith species. Upon sequencing by synthesis, each probe may be-
come active to generate a signal with probability r. This signal is converted
to a sequence by the software of the experimental apparatus, so that the to-
tal number of counts from the ith small RNA species is Yi. The sequence
generation probability pi is the probability that a given molecule existing
in the PCR amplified library will generate a sequence entry in the output
of the sequence. This probability encapsulates signal loss due to many fac-
tors, e.g. imperfect capture, signal generation and pre-analytic variability
as described in the text.

bias in the presence of stochastic sources of variation in
RNA-seq experiments. We demonstrate that one can use the
GAMLSS regression framework to derive empirical correc-
tion factors that substantially reduce the bias in RNA-seq
measurements. To do so, we undertake an extensive series of
cross-validation and out-of-sample model validation anal-
yses in public and novel datasets generated by our group.
Finally, we apply our methodology to the problem of assess-
ing differential expression (DE) using libraries of known
composition. We demonstrate that the proposed statistical
framework performs better than six commonly used alter-
natives in terms of accuracy of differential expression (as-
sesses as log-fold expression changes), Type I (false positive)
and Type II (false negative) errors. Consequently, our pro-
posal achieves the optimal balance between a smaller false
discovery rate (FDR) and false omission rate (FOR).

MATERIALS AND METHODS

A multi-step model for RNA-seq experiments

We introduce a conceptual model (Figure 1) for an RNA-
seq experiment and use this notation for the remainder of
this paper. In this model, each RNA present in the original
preparation, whose level is indicated as Xi , is transformed,
with variable efficiency ( fi ) into a barcoded DNA sequence
by the ligation of adapter sequences and reverse transcrip-
tion. The abundance of these sequences (�i) along with the
efficiency of the PCR amplification (qi ) and the number of
cycles (N) determines the amount of the PCR product (LN

i ).

After PCR libraries may be size selected and/or diluted d-
fold and before ‘loaded’ in capture probes in the sequencing
apparatus. We use the term ‘capture probe’ to refer to ac-
tive sites on the surface of the sequencing chip, or the beads
used in emulsion PCR-based technologies. These probes are
responsible for generating a signal after a platform-specific
signal amplification step; e.g. cluster generation in the Illu-
mina platform or clonal amplification by emulsion PCR in
the Ion Torrent workflow. If all the sequences from a single
library were loaded onto probes and all probes generated a
signal, then the depth of the sequence library would be con-
stant and equal to K0. Allowing for random library depths,
leads to additional variation in the total number of reads,
represented by Bi , in Figure 1. This simple model explicitly
includes the major factors affecting the sequence counts of
RNA-seq experiments: library construction and the associ-
ated ligase bias (3–5,7–8,22–23), PCR amplification, library
sampling and depth variation. The focus of this paper is to
derive quantitative relations for each of these factors and
construct a framework for the statistical analysis of varia-
tion and remediation of bias in RNA sequencing data.

Modeling the ligase reaction in the RNA-seq pipeline

The most crucial step in the RNA-seq pipeline is the lig-
ation of adapters to create a library suitable for amplifi-
cation and sequencing. The T4 bacteriophage ligase (24–
29) used for this purpose, catalyzes the formation of 3′-5′
phosphodiester bonds between a 5′ monophosphorylated
RNA donor sequence and a 3′ hydroxylated acceptor se-
quence. This approach for the 5′ adapter ligation is modi-
fied in the case of the 3′ ligation by using pre-adenylated 5′
ends for the 3′ adapters. Irrespective of whether the ligation
of 5′ and 3′ adapters proceeds in two sequential steps (Illu-
mina) or a single step (Ion Torrent), the variable efficiency
of the ligase reaction of 5′ and 3’ adapters, underlines the
bias in RNA sequence experiments. Sequences that are not
efficiently ligated will be under-represented in the sequence
counts relative to sequences of equal abundance that are
ligated more efficiently. Note that even though different se-
quence species have different ligation efficiencies, if the reac-
tions were driven to completion this sequence-specific bias
would disappear.

The overall variation in ligation efficiency over all the se-
quences present in any given sample will depend not only on
the intrinsic affinity of the enzyme for any given sequence
and the reaction velocity, but also on the presence of all
other sequences competing for the enzyme and reaction co-
factors. As we heuristically argue in the Supplement (sec-
tion on Ligase reaction mechanism and kinetics), the com-
plex, reversible three step (25,30–32) ligation reaction mech-
anism can be treated as a single step process by consider-
ing only the reactant limiting steps. The effects of multiple
substrate inhibition may be taken into account by consid-
ering a large population of competitive substrates and the
relatively poor affinity of the ligase for RNA sequences (re-
ported to be in the micromolar range (30,33–38)). These two
considerations and the law of large numbers dictate that the
overall reaction efficiency will be effectively constant over
the range of concentration of RNA sequences and indepen-
dent of the presence of other competing RNA species. The



PAGE 3 OF 23 Nucleic Acids Research, 2017, Vol. 45, No. 11 e104

quantitative argument for this assertion is made in Supple-
mentary Methods, section on Multiple Substrate Inhibition
and Ligation efficiency. We adopt the constancy and sample
composition independence of ligation efficiency as working
assumptions for our methodology of bias correction. These
working assumptions anticipate that sequencing data from
an equimolar mix of fixed composition may be used to es-
timate relative efficiencies that are universally applicable to
all datasets created with the same protocol. Consequently,
one can use these bias correction factors to adjust the abun-
dance estimates, and thus reduce the bias in other datasets
in which these sequences were present in variable amounts.

Modeling polymerase chain reaction (PCR) amplification of
libraries

The accumulation of products during the PCR reaction
may be stochastically modeled by a Galton-Watson (GW)
branching process (39–43). This is a stochastic law that
yields a distribution for the amplified ith product after
Ncycles of PCR (LN

i ) conditioned on the initial abun-
dance; i.e. the output of the ligase-RT reaction �i . De-
spite the analytical intractability of the GW distribution,
p(LN

i |�i ), the relationship between the mean and variance
may be explicitly calculated. In particular, (Supplementary
Methods––Mean and Variance Relationships in stochastic
branching processes for PCR reactions and Supplementary
Figure S1), the variance of PCR products at the N cycle
(σ 2 N

i ) is nearly proportional to the square of the mean (μN2

i )
with the proportionality constant being a function of the
initial abundance (�i ) and the PCR efficiency (qi ):

σ 2 N
i |�i , qi

∼= φiμ
N2

i , φi = 1 − qi

�i (1 + qi )
(1)

μN
i |�i , qi = �i (1 + qi )

N (2)

Martingale arguments (43,44) can be invoked to show
that approximations to the GW process do exist, since the
latter ultimately converges to a random variable. However,
these theoretical results, do not establish the parametric
form of these approximations. Furthermore, this conver-
gence is attained only in the limit of infinite PCR cycles,
and it is not clear that one could find accurate approxima-
tions in the range of amplification rounds, typically used in
RNA-seq experiments (between 10 and 16). In particular,
stochastic fluctuations have led others to use normal (Gaus-
sian) approximations only after 15–20 cycles of PCR am-
plification (40,45). Notwithstanding this literature, one can-
not dismiss the possibility that other distributions may offer
better approximations to the GW distribution relative to the
Gaussian law. To explore this further, we used information
theoretic criteria (Kullback-Leibler divergence) to calculate
the distance (in bits) between the binned histograms from
counts of a simulated GW process and a number of candi-
date distributional approximations (Table 1). In these dis-
tributions, the variance is either proportional to the mean
or is related to the latter in a LQ fashion.

These analyses of our simulations are shown in Supple-
mentary Figure S2A for various combinations of PCR effi-
ciencies and initial abundances. Overall the Gaussian, pro-

vided the best approximation to the GW process than the
other candidates, followed by the Gamma distribution. Of
interest, the Negative Binomial, which implements a LQ
rather than a proportional relationship between the square
of mean and variance, provided a better approximation
than the Inverse Gaussian and the Log-Normal distribu-
tions which obey the LQ relationship. A regression analysis
showed that the higher overall performance of the Gaussian
model could be attributed to its ability to approximate the
GW for small initial abundances (not shown). Since the nor-
mal distribution may assume negative values in this range,
we explored whether truncating this distribution in the pos-
itive numbers may yield an even better approximation than
the normal. Truncating the normal distribution to the non-
negative numbers, provided a better approximation to the
GW process than the normal one for <1000 copies of start-
ing material (Supplementary Figure S2B). For higher abun-
dances and within the range of efficiencies considered in this
work, the difference between the Gaussian distribution and
its truncated version falls below the precision limits of float-
ing point arithmetic and thus are indistinguishable as far
as computer algorithms are concerned. Based on these in-
vestigations, we retained the (truncated) Gaussian with its
variance constrained to be proportional to its mean and the
Gamma distributions as models for the PCR amplification
of adapter ligated RNA libraries.

Modeling library sampling and library depth variation during
sequencing

Due to the finite number of RNA molecules in each library,
the distribution of the counts, i.e. captured RNA numbers
of the ith species is the multivariate hypergeometric distri-
bution. As the typical library contain tens or hundreds of
billions of molecules, while the library depth is usually in
the millions range, library sampling appears to be essen-
tially without replacement. Hence, the hypergeometric dis-
tribution, which corresponds to sampling from a popula-
tion without replacement, should converge to the multino-
mial distribution, which corresponds to a sampling mecha-
nism with replacement. The corresponding (capture) proba-
bilities {s1, s2, · · · , sn} are given by the relative frequency of
the amplified library products:

si = LN
i∑n

j=1 LN
j

(3)

The multinomial model for library sampling on the sur-
face of the sequencing chip/cell, along with the assumption
of a constant ligation efficiency yield a testable hypothesis
about the relationship between the mean and variance of
sequence counts (next section).

A testable linear quadratic law for the relationship between
the variance and mean of counts in RNA-seq experiments.
To derive the relation between the mean and the variance
of the observed counts, we apply the laws of conditional
expectation and variance. In all derivations, we assume we
are working with a platform and experimental protocol, so
that the theoretical library depth and the combined proba-
bility of signal generation/library depth variation are fixed
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Table 1. Candidate distributions that approximate the PCR Galton–Watson process for finite reaction cycles

Mixing distribution Parameterization Probability density function Mean Variance Mixed poisson model

Gaussian (Normal) x ∼ N(μ, σ 2) exp(−(x−μ)2/2σ 2)√
2πσ

μ φμ2 Poisson-Gaussian

σ 2 = φμ2

Gamma x ∼ G A(μ, σ )
exp(− x

σ2μ
)x

1
σ2 −1

�( 1
σ2 )(σ 2μ)1/σ2 μ φμ2 Negative Binomial I

σ 2 = φ

Inverse Gaussian x ∼ IG(μ, σ 2) exp(−(x−μ)2/2μ2σ 2x)√
2πx3σ

μ φμ2 Poisson Inverse Gaussian (Sichel)

σ 2 = φμ−1

Log-normal x ∼ LN(μ, σ 2) exp(−(log x−μ)2/2σ 2)√
2πσ x

exp(μ + σ 2

2 ) φ exp (μ + σ 2

2 )2 Poisson-log-normal

σ 2 = log(φ + 1)

Negative binomial I x ∼ NBI(μ, φ)
�(x+ 1

φ )

�( 1
φ )�(x+1)

( φμ
1+φμ

)x( 1
1+φμ

)1/φ μ μ(1 + φμ) Poisson-negative binomial

quantities which may be conditioned on. Marginalizing the
multinomial sampling model over all other RNA species ex-
cept the ith one and conditioning on the observed library
depth (Kk) and the capture probability, yields a binomial
probability model, e.g. see p-32 ref. (46):

Yi | Kk, si ∼
i id

Binomial (Kk, si ) ≈ Poisson (Kksi ) (4)

The Poisson approximation to the binomial is justified
when si is small. This condition is verified for the vast ma-
jority of RNA species which individually account for only
a small fraction of all total counts. Application of the laws
of iterated expectation and expectation, allows us to relate
the mean (E[Yi |Kk]) and the variance (V[Yi |Kk]) of the se-
quence counts, to the corresponding quantities of the se-
quence probabilities:

E [Yi | Kk] = KkE[si ]

V [Yi | Kk] = KkE[si
]+K2

k V[si
]

A Taylor series argument yields the variance of the se-
quence counts as a LQ function of the mean (see Appendix
A. for the derivation).

V [Yi | Kk] = KkE[si ] (1 + ϕi KkE[si ]) =
E [Yi | Kk] (1 + ϕi E [Yi | Kk]) (5)

In this equation, the factors ϕi , capture the influences
of the PCR reaction (reaction efficiency), the composition
of the initial sample and the varying efficiency (bias) step
in Figure 1, conditional on the inputs, i.e. the outputs of
the previous step in the RNA-seq measurement. The LQ
law and thus its underlying assumptions of multinomial
sampling and constant ligation efficiency may be explic-
itly tested in datasets derived from synthetic RNA mixes of
known composition. In these datasets, there is no biolog-
ical variation and thus the relationship between the mean
and variance of capture probabilities is determined solely
be the effects of ligation and PCR efficiency.

A multinomial law for library depth variation in RNA-seq
experiments. Sampling of PCR amplified libraries dur-
ing RNA sequencing exhibits variability and sequencing
runs yield different total numbers of reads. This variation
in sequencing depth may arise from a number of physical

sources/processes: (i) pre-analytical variation in the library
depth e.g. due to pooling of libraries, loading concentra-
tions or due to quality control issues with the sequencing
chips used to sequence libraries, and (ii) random failure of
the signal (cluster generation in the Illumina platforms or
emulsion PCR on the Ion Torrent beads) amplification from
each capture probe.

We model pre-analytical variation in the k th library se-
quencing depth by a binomial probability law

Kk|K0, t ∼ Binomial (K0, t) =(
K0
Kk

)
tKk (1 − t)K0−Kk =

K0!
Kk! (K0 − Kk)!

tKk(1 − t)K0−Kk (6)

with K0 denoting the maximum (theoretical) library depth
and the probability t, representing the variation in sequenc-
ing depth.

On the other hand, the post-capture failure gives rise to
a ‘multi-hit’ model, in which library size is progressively de-
creased due to multiple modes of failure that operate con-
secutively and independently of each other. For example,
not all active areas in the sequencing chip will capture a se-
quence (or a bead), while functional probe sites may fail to
amplify properly leading to signals that fall below the detec-
tion limit of the sequencing apparatus. Such a multi-hit fail-
ure model may be statistically represented as a chain of con-
ditionally independent binomial processes. In this model, the
number of probes that could potentially fail by a given fail-
ure mechanism, is equal to the number of probes that have
not failed by all other modes of failure up to that point. As
we show in the Appendix to the Supplement (Section B), the
statistical distribution describing this multi-hit model, is a
binomial law. Therefore, the binomial distribution provides
a statistical model for the total variation in library depth
due to combined effects of all modes of post-capture fail-
ure. The parameters of this binomial distribution are the
number of trials in the first node of the chain (e.g. the abun-
dance of Bi probes that have captured the i th small RNA
species) while the overall probability of success (r in Figure
1) is equal to the product of the probabilities of not failing
from each ‘hit’.
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The pre-analytical and post-analytical stages for library
size variation may be combined to yield a composite model
of library depth variation. This hierarchical multinomial
model allows both sources of depth variation to operate in
a given experiment:

Kk| K0, t ∼ Binomial(K0, t)
B1, . . . , Bn| Kk, s1, . . . , sn ∼ Multinomial (Kk; s1, . . . , sn)

Yj
∣∣ Bj , r ∼

i id
Binomial

(
Bj , r

) (7)

The marginal distribution of the observed counts Yj may
be proven (see Appendix Section C in Supplement) to also
be a multinomial distribution. This multinomial distribu-
tion is augmented to include one outcome in addition to the
counts of the individual RNA species sequenced during the
experiment. In particular, this extra outcome corresponds
to the counts that were never observed due to library depth
variation. In any given experiment, the number of occur-
rences of this outcome is equal to the number of ‘missing’
counts i.e., the difference between the theoretical (K0) and
the observed library size (Kk). This augmented distribution
is given by:

Y1, . . . , Yn, Yn+1| K0, p1, . . . , pn, pn+1 ∼
Multinomial (K0; p1, . . . , pn, pn+1) (8)

with Yn+1 = K0 − Kk, pi = t × r × si , i �= n + 1 and
pn+1 = 1 − t × r . As the probabilities t, r appear in these
equations only through their product, we can absorb the
former into the latter by redefining the signal generation
probabilities in Figure 1 as r = t × r .

Mixed Poisson distributions for sequence counts in RNA-seq
experiments

To derive a distribution of counts that is not conditioned on
the library depth, we marginalize the latter variable (K0) out
of (Equation 8). It is well known that this marginal distri-
bution is the product of independent Poisson random vari-
ables (see page 32 in (46)); the key parameter of each of these
distributions is equal to pi × LN

i for all RNA species, with
LN

i the total size of the PCR amplified products after the
Nth PCR cycle. The parameter for the number of ‘missing
counts’ is equal to the total size of the PCR amplified li-
brary, K0 − ∑n

i = 1 LN
j , multiplied by the probability pn+i .

Marginalizing the ‘product of independent Poisson’s’ over
the number of unobserved counts, yields the following sta-
tistical model for the observed counts:

Yi |pi , LN
i ∼

i id
Poisson(pi LN

i ) = (pi LN
i )Yi

Yi !
e−pi LN

i (9)

This equation now defines an exact model for sequence
counts that does not depend on the library size and is pa-
rameterized by the absolute abundances (LN

i ). On the other
hand, the corresponding model that conditions on library
depth (Equation 4) , is an approximate relation that depends
on the capture probabilities. A statistical expression for the
observed counts that conditions on the abundances of the
various species after the ligation reaction (�i ) may be ob-
tained by using (Equation 9) to marginalize the joint distri-

bution of Yi and LN
i :

p(Yi |pi ,�i ) =
∫

p(Yi |pi , LN
i ,�i )p(LN

i |�i )dLN
i =

∫
p(Yi |pi , LN

i )p(LN
i |�i )dLN

i (10)

Integration of this equation using any of the candidate
approximate distributions for the GW process, p(LN

i |�i ),
listed in Table 1 yields a mixed Poisson model (see sections
8.3 and 11.1 of Johnson et al. (47) and the survey by Kalis
and Xekalaki (48) for a thorough discussion of mixed Pois-
son models). Therefore, these distributions (last column in
Table 1) define alternative models for analyzing RNA-seq
data. In this work we focused on the (truncated) Gaussian
model which provided the best approximation to the GW
process and the corresponding mixed Poisson model (as de-
termined by simulations).

A re-interpretation of the Negative Binomial Model and in-
troduction of the LQ normal family for RNA-seq data. As
the truncated normal mixed Poisson model is a rather in-
volved distribution to implement in software, we under-
took a series of numerical investigations to find accurate ap-
proximations within the range of parameters that appear to
be relevant for RNA-seq experiments. These investigations
(detailed in Supplementary Methods: Numerical Approx-
imation to the truncated Normal mixed Poisson distribu-
tion), show that either the NBI (as defined in Table 1) or
the LQ Normal family defined as:

Yi ∼
i id

LQNO(μi , φi ) = exp(−(Yi − μi )
2
/2σ 2

LQi
)√

2πσLQi

,

σ 2
LQi

= μi (1 + φiμi ) (11)

can provide numerically accurate approximations (within
5–7 decimal digits, Supplementary Figure S3) to the proba-
bility mass function of the truncated normal mixed Poisson
distribution (47,48). For all practical purposes, truncation
of the mixed Poisson does not contribute substantially to
the numerical accuracy of calculations involving the distri-
bution of sequence counts, even if one starts with an ini-
tial abundance as low as three molecules. The attenuated
impact of range truncation on the accuracy of approxima-
tion to the distribution of counts (i.e. less than three copies),
compared to distribution of PCR products (<1000 copies)
is due to the mixing operation in (Equation 10). The advan-
tage of the truncated normal relative to its untruncated ver-
sion and the Gamma, which lead to the LQNO and the NBI
distributions respectively, is effectively lost for abundances
<1000 copies because of integration. The NBI distribution
appears to yield a numerically superior approximation for
smaller signal generation probabilities, while the LQNO will
also do so for higher values of this probability (Supplemen-
tary Figure S4) and higher mean values. When either dis-
tribution is used to analyze sequence data, it should be em-
phasized that the μ parameters are the means of the GW
process in (Equation 2) multiplied by the signal generation
probability (r ), while the dispersion parameters are defined
as in (Equation 1).
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Figure 2. Structure of regression models for RNA-seq data. Each RNA-
seq profile implicitly defines two simultaneous models for the Location (μ,
mean sequence count) and a Scale (φ, the dispersion parameter). Each of
these two sub-models assumes a modular additive structure in log-space
(squares in the figure).

Distributional regression frameworks for the analysis of
RNA-seq data

Each RNA-seq profile implicitly defines simultaneous mod-
els for the mean and the standard deviation of sequence
counts through either the NBI or the LQ Normal family.
Stated in other terms, these are models for the ‘Location’
(μ,, i.e. the average) and the ‘Scale’ (φ, the dispersion pa-
rameter which describes the variation around the average)
of the underlying distributions. Both parameters may be di-
rectly related to study design, biological and technical fac-
tors that operate at the level of the ligase or PCR reaction
and the sequencing run (Figure 2). On the logarithmic scale,
both location and scale models assume a linear, additive
form.

The composite, regression model for both location and
scale parameters may be estimated with methods for
GAMLSS (21,49). These distributional regression models
allow the analyst to specify regression models for all param-
eters of a given underlying distribution, not just the mean.
The distributional GAMLSS regression models for the se-
quence count of the ith RNA species from the jth sequenc-
ing dataset may be expressed as:

Yi, j ∼
i id

NBI(μi, j , φi, j ) or Normal(μi, j , μi, j (1 + φi, jμi, j ))

log μi, j = log Xi + log Qi, j + log fi + log r j
−log φi, j = log Xi + log Q′

i, j + log fi

(12)

The Qi, j and Q′
i, j terms appearing in (Equation 12) corre-

spond to the non-linear PCR efficiency functions appearing
in Figure 2. An obligatory term for these regression mod-
els is the incorporation of run-specific effects to account
for global factors that affect the average expression (and
the variance) of the counts of all sequences identified in
the same library. These factors capture the variation in li-
brary depth (the r j terms), but also the effects of sequence-
dependent variations in PCR efficiency. In this work, we
constrained parameters that admit a group interpretation
(e.g. the Xi , fi ), to conform to the normal distribution.
This constraint allows for shrinkage estimation, a feature
of almost all analytic approaches to RNA-seq data to date

(16,20). Shrinkage analysis corresponds to the Gaussian
random effects model which apriori constrain the estimates
to be symmetrically distributed around their mean. Shrink-
age estimation allows one to combine information among
observations, to estimate parameters with limited number
of samples. This is particularly important given the relative
small number of observations (number of libraries in an ex-
periment), relative to the number of parameters (expression
values of distinct RNA species) that have to be estimated
during the analysis of an RNA-seq dataset.

The linear additive form (in log-space) of GAMLSS
models such as (Equation 12) is not completely identi-
fiable, unless additional, working assumptions are made.
Non-identifiability concerns two different sets of parame-
ters in (Equation 12): the PCR amplification factors Qi, j
with the signal generation probabilities r j and the initial
RNA amounts, log Xi , with the ligase bias, log fi . Non-
identifiability implies that one cannot learn the true value
of certain parameters, even if one had access to an infi-
nite number of observations (see p523 in (50) for a techni-
cal definition of statistical identifiability). Under our work-
ing assumption of Qi, j = Q j , Q′

i, j = Q′
j we can address the

first source of non-identifiability by re-parameterization; i.e.
setting Q j = Q j × r j . We assume here that all RNAs se-
quenced in the same library are amplified with the same
efficiency. This leads to an identifiable model, because the
product of the two parameters (sum in log-space) is then
uniquely identifiable from the data of a given run, as the av-
erage expression value of all RNAs sequenced in that library
run.

The lack of correspondence, or identifiability, between
the RNA abundance and the ligase efficiency is a more
serious issue because it cannot be addressed by either re-
parameterization or even non-linear modeling. Due to the
lack of identifiability, regression modeling based on (Equa-
tion 12) (or for that matter any of the existing approaches
for the analysis of RNA-seq data), will be estimating the
product (or sum in log space) of the initial abundance and
the ligase efficiency for any given sequence. This intrinsic
lack of identifiability can only be addressed through exper-
imental protocol (e.g. devise a protocol that eliminates bias
by driving the ligase reaction to completion for all RNAs)
or by bringing additional data into the analyses as we dis-
cuss below.

Accounting for sequence-dependent ligase bias in RNA-seq
datasets using equimolar mixes of RNAs

A critical application of the distributional GAMLSS regres-
sion model is the quantification of sequence-specific ligation
biases by analyzing data obtained from equimolar mixes in
which the specific sequence was present. In these equimo-
lar mixes the Xi ’s are all equal (to a close approximation),
and their common value may be set to any constant: e.g.
to unity so that the logarithms are zero. In such a case, the
regression model will be directly estimating the sequence-
specific parameters, log fi , corresponding to ligase bias. In
random effects GAMLSS models, these empirical bias cor-
rection terms correspond to variations around an average
expression in a sequencing run. Once these empirical bias
correction terms have been estimated from a reference RNA
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dataset, they can be used to correct for the presence of se-
quence specific bias in other experiments. To do so, one has
only to incorporate the values of the log fi factors estimated
from the equimolar mix as known quantities (‘offsets’) prior
to fitting the GAMLSS model. By doing so, one forces the
resulting regression to estimate the abundance of any given
sequence as if the bias was not present. Such an approach
statistically corrects for ligase efficiency and sequence de-
pendent bias through an external calibration dataset. This
is a direct extension of the idea of sequence dependent cor-
rection factors that were previously proposed for the raw
sequence count data in RNA-seq (4). Thus, full correction
leading to accurate quantitation is possible, but only if one
has a reference RNA run with the same protocol so that
the values of kinetic parameters in the model for ligase bias
apply exactly.

Distributional regression models for the analysis of differen-
tial expression

The extension of the proposed framework to the analysis
of DE is straightforward. The two regression submodels in
(Equation 12), are augmented to account for differences in
the abundances between experimental conditions. In this
model, the mean parameter of the ith sequence, from the
jth experiment in the kth experimental condition, may be
written as a function of the fold expression change of that
sequence (�i,k) in that state relative to the (log-)expression
against the referent state (log μi,0):

log μi, j,k = α + �k + mi,0 + δi,k

mi,0 ∼ Normal(0, σ 2
μ0

)
δi,k ∼ Normal(0, σ 2

k )
(13)

This is a flexible approach that can readily accommodate
global differential changes in expression level (�k) that shift
the expression level of every sequence by the same amount,
while allowing sequence-specific variations (δi,k) around this
pattern by random effects modeling. In this model, the in-
tercept term, α, stands for the mean of the counts in the
referent group. Sequence-specific variation in the observed
counts of the referent group around the mean is captured
by the mi,0 terms. This formulation makes two implicit as-
sumptions, i.e. that the ligase bias is not of primary interest
in DE analysis, while technical variation in PCR efficiency
and sequence generation probabilities is of substantially
smaller magnitude than other sources of variation in expres-
sion counts (e.g. ligase bias or even biological variability).
The first assumption allows us to absorb the ligase bias fac-
tors, log fi , into the mi,0, facilitating the calculation of DE
(fold-changes) even for sequences for which these factors are
not available from equimolar calibration runs. The second
assumption leads to the absorption of an experiment wide
factor (the Q in (Equation 12)) into the intercept term. The
parameters of (Equation 13) are directly related to those in
(Equation 12) and in fact may be derived from them after a
suitable re-parameterization as detailed in the Supplement
(Section on distributional regression models for the analy-
sis of differential expression). An equivalent expression may
be recovered, mutatis mutandis for the sub-model of the
log φi, j,k parameter. The use of the logarithmic link simul-

taneously satisfies the constraints of positivity of sequence
counts and their variance, while ensuring compatibility with
existing approaches for DE analysis, which also model the
relative log-expression. The GAMLSS model comprised of
the two sub-models for log μi, j,k log φi, j,k parameters of ei-
ther the NBI or the LQNO distribution is the cornerstone
of our approach to DE analysis. Our model, fits all relevant
parameters jointly. As we detail in the ‘Software’ section,
model estimation may be accomplished using available soft-
ware and from different statistical perspectives.

Our approach to DE analysis was compared with six pop-
ular algorithms for the analysis of RNA-seq data (DESeq2
(20), edgeR (15,51), EBSeq (52), DSS (10), limma (53) and
voom (19)). Similar to our approach, these methods rely
on shrinkage and random effects modeling to estimate DE.
They also make specific assumptions about the underlying
distribution based on either the Negative Binomial or the
normal laws. However, they differ from ours with respect
to the interpretation of parameters and numerical estima-
tion procedures. We also considered a recently introduced
method of DE based on the cubic root (CR) transforma-
tion of the raw counts to normality, followed by the t-test
(54). Similar to our method, the CR approach works on a
(transformed) scale of absolute counts, rather than model-
ing counts as fractions of the observed library depth. How-
ever, the CR method makes a different distributional as-
sumption for the counts, i.e. it assumes they follow a gamma
distribution rather than the NBI or the LQNO family we
use. Furthermore, it analyzes each short RNA species in
isolation, rather than considering the totality of the expres-
sion profile via shrinkage estimation. We used our datasets
of known composition to compare the algorithms under the
following scenarios of DE: (i) clustered symmetric DE (frac-
tion of overexpressed sequences equal to that of underex-
pressed) without a change in the global expression (one sce-
nario) (ii) clustered asymmetric DE, in which the aggregate
DE changes directionally, thus shifting global expression
compared to the referent state (three scenarios) (iii) DE in
which all RNAs exhibit a variable but consistent directional
change in expression (one scenario) (iv) no differential DE
at the group level but with variable expression levels in the
experiments within each group. The last scenario is com-
posed of a bootstrap of 200 comparisons from the equimo-
lar validation datasets. In each of these comparisons, we em-
ployed a stratified re-sampling strategy to ensure that the
two artificial groups compared, include an equal number
(n = 4) from each of the four equimolar series. In this sce-
nario, there was no overall, inter-group difference in the ex-
pression of each of the 286 miRNAs, despite the large intra-
group difference (spanning three orders of magnitude) in ex-
pression of the sequence counts analyzed.

Datasets

As we are concerned here with the derivation of the sim-
plest statistical model that recapitulates technical sources of
variation in RNA-seq experiments, we analyzed data from
synthetic RNA samples of known composition. The known
composition of these samples provides a ‘ground truth’,
within the limits of accuracy of mixing RNA oligonu-
cleotides, against which to assess model predictions. We
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considered two public datasets of microRNA (miRNA)
equimolar mixes from the studies of Hafner et al. (3) and
Fuchs et al. (7) and the sequencing experiments utiliz-
ing synthetic 21-mer oligos by Sorefan et al. (8). These
datasets, totaling 52 sequencing runs of 18 distinct com-
binations of ligation reaction settings, adapter sequences
and sequencing platforms have clarified important quanti-
tative points about the nature of sequence-dependent lig-
ase bias. Consequently, our re-analysis provides an oppor-
tunity to quantify bias with the methodologies developed
here and provides a benchmark for bias reduction. We sup-
plement these datasets by our own sequencing data of syn-
thetic small RNA mixes based on a protocol that random-
izes the sequence of the four nucleotides adjacent to the
ligation junction (4N protocol––detailed in Supplementary
Methods). These comprise 32 legacy experiments with dif-
ferent amounts of starting material, ranging from 0.1 or 10
fmole, from the same 962 (miRXplore; Miltenyi Biotec) mix
used in the report by Fuchs et al. (7). These publicly avail-
able and legacy internal development datasets cover a wide
range of library protocols and sequencing apparatus. We
used these diverse datasets to test predictions about the re-
lationship between mean and variance of sequence counts
and to undertake an initial exploration of the performance
of the bias correction factors over a limited range of in-
put RNA concentrations. To verify the performance of bias
correction factors and the transferability of these factors
across datasets of variable total input (over four orders of
magnitude) and composition we designed a custom valida-
tion dataset with the 4N protocol. For these experiments,
RNA inputs were pools of 962 (miRXplore) or 286 custom
synthetic RNA oligos (from IDT). These two pools share
197 miRNAs affording us the opportunity of comparing
the magnitude of bias reduction when an equimolar mix
of different composition than the target sample is used to
estimate correction factors (e.g. bias correction in the 286
pool when correction factors are based on the miRXplore
and vice versa). The availability of these two pools enables
the comparison of expression values for miRNAs that were
common to both pools against those that were present in
only one of them. This comparison not only served as an
internal control of bias correction, but also allowed us to as-
sess the practical implications of incorporating bias correc-
tion factors for only a subset of RNAs, i.e. those that have
been included in the reference sample. The known compo-
sition of the validation libraries, also enabled us to assess
the potential of different approaches to generate unbiased
measures of DE and their intrinsic FDR (false positives)
and FOR (false negative). Each library was prepared using
between 0.1 femtomole and 100 femtomoles of total RNA
input. Pools were either equimolar or ratiometric mixes as
indicated in Supplementary Table S1, yielding a total of 58
sequencing experiments in 7 groups. Libraries construction
was done in three batches and the identity of the samples
(miRXplore versus 286 and ratiometric versus equimolar)
were randomly allocated to each batch so as to ensure that
drift in laboratory practice or equipment performance did
not bias the data. All 58 libraries were sequenced together.
We also assessed the sensitivity of our method for DE anal-
ysis to sequencing noise, by resequencing all libraries a sec-
ond time.

Statistical and numerical analyses

We undertook stochastic and numerical simulations to clar-
ify points that were not amenable to analytical arguments,
e.g. the approximation of the distributions of PCR ampli-
fied libraries and the distribution of RNA-seq count data by
more tractable distributions. We provide the details of these
simulations in the Supplementary Methods. We used the
means and standard deviations in reporting raw data, while
regression model estimates are reported together with each
associated 95% confidence intervals. We adopted a Bayesian
approach to calculate the Kullback-Leibler distance in bits
between the exact (simulated GW process) and the approx-
imate PCR models. This approach takes a flexible, Dirich-
let prior on the expected counts in the binned histograms
for each distribution prior to calculating the distance (55).
Binning was necessary for the comparison of samples from
unbounded distributions that are discrete (NBI) or con-
tinuous (Gaussian, Log-normal, Gamma) against the dis-
crete, bounded GW process which has a finite range. We
assumed a moderate number of bins (50) over the range
of values compatible with the GW model for a given ef-
ficiency, number of cycles and initial PCR abundance; i.e.
1 to Xi (1 + qi )N.

We applied Monte Carlo Cross Validation (56,57) to as-
sess the effects of bias correction in the publicly available
and legacy datasets. In this procedure, we replicated 200
analyses workflows, in which two-thirds of each of these
experiments were used for development, while a third were
held back for validation. The values of the factors were es-
timated in the development subset and were used to cor-
rect the validation subset. We used empirical measures of
variance (58,59) for the assessment of the effects of bias
correction using the methods proposed in this paper. The
Root Mean Square Error (RMSE), i.e. the square root of
the mean squared difference of estimated expression values
from their true (expected) value, quantifies the variability of
ligase bias for RNAs of known abundance. In the equimo-
lar experiments, analyzed under a shrinkage model that ref-
erences all expression value to the mean, the true expres-
sion value is zero. For the ratiometric series, we used the
group average of all RNAs with the same concentration as
a proxy of the true expression value. For both equimolar
and ratiometric experiments, the RMSE coincides with the
sample standard deviation of the squared residuals. For the
RMSE calculation, we used the GAMLSS estimates derived
from models that incorporated bias correction and com-
pared them against those of models that did not incorporate
these terms. Statistical comparison between the RMSE was
undertaken via means of non-parametric tests for the equal-
ity of these standard deviations (60): the Fligner-Killeen
(FK) statistic that tests for equality and the Ansari-Bradley
(AB) procedure for testing the hypothesis that the variabil-
ity of expression values corrected for bias is smaller than
that of the uncorrected values. As the RMSE may not be
robust in the presence of outliers, we also calculated alter-
native measures of variability (58) of expression values cor-
rected for bias: the Mean Absolute Deviation (MAD) and
the Mean Absolute Deviation from the Sample Median. As
a final assessment of bias correction, we constructed em-
pirical, cumulative distribution functions (ECDF) from ei-
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ther bias-corrected or uncorrected values. We compared
the ECDF curves for equality using the non-parametric
Kolmogorov Smirnov (KS) test. Furthermore, we used the
ECDF to compute the probability of observing expression
values within 2-fold of the mean (P2F) and the range of val-
ues in which 95 and 99% of expression values are expected
to lie. These metrics provide a quantitative measure of the
order of magnitude of bias reduction afforded by correction
factors.

Comparison of bias correction factors estimated from
different equimolar samples, or estimates of RNA expres-
sion corrected by different reference samples (e.g. correcting
the miRXplore via the 286 and vice versa) was undertaken
via ‘errors-in-variables’, measurement-error least squares
models (61,62). In this statistical procedure, both the or-
dinate and the abscissa are assumed to be approximately
known (“measured with error”) and the best line fit is ob-
tained by estimating the relevant error terms and the corre-
lation between the two quantities.

The RMSE was used to assess the bias of model estimates
in the scenarios of DE we considered. Each of these sce-
narios implies the presence of one to four clusters of differ-
entially expressed short RNAs, with fold-changes spanning
between less than one and up to six orders of magnitude.
We used unsupervised, model-based clustering techniques
(Gaussian mixture models (63)) to visualize the potential of
competing methodologies to resolve these clusters. We as-
sessed the Type I and Type 2 error by analyzing P-values of
the Wald test generated by each of the competing method-
ologies in sequencing experiments involving the 286 pool. In
these analyses, the outcome was a P-value <0.05 and the es-
timated proportion of rejecting tests (datasets without DE
expression) and non-rejecting tests (datasets with DE ex-
pression) was taken as a measure of Type I and Type II er-
ror respectively. We applied generalized logistic regression
to account for dependencies among statistical tests involv-
ing the same datasets. We used these estimates to assess the
FDR and FOR implied by the Type I and Type II error in
future applications, over a range of probability of truly dif-
ferentially expressed RNAs and different p-values thresh-
olds of significance by bootstrapping these regression mod-
els.

Software

We used the multi-threaded 64-bit Microsoft R Open 3.2.3–
3.3.1 for the simulations of the GW PCR process and the fit-
ting of the GAMLSS models described in the text. Calcula-
tion of information theoretic measures of distance between
the simulated and the approximate PCR models was car-
ried out with the package entropy (64) (v. 1.2-1). Errors-in-
variable regression was carried out via the R-package leiv (v.
2.0-7) that implements a Bayesian approach for this prob-
lem (65). Flexible parametric, data-driven smoothing of
mean-variance scatterplots were performed with the pack-
age mgcv (66) (v. 1.8-10). Gaussian mixture modeling was
undertaken with the package mclust, v5.2 (63,67).

We provide two implementations of the statistical
methodologies, a native R, reference implementation that
can be used with the gamlss (49) package and a much faster
hybrid C++/R version for the package TMB (68). The for-

mer version, takes advantage of the Cole-Green, CG, (69)
and Rigby-Stasinopoulos, RS, (21) algorithms to maximize
the penalized log-likelihood implied by the regression mod-
els for ligase bias estimation (Equation 12) and DE analysis
(Equation 13). These are iterative algorithms that maximize
the likelihood either jointly (CG) or by alternating between
the two submodels (RS) until convergence. The reference
implementation is based on a mature approach to distribu-
tional regression which supports a wide variety of linear and
even non-linear regression models (such as neural networks)
but suffers from a major drawback: accurate calculation of
standard errors of model estimates, as required for calcu-
lation of P-values for DE is extremely slow. The computa-
tional bottleneck is rather severe (e.g. the algorithm did not
finish even after 15 h of execution on a high end overclocked
processor running a multi-threaded version of R). Even
though one can obtain approximate answers from this im-
plementation very quickly (a few seconds), the levels of Type
I error high FDRs are unclear for these approximations. We
therefore, re-implemented the models implied by (Equation
12) and (Equation 13) in C++ and interfaced them with
the TMB package. The latter uses the Laplace approxima-
tion to integrate the random effects in (Equation 12) and
(Equation 13) out of the penalized log-likelihood; algorith-
mic differentiation (AD) of the C++ source code is used for
the fast, accurate calculation of the high-dimensional Hes-
sian function (the second-order partial derivative of the log-
likelihood with respect to model parameters) as required to
obtain the standard errors and P-values. The estimates pro-
duced by the TMB implementation (gamlssAD) are numer-
ically nearly identical to the those produced by the gamlss
reference implementation despite the difference in estima-
tion algorithms.

RESULTS

The LQ mean and variance relationship in small RNA-seq
datasets

We examined the mean and variance relationship in se-
quencing experiments involving synthetic oligonucleotide
mixes of defined (equimolar) composition. When such mix-
tures are sequenced and analyzed, the observed count vari-
ation is entirely due to technical factors, providing thus an
opportunity to empirically validate the LQ relation. The LQ
curve implied by (Equation 5) is superimposable (Figure
3) to the curves predicted by smoothing regression mod-
els (70,71). The latter, smooth the mean-variance scatter-
plots in a data-driven fashion without assuming a particu-
lar, parametric form for this relationship. There is substan-
tial visual agreement between the model based LQ estimate
and the data-driven spline estimates. This agreement was
also noted in our internal legacy datasets (Supplementary
Figure S5). The degree of agreement is remarkable when
one considers the difference in the degrees of freedom of
the LQ (one) and the penalized spline fits (estimated as ∼3
by the smoothing process). These analyses strongly support
our argument for a LQ relationship between mean and vari-
ance of counts, and are compatible with our model of con-
stant ligation efficiency and multinomial sampling of am-
plified libraries.
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Figure 3. Modeling of mean––variance relationship in 18 different RNA-seq experimental combinations (total of 52 RNA-seq libraries) involving different
ligase enzymes, adapter sequences and measurement platforms from three different published series. Blue curve: linear––quadratic fit, Red curve: smoothing
regression model fit. These parametric curves are superimposed to flexible smoothing splines that were fit to the same data with smoothing regression models
(red). Data from: Hafner et al. (3) (A), Fuchs et al. (7) (B) and Sorefan et al. (8) (C). Refer to the original publications for the abbreviations used in subplots.

GAMLSS and sequence-dependent, ligase bias

Analysis and correction of (sequence-dependent) ligase bias
in development datasets. There was considerable bias in
the publicly available equimolar datasets of Hafner et al.
(3), Fuchs (7) and our legacy, 4N protocol datasets (Figure
4). GAMLSS estimates of abundance (relative to the mean)
that were not corrected for bias, were variable and spanned
more than three orders of magnitude; this is shown in Fig-
ure 4A which graphs the model estimates (red dots) and
the associated 95% confidence intervals. Monte Carlo Cross
Validation (MCCV) bias corrected values (blue dots) were
much more tightly clustered around their expected value of
zero, than the uncorrected ones. As shown in Table 2, bias
correction reduced variability by more than 81.5% (RMSE)
or 73.4% (MAD). Simultaneously, the percentage of miR-
NAs with expression that varied up to 2-fold from the mean,
was increased to more than 99.8%. Furthermore, the range
of expression values spanned by 95 and 99% of the short
RNAs in these experiments was reduced by more than 1

and up to 2.2 orders of magnitude respectively (Table 2).
These quantitatively significant reductions in bias were also
highly statistically significant (p-values for the FK, AB and
KS statistics were computed as <10−308).

We noted similar reductions in bias in our legacy equimo-
lar 4N datasets. These experiments, shown in Figure 4B,
demonstrate that bias correction factors may be applied to
datasets in which the total RNA input varies by an order
of magnitude from the RNA input of the experiment one
would like to correct. When the correction factors from the
two legacy 4N datasets were examined, it was noted that
they were not only highly correlated (Pearson correlation
coefficient of 0.98), but they were nearly identical in mag-
nitude (Figure 4C). Similar to the MCCV experiments, the
empirical factors resulted in bias correction that exceeded
72%, a proportion of short RNAs that differed up to 2-fold
from their mean that was greater than 98% and reduction
of the 95 and 99% range of values of more than 1.5 and two
orders of magnitude respectively (Table 2).
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Figure 4. Effects of bias correction in the publicly available and internal-legacy datasets. (A) GAMLSS estimates for the log expected abundance of each
miRNA (red dot) ± prediction standard error (black lines) in the equimolar Hafner (pool A), Fuchs (miRXplore 962 pool) and one of our legacy miRXplore
4N runs. (blue dots––estimated in 200 samples of Monte Carlo Cross-Validation). (B) Effects of bias correction over a 10-fold range of initial abundance
in the miRXplore pool. Correction of the 1 fmole run with the bias factors from the 10 fmole one (upper right) and vice versa (bottom left). Uncorrected
runs are shown in the top left and bottom right for the 1 fmole and 10 fmoles runs respectively. (C) Histograms (diagonal plots), correlation coefficient (top
right) and linear errors-in-variables regression (bottom left) between the correction factors estimated in (B). (D) Effects of bias correction in the ratiometric
(Pool B) dataset reported by Hafner et al. (3). Bias correction factors were derived from the equimolar run (Pool A) in the same publication. The figure
shows the means and prediction standard deviations of the raw counts (in log 10 space), followed by the GAMLSS estimates without application of a
sequence-specific bias correction term (second panel). The third panel shows the effects of bias correction. The solid black line and gray band indicate the
average expression and the associated 95% interval calculated by a fixed effects meta-analysis for the group mean.
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Table 2. Effects of bias correction in publicly available and legacy 4N development datasets

RMSE MAE MAD Prob(2-fold) 95% Range 99% Range

Dataset Correction factor dataset Corr. Uncor. Corr. Uncor. Corr. Uncor. Corr. Uncor. Corr. Uncor. Corr. Uncor.

Hafner A HafnerA† 0.034 0.331 0.019 0.245 0.021 0.297 1.000 0.717 0.105 1.293 0.261 2.036
Fuchs Fuchs† 0.066 0.507 0.051 0.412 0.061 0.537 0.998 0.420 0.256 1.830 0.351 2.482
0.1 fmole/4N-4Nv3/PEG25 0.1 fmole/4N-4Nv3/PEG25y 0.066 0.356 0.051 0.222 0.061 0.230 0.998 0.793 0.256 1.225 0.351 2.542
1 fmole/4N-4Nv1/PEG20 10 fmoles/4N-4Nv1/PEG20 0.098 0.558 0.069 0.418 0.077 0.524 0.989 0.423 0.405 2.136 0.643 3.570
10 fmoles/4N-4Nv1/PEG20 1 fmole/4N-4Nv1/PEG20 0.121 0.521 0.097 0.379 0.129 0.455 0.985 0.491 0.449 1.985 0.612 3.323
Hafner B Hafner A
Subpool 1 0.113 0.412 0.081 0.292 0.092 0.333 0.979 0.646 0.451 1.649 0.689 2.334
Subpool 2 0.131 0.316 0.089 0.240 0.120 0.296 0.973 0.713 0.392 1.174 0.811 1.667
Subpool 3 1.121 0.653 0.296 0.342 0.189 0.421 0.774 0.585 1.233 1.509 2.721 2.636
Subpool 4 0.762 0.603 0.464 0.450 0.530 0.791 0.405 0.441 1.957 2.296 5.909 3.278

The column ‘Corr.’ gives the metric for the corrected estimate for each series (column ‘Dataset’) using the correction factor from the series listed under the column ‘Correction factor dataset’. Column
‘Uncor.’ tabulates the uncorrected estimate for each dataset. P-values for the Flinger-Killeen, Ansari and Kolmogorov Smirnov tests for the comparison of variability reduction were all <0.001 with the
exception of subpool 4, where values of 0.56, 0.68 and 0.081 were obtained † Correction factors in these datasets were derived by Monte Carlo Cross Validation (MCCV).

To assess the performance of empirical bias correction
over four orders of magnitude we applied the correction fac-
tors from the Hafner A pool to the ratiometric Hafner B
pool, in which the miRNAs were mixed in different ratios
prior to sequencing. Application of bias correction factors,
appear to result in reductions in bias over two (and possi-
bly three) orders of magnitude of initial RNA abundance
(Figure 4D). Quantitative analyses of the same data, (Table
2), demonstrated that these initial impressions held across
the range of metrics used to assess bias reduction for the
two lower dilutions, and for the third higher dilution when
robust measures (such as the MAE and MAD) were consid-
ered. On other hand, no appreciable reduction in bias was
effected for the RNA molecules that were present in the low-
est initial amount (higher dilution) in the sample. This was
verified statistically by the results of the FK, AB and KS
tests (Table 2).

This bias reduction may have implications for down-
stream analysis: when we analyzed the means and standard
errors of the relative expression changes from the miRNAs
in each dilution group with a meta-analysis model, we ob-
tained tighter confidence intervals as we shifted from raw
sequence counts to model estimates and bias corrected ones
(Figure 4D). This indicates that one may use the GAMLSS
approach and bias correction factors to gain precision in
discerning (group) level differences in expression of small
RNAs. Application of bias correction factors, also allow
one to recover the underlying expression profile, comprised
of four well separated peaks (Supplemental Figure S6A) rel-
ative to the raw, uncorrected data or gamlss model estimates
without bias correction.

In summary, the analyses of the public and legacy 4N de-
velopment RNA-seq datasets, demonstrate that empirical
correction factors may reduce bias by more than 70% for
RNAs with expression levels that are up to two (and pos-
sibly three) orders of magnitude less than the most abun-
dant RNAs in the sample. Furthermore, the values of cor-
rection factors appear to be constant over one order of mag-
nitude of difference in the RNA input between the equimo-
lar datasets used to estimate them and the equimolar dataset
they are applied to.

Analysis and correction of (sequence-dependent) ligase bias
in validation datasets. In the validation (4N) dataset, em-
pirical correction factors considerably decreased bias in
equimolar experiments over four orders of magnitude of

RNA input (Figure 5A). Bias reduction (assessed by any of
the metrics) was highest when the dataset used for the cal-
culation factors, differed up to an order of magnitude for
the dataset that was corrected (Supplementary Table S2).
In particular, RMSE was reduced from 77–90% in these
equimolar analysis scenarios. Even when the RNA input in
the correction dataset differed from the dataset to be cor-
rected by three orders of magnitude, the percentage reduc-
tion in the RMSE was between 54% (correction of the 100
fmoles dataset by the 0.1 fmole) and 67% (correction of the
0.1 fmole dataset by the correction factors estimated from
the 100 fmoles dataset). The predicted concentration inde-
pendence and near constancy, of the bias correction factors
were also verified in the validation 4N dataset over four or-
ders of magnitude of RNA input (Figure 5B). Neverthe-
less, correlation between correction factors estimated from
two equimolar series was highest when these differed by no
more than one order of magnitude. Correlation was lowest
(but still substantial) between correction factors estimated
from runs with RNA input that varied over three orders of
magnitude (e.g. it was 0.86 between the 0.1 and 100 fmoles
groups). There was high numerical agreement between the
correction factors estimated in these four series. In particu-
lar, correction factors from runs with RNA input that var-
ied over one order of magnitude (first graph in second row,
second graph in third row and third graph in fourth row) are
nearly identical: the regression line (red) is superimposable
to the blue one that has an intercept of zero and a slope of
one.

The performance of correction factors in the ratiomet-
ric series which emulates a scenario of variable expression
of short RNAs is shown in Figure 5C. Application of these
factors resulted visually in reduction of bias and tight clus-
tering of miRNAs around their group average, and clear
separation of the expression profile into four well demar-
cated peaks (Supplementary Figure S6B). Table 3 summa-
rizes the quantitative analysis of bias reduction for these se-
ries. The RMSE was reduced by 56 ± 11.5%, the MAE by
59.9 ± 11.2% and the MAD by 68.8 ± 9.3% over the dif-
ferent combination of correction factors, groups and series.
The proportion of miRNAs with an expression level that
was within 2-fold of their group mean increased from 34.3
± 6.3% to 80.4 ± 8.5%. The 95 and 99% range were reduced
by 52.9 ± 12.7% and 51.5 ± 11.2% respectively.
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Figure 5. Effects of bias correction in the 4N miRNA validation dataset (286 pool). (A) Bias (red dot) and 95% prediction confidence intervals of GAMLSS
estimates for the uncorrected equimolar series (shown in the diagonal line from top left to bottom right). The remaining graphs are arranged so that the
dataset identified by the y label is corrected using the bias correction factors identified by the x axis label. The blue line in each graph is the expected
expression level. (B) Histograms (diagonal plots), correlation coefficients (graphs above the diagonal right) and linear errors-in-variables regression (graphs
below the diagonal) between the correction factors estimated in (A). (C) Effects of bias correction in the ratio-metric 4N experiments (total RNA input of
100 fmoles): A (descending) and B (ascending) concentration. Each row shows the effects of no-correction as well as correction with the factors estimated
from the four equimolar 286 datasets with input ranging from 0.1 to 100 fmoles. The solid black line and gray band indicate the average expression and
the associated 95% interval calculated by a fixed effects meta-analysis for the group mean.
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Table 3. Effects of bias correction in the ratiometric 4N validation datasets (A: descending concentration, B: ascending concentration)

Group
Dilution
in A

Dilution in
B Correction factor dataset RMSE MAE MAD Prob(2-fold) 95% Range 99% Range

A B A B A B A B A B A B

A 1:1 1:1000 Uncorrected 0.635 0.626 0.506 0.491 0.517 0.634 0.408 0.380 2.272 2.236 2.394 2.785
A 1:1 1:1000 0.1 fmole 0.356 0.298 0.262 0.217 0.215 0.237 0.690 0.789 1.278 1.203 1.763 1.580
A 1:1 1:1000 1 fmole 0.311 0.247 0.241 0.182 0.254 0.191 0.718 0.873 1.221 0.948 1.387 1.406
A 1:1 1:1000 10 fmoles 0.231 0.211 0.176 0.147 0.217 0.158 0.803 0.887 0.840 0.916 1.020 1.224
A 1:1 1:1000 100 fmoles 0.195 0.226 0.155 0.167 0.171 0.163 0.873 0.859 0.789 0.913 0.853 1.169
B 1:10 1:100 Uncorrected 0.700 0.643 0.578 0.533 0.804 0.717 0.254 0.310 2.539 2.305 2.892 2.609
B 1:10 1:100 0.1 fmole 0.319 0.296 0.251 0.203 0.267 0.199 0.704 0.803 1.156 1.047 1.365 1.806
B 1:10 1:100 1 fmole 0.282 0.246 0.228 0.174 0.223 0.161 0.789 0.873 0.947 0.846 1.071 1.457
B 1:10 1:100 10 fmoles 0.212 0.176 0.161 0.127 0.167 0.133 0.887 0.901 0.783 0.744 0.848 0.918
B 1:10 1:100 100 fmoles 0.221 0.210 0.181 0.151 0.219 0.173 0.803 0.887 0.819 0.770 0.954 1.270
C 1:100 1:10 Uncorrected 0.549 0.552 0.435 0.431 0.485 0.487 0.417 0.403 1.889 2.080 2.639 2.824
C 1:100 1:10 0.1 fmole 0.334 0.350 0.254 0.260 0.239 0.259 0.736 0.667 1.293 1.306 1.678 1.432
C 1:100 1:10 1 fmole 0.299 0.284 0.219 0.210 0.135 0.170 0.819 0.806 1.070 1.022 1.498 1.217
C 1:100 1:10 10 fmoles 0.246 0.181 0.175 0.120 0.144 0.111 0.819 0.903 0.922 0.697 1.380 1.111
C 1:100 1:10 100 fmoles 0.293 0.186 0.209 0.126 0.187 0.133 0.764 0.931 1.178 0.681 1.459 1.222
D 1:1000 1:1 Uncorrected 0.666 0.614 0.555 0.498 0.798 0.616 0.264 0.306 2.306 2.141 2.846 2.872
D 1:1000 1:1 0.1 fmole 0.368 0.446 0.267 0.335 0.256 0.266 0.694 0.583 1.484 1.708 1.768 1.832
D 1:1000 1:1 1 fmole 0.313 0.382 0.233 0.292 0.184 0.236 0.778 0.653 1.199 1.410 1.399 1.590
D 1:1000 1:1 10 fmoles 0.243 0.259 0.183 0.190 0.196 0.169 0.806 0.847 0.939 1.089 1.188 1.142
D 1:1000 1:1 100 fmoles 0.272 0.163 0.195 0.111 0.215 0.080 0.861 0.931 1.220 0.665 1.404 0.810

Ligase bias metrics were calculated for each uncorrected dataset, and for three corrected analyses, which used the empirical correction factors from equimolar experiments, differing in the amount of total
RNA.

Analysis and correction of (sequence-dependent) ligase bias
from samples of heterogeneous composition

We analyzed the effects of bias correction when the empiri-
cal factors are estimated from samples that differ in compo-
sition from the target sample (e.g. use of miRXplore to cor-
rect the 286 series experiments and vice versa). Furthermore,
this analysis allowed us to assess the robustness of the sta-
tistical estimation (GAMLSS fitting) procedure when only
a subset of short RNAs are subject to bias correction. Sup-
plementary Table S3 summarizes the effects of bias correc-
tion in the equimolar experiments from the 286 and miRX-
plore pools. In these analyses, RMSE was reduced by 47.2
± 12.9%, the MAE by 51.3 ± 13.5%, the MAD by 56.2 ±
13.3% for the miRNAs that were common between the tar-
get and correction factor datasets. The percentage of miR-
NAs with expression level within 2-fold of the group mean
increased from 23.0 ± 9.5% (uncorrected) to 69.9 ± 3.3%.
Simultaneously, the 95 and 99% range were decreased by
36.6 ± 8.8% and 33.8 ± 8.4% respectively. There was no
change in the bias metrics for miRNAs, which were not cor-
rected. The effects of bias correction in the ratiometric series
are shown in Table 4. RMSE was reduced by 38.5 ± 4.9%,
the MAE by 42.5 ± 6.9%, the MAD by 46.8 ± 13.2% for the
miRNAs that were shared between the target and correction
factor datasets. The percentage of miRNAs with expression
level within 2-fold of the group mean increased from 33.4 ±
4.3% (uncorrected) to 63.8 ± 8.5%. Simultaneously, the 95
and 99% range were decreased by 31.5 ± 8.8% and 33.7 ±
9.2% respectively. No changes in bias metrics were observed
for the miRNAs that were not subjected to bias correction.
P-values for the Flinger-Killeen, Ansari and KS tests for the
comparison of variability reduction were all <10–4 for the
common subset. To gain a better understanding of what ap-
pears a small drop in performance of the correction factors
from heterogeneous samples, we plotted the values of these
factors for the miRXplore pool against those from the four
286 pools (Figure 6). Regression estimates suggest that on
average the values of the correction factors are equal; nev-
ertheless, there is variation around this average pattern, so

Figure 6. Empirical correction factors from datasets of heterogeneous
composition. The figure shows the correction factors estimated from the
miRXplore dataset against the values of the correction factors of the
shared miRNAs calculated from the four-equimolar series of the 286 pool.
On average, the correction factors from the heterogeneous datasets (miRX-
plore versus any of the 286 series) agree (the errors in variable regression
line (red) is superimposable to the blue one that has an intercept of zero
and a slope of one. There is however variation around this average pattern,
which exceeds that observed when correction factors from datasets with
homogeneous composition are compared (see Figure 5B).

that regression factors do not cluster as tightly along the re-
gression line, compared to the case of factors derived from
series with the same molecular composition (see Figure 5B).

Timings of code execution (means and standard devia-
tions of 20 runs) required to derive and apply the correction
factors are shown in Supplementary Table S4 for a number
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Table 4. Effects of bias correction in the case of empirical factors from samples of heterogeneous composition (ratiometric series)

Group Series Correction factor data miRNA subset RMSE MAE MAD Prob(2-fold) 95% Range 99% Range

Corr. Uncor. Corr. Uncor. Corr. Uncor. Corr. Uncor. Corr. Uncor. Corr. Uncor.

A A miRXplore Common 0.431 0.651 0.342 0.520 0.412 0.485 0.560 0.380 1.640 2.228 1.908 2.369
A A miRXplore Unique 0.531 0.531 0.403 0.403 0.463 0.463 0.524 0.524 1.845 1.845 2.051 2.051
A B miRXplore Common 0.390 0.649 0.293 0.514 0.336 0.634 0.600 0.360 1.394 2.277 2.047 2.863
A B miRXplore Unique 0.476 0.477 0.386 0.387 0.472 0.473 0.476 0.476 1.604 1.605 1.737 1.738
B A miRXplore Common 0.356 0.614 0.264 0.509 0.290 0.713 0.681 0.277 1.370 2.122 1.586 2.386
B A miRXplore Unique 0.841 0.841 0.679 0.679 0.815 0.815 0.292 0.292 2.857 2.856 2.931 2.929
B B miRXplore Common 0.344 0.618 0.248 0.512 0.294 0.703 0.809 0.319 1.234 1.897 1.735 2.382
B B miRXplore Unique 0.695 0.696 0.534 0.534 0.534 0.534 0.292 0.292 2.407 2.408 2.575 2.577
C A miRXplore Common 0.373 0.577 0.249 0.463 0.251 0.498 0.725 0.333 1.685 1.883 2.005 2.744
C A miRXplore Unique 0.422 0.422 0.325 0.324 0.402 0.400 0.571 0.571 1.416 1.415 1.491 1.489
C B miRXplore Common 0.406 0.570 0.310 0.440 0.328 0.590 0.569 0.392 1.422 2.083 1.554 2.833
C B miRXplore Unique 0.508 0.509 0.369 0.369 0.337 0.337 0.571 0.571 1.746 1.748 2.038 2.043
C A miRXplore Common 0.391 0.687 0.304 0.566 0.339 0.784 0.592 0.265 1.484 2.277 1.625 2.867
C A miRXplore Unique 0.551 0.551 0.454 0.454 0.615 0.617 0.304 0.304 1.794 1.796 2.188 2.191
D B miRXplore Common 0.386 0.652 0.307 0.520 0.357 0.638 0.571 0.347 1.396 2.300 1.604 2.937
D B miRXplore Unique 0.417 0.417 0.327 0.327 0.420 0.420 0.522 0.522 1.360 1.360 1.537 1.537

The column ‘Corr.’ gives the metric for the corrected estimate for each series (column ‘Dataset’) using the correction factor from the series listed under the column ‘Correction factor dataset’. Column
‘Uncor.’ tabulates the uncorrected estimate for each dataset.

of processors, ranging from legacy laptop ones to those used
in modern desktops. The reference, native R implementa-
tion, required between 119 s (9 year old processor laptop)
to 31 s (high end i7 Intel octacore processor) to estimate
the correction factors and a similar time to apply them to
another dataset. We found that execution time scales lin-
early with the number of RNA sequences, i.e. the analysis
of the miRXplore data with 962 takes almost thrice as long
as the 286 experiments. The hybrid C++/R implementation
is between four and six times as fast as the native R one. Us-
ing the NBI distribution implies 2.6× longer execution time
than the LQNO one (this was only tested in the fast hybrid
implementation).

Collectively, the analyses from the development and the
validation datasets show that bias correction can be ef-
fective even when correction factors are estimated from
equimolar mixes that differ up to four orders of magni-
tude from the dataset of interest. Bias correction can remove
most of the bias in the absence of DE (equimolar series) and
almost 60% of the bias in the presence of variable expres-
sion of miRNAs (ratiometric series). When samples of het-
erogeneous composition are used to derive the values of the
correction factors, bias reduction is smaller; i.e. ∼40%. Em-
pirical bias correction factors appear to be nearly constant
over a broad range of RNA input and sample composition.

Differential expression analysis with GAMLSS

Under conditions of symmetric DE expression (Figure
7A), the lowest RMSE error was observed for the pro-
posed methods (galmss, galmssAD), limma and voom (with
or without sample weights, voomSW). Application of the
trimmed mean normalization method (TMM) resulted in a
deterioration of performance of both voom (voomTMM and
limma (limmaTMM). The remaining methods had interme-
diate performance, with the highest error observed for the
dss method. In all cases, the expected pattern of DE consist-
ing of four well separated peaks at −3, −1, 1 and 3 (in log10
space) was recovered in model based, unsupervised clus-
tering analysis. However, the peaks of these clusters were
nearly perfectly aligned with the expected DE values only
for the best performing methods.

Differences between methods were magnified under con-
ditions of asymmetric DE with many more under-expressed
than over over-expressed sequences. In these scenarios,
shown in Figure 7B and C, the equimolar experiments are
compared to the ratiometric series A and B respectively,
yielding simulated conditions in which one-fourth of se-
quences are over expressed and roughly three-fourth are
underexpressed. Only the application of gamlss, gamlssAD,
limma, voom and voomSW yielded DE profiles, with peaks
at the expected locations. The other methods, also yielded
the anticipated four peak pattern, but the DE measures were
shifted to the right, yielding a symmetric and demonstra-
tively erroneous expression pattern with an equal fraction
of over-expressed and under-expressed sequences. Conse-
quently, the associated RMSEs were three times as large as
that of the best performing methods.

Out of the generalized linear model methods, only gamlss
and gamlssAD were able to recover correctly a clustered
DE pattern of directional changes (Figure 7D). We simu-
lated such a pattern by deleting the readings of sequences
in groups 1 and 2 from the experiments shown in Fig-
ure 7A prior to analysis. The estimated DE measures dif-
fered substantially from the true ones for all methods an-
alyzed, except gamlss/gamlssAD. The bias was rather se-
vere (more than two orders of magnitude) and were both
quantitative (absolute value of DE) and qualitative, with
under-expressed sequences deemed to be over-expressed.
This analysis demonstrates that the DE measures gener-
ated by existing methods are dependent on the entire com-
plement of sequence counts analyzed. Furthermore, some
of the methods generated spurious artifacts in DE pro-
files, taking the form of measures with the exact same value
(spikes seen in DESeq2, limmaTMM, voom, voomSW). In-
terestingly, limma and voom had the worst RMSE perfor-
mance out of all methods in this scenario. Similar patterns
were observed when we repeated these DE expression anal-
yses after resequencing these libraries (Supplemental Figure
S7).

We also examined the performance of the competing
methods for input examples showing directional DE behav-
ior. This was simulated by comparing the expression pro-
files of the 0.1 fmole equimolar dataset versus that of the
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Figure 7. Analysis of differential expression (DE), with the NBI distribution, under scenarios of clustered symmetric DE without global changes in ex-
pression ratiometric A versus B (A), clustered asymmetric DE which shifts the global expression in one direction: equimolar versus ratiometric series A
(B), equimolar versus ratiometric series B (C), ratiometric series A versus B in which the measurements of the overexpressed RNAs (subpools A and B)
were omitted from the analyses (D). The dashed red lines are the true DE values, the numbers in bold, the RMSE errors and the histograms are the model
based clustering of the DE measures estimated by each method.

100 fmole. Under this scenario, the 1000-fold higher input
is offset by amplifying by seven fewer PCR cycles and pos-
sibly by changes in PCR efficiency. Hence the expression of
every single sequence was higher by an amount that was be-
tween 0 and 3 in base 10 logarithmic scale. This analysis is
shown in Figure 8A; only the gamlss and gamlssAD meth-
ods estimated the expression profile to be shifted to the right
in its entirety. The competing methods all yielded qualita-
tively similar DE profiles in shape to the GAMLSS meth-
ods. However, the corresponding profiles were centered to
zero suggesting that roughly half of the sequences were
under-expressed in direct contradiction to the known quan-
titative character of the experiment. Application of the CR
method to transform raw counts to normality, followed by

the inverse transformation (multiplication by the constant
factor of 3), of the log ratio of transformed mean counts
yielded expression profiles that were in general compara-
ble to our proposal. Nevertheless, this approximate method
yielded higher RMSEs for extreme DE ratios relative to the
gamlss (Supplementary Figure S8).

A bootstrap analysis was used to quantify the Type I er-
ror and the RMSE measures under conditions of no-DE.
Overall, RMSE errors were low and the differences noted
were of the order of the second significant digit (Figure
8B) for all methods considered. Type I errors (fraction of
sequences considered to be DE at the 0.05 significant level)
were also very small. With the exception of voomSW, most
approaches resulted in conservative testing, with attained
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Figure 8. Analysis of DE with the NBI distribution under consistent, but variable directional change in expression (comparison of the two equimolar
experiments with total input of 0.1 and 100 fmoles, (A). RMSE (B) and Type I error (C) in the absence of DE (statistics of 200 experiments). In each of
these graphs, the red triangle represents the mean over all bootstrap samples. Regression analysis of sensitivity and specificity for different thresholds of
statistical significance (D). False discovery (FDR) and false omission (FOR) rates for DE algorithms under variable proportions of truly DE sequences
(E), averaging over the values of P-value cutoff considered in D.

(expected error––red triangles in Figure 8C) less than the
stated level of 0.05. A regression analysis using the DE-
Seq2 as reference, showed that the least number of false
positives was obtained with the EBSeq method, followed
by edgeR and gamlssAD. We analyzed sensitivities (DE
datasets in Figures 7 and 8A) and specificities (bootstrap
datasets) of all methods against the threshold of statistical
significance. These analyses shown in Figure 8D, illustrate
that the proposed method (along with the CR approach)
achieved the highest sensitivity for the P-value cutoff of
0.05. The voomSW followed by the gamlssAD method, were
the least sensitive to the selection of the threshold of signif-
icance, while the CR method exhibited a substantial drop
in sensitivity as the P-value cutoff was varied. With the ex-
ception of voomSW, all other methods exhibit high speci-
ficity as the threshold for statistical significance was relaxed
(Figure 8D, insert). Bootstrap confidence intervals for sen-
sitivities and specificities against the gamlssAD method are
shown in Supplementary Figures S9 and S10. To explore

the practical implications of these differences, we computed
the FDR (false positives) and FOR (false negatives) as func-
tions of the fraction of truly DE sequences, averaging over
all P-value cutoffs. These analyses shown in Figure 8E il-
lustrate that gamlssAD offers the optimal balance between
FDR and FOR. Execution times for the gamlssAD method
were favorable in absolute terms: i.e. a mean of 47.13 ±
6.43 s to analyze DE in two groups with 16 experiments per
group for the high end i7-5960X processor, but not in rela-
tive terms. In particular, the software was nearly 1000 slower
than limma, which executed in 0.008 ± 0.013 s and nearly
five times slower than the second slowest method,EBSeq, at
9.48 ± 0.66 s.

In summary, gamlssAD can quantify DE with extremely
high accuracy (RMSE), sensitivity (low number of false
negatives) and specificity (low number of false positives),
under scenarios of clustered symmetric and asymmetric
DE, global changes in expression or even in the absence of
DE. While other negative binomial regression methods, ex-
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hibit similar accuracy in the case of clustered, symmetric
DE (equal fraction of overexpressed and underexpressed se-
quences), their accuracy deteriorates when the patterns of
DE deviate from that of a symmetric change. A method
based on the CR transformation of raw counts exhibited
performance similar to gamlssAD in terms of RMSE for
non-extreme signals, but had reduced sensitivity for thresh-
olds of significance smaller than 0.05.

DISCUSSION

Rationale and relation to existing methods

Our impetus for introducing the distributional regression
models for RNA-seq data was the need to understand the
statistical nature of RNA-seq data. We have endeavored to
apply statistical approaches that deal with the multi-step
nature of these complex experiments in a more or less re-
alistic fashion. The major complication factors in the ex-
perimental pipeline for an RNA-seq process are the liga-
tion reaction, PCR amplification, the library sampling and
the library depth variation. We derived a general statisti-
cal expression that relates the input of the RNA-seq; i.e.
the abundance in the biological samples to the outputs i.e.
the sequence counts through heuristics that simplify kinetic
modeling and by specifying the relevant probabilistic ex-
pressions for the stochastic steps. To our knowledge, this
is the first such modeling effort reported for these RNA-seq
experiments. The analytical contributions of this work are
these: the description of the LQ relation between the mean
and variance of the sequence counts in an RNA-seq ex-
periment, and the derivation of the Poisson truncated nor-
mal mixture as the underlying probability distribution for
RNA-seq data. Our numerical/algorithmic contributions
relate to the exploration of distributional, GAMLSS regres-
sion frameworks for the analysis RNA-seq data based on
numerically robust approximations to these complex mod-
els. These in turn are based on familiar NBI distribution
and the LQ Normal family we introduce for short RNA-
seq measurements. We demonstrate that popular models for
the stochastic modeling of RNA-seq datasets (14–15,18,20),
may be seen as special cases of GAMLSS. This connection
allows for a transparent evaluation of the underlying as-
sumptions of these models, which in turn may inform their
use in practical applications.

The relation between the mean and variance of sequence
counts is a major underlying, yet under-appreciated fea-
ture of existing approaches for analyzing RNA-seq data
(9,15,17,19–20). Despite the critical importance of this re-
lationship, existing approaches have assumed its form with-
out any formal justification. Although others have assumed
that the mean-variance relationship should be approxi-
mately quadratic, this relationship has been attributed to
the combined effects of biological and technical sources of
variation (51). In this work we show that such a relationship
is entirely due to the stochastic steps implicit in an RNA-
seq experiment. Stated in other terms, there is no need to
invoke underlying properties of the biological systems be-
ing studied to explain this relatioship. This is, of course, a
testable prediction and we have provided evidence from se-
quencing of synthetic RNA mixes that this relationship is in
fact observed in the absence of any biological variability. By

incorporating PCR effects in the statistical formulation, our
approach explicitly addresses concerns for both DNA (45)
or RNA (72) sequencing applications raised by previous in-
vestigators. These reports suggest that library amplification
by PCR may be a major source of heterogeneity in the ob-
served distribution of sequence reads (45,72) due to stochas-
ticity (40–43,73–77) and sequence-dependent (e.g. GC bias)
variation in reaction efficiency (78–81).

We suggest that the theoretical investigations presented
here facilitate a better understanding of recent observations
in small RNA-seq applications (54). Those investigators
identified the Gamma distribution as model for sequence
counts and attributed this feature to the stochastic nature
of PCR amplification. Our numerical/analytical investiga-
tions indicate that the underlying PCR stochasticity may
be approximated with the Gamma model as a reasonable
alternative to the truncated normal. However, the result-
ing counts will exhibit additional variation relative to the
Gamma leading to a Negative Binomial Type I or a LQ
normal model as highly accurate approximations of a more
complex mixed Poisson model.

Modeling and correcting for ligase bias in RNA-seq experi-
ments

The adoption of RNA-seq as a quantitative measurement
for biological investigation and biomarker discovery is cur-
rently limited by large bias and excessive variation in the
observed counts. This sequence (and adapter) specific se-
quence bias plagues all small RNA sequencing protocols.
Despite the encouraging results in reducing the bias by pro-
tocol adaptations (4,7–8), no method to date has managed
to eliminate it completely. Our kinetic modeling is consis-
tent with this bias being protocol specific. However, the bias
can be estimated on a per-sequence and protocol basis with
equimolar mixes of small RNAs from the family one is in-
vestigating (e.g. miRNAs). In essence, one uses these mixes
as calibration samples to derive correction factors that are
subsequently applied to the analyses of experimental series
of interest. We argued heuristically that these bias correc-
tion factors are not only constant over a broad range of con-
centrations of RNA input, but are also independent from
the composition of the sample analyzed. Using a wide range
of publicly available and legacy datasets from ur group, we
demonstrated that the concentration independence holds
over an order of magnitude. Furthermore, our analyses of
the validation datasets suggest that concentration indepen-
dence will definitely extend up to one order and possibly up
to four orders of magnitude. We also demonstrated compo-
sition independence, using two different reference samples
(e.g. the miRXplore and the 286 pools) which only share a
subset of small RNAs. Because of these two properties, it
is possible to correct RNA-seq profiles for ligase bias, us-
ing equimolar series from reference samples to calculate the
values of the corresponding correction factors. Due to the
concentration independence, imprecisions in the estimation
of the RNA input may have little bearing on the results. To
our knowledge, this is the first time that this possibility is
demonstrated experimentally and its performance in terms
of bias (e.g. RMSE reduction) is quantified.
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GAMLSS in the analysis of differential expression

The application of the GAMLSS framework to DE analy-
sis is seen to have several key advantages: higher accuracy,
sensitivity and specificity compared to the alternatives ex-
amined. In sharp contrast to other competing generalized
linear model methods, our approach generates DE mea-
sures that are robust with respect to the overall direction
of the profile of expression changes. Other methods exhibit
a behavior of some concern in that they appear to constrain
DE estimates to be more or less symmetrically distributed
around zero. Extreme forms of this behavior were seen when
we filtered out readings from specific groups of miRNAs in
our sequencing runs, causing DE estimates to change both
magnitude and sign. This leads to spurious errors of both
type ‘M’ (DE estimates are of the wrong absolute magni-
tude) and type ‘S’ (overexpressed sequences are considered
underexpressed and vice versa) (82). This hitherto unrecog-
nized shortcoming of existing methods was not observed for
our approach and to a smaller extent for the CR transfor-
mation, which recovered the true DE changes regardless of
sequence filtering.

The factors accounting for this behavior of the compara-
tor methods are not entirely clear to us. Similar to our
methodology, DESeq2 (20), edgeR (15,51), EBSeq (52), dss
(10), limma (53) and voom (19) model sequence counts by
the Negative Binomial distribution or by the normal distri-
bution in which the variance is related to the mean through
a smooth regression model (9,53). A unifying feature of all
these methods is their explicit reference to the concept of
a library depth that scales sequence counts. With the ex-
ception of DESeq2 and dss, the remaining approaches ap-
pear to analyze counts as relative proportions (counts per
million) over the observed library depth (total counts). DE-
Seq2 and dss also normalize to sequence depth, but the lat-
ter is estimated through the median of the ratios of counts
in a given library to those of a pseudo-reference sample, ob-
tained by taking the geometric mean of counts across sam-
ples (10,14,20). Hence all these methods, seem to be ana-
lyze sequence counts as proportions of the observed library
depth, rather than as absolute counts. If this were the case,
then one would expect these models to manifest a ‘zero sum’
behavior, in which the percentage of the over-expressed se-
quences is equal to that of the under-expressed so that their
relative proportions sum to unity. Another possible expla-
nation for this behavior rests with the shrinkage estimation
procedures employed by the methods examined. In particu-
lar, if the underlying implementation fails to include a freely
varying term for the difference of the group level mean from
the referent group, or if that term is excessively penalized,
then the algorithm would consider the overall group level
differences to be zero. This will also result in a zero-sum sit-
uation, with an equal number of over-expressed and under-
expressed sequences. Nonetheless, the variation around that
mean would still be correctly estimated, even though the
mean itself would be grossly mis-estimated. Interestingly
enough, we have observed such a pattern in the DE exper-
iments we analyzed. This behavior is avoided in our ap-
proach and the CR transformation method by modeling
sequence abundances directly, i.e. without reference to the
concept of a library depth. Our method also includes freely-

varying (non-penalized) terms for the differences between
group means to avoid excessive penalization of group differ-
ences. In summary, the direct modeling of sequence counts,
rather their indirect analysis as proportions of a given li-
brary depth and the simultaneous estimation of variance
parameters (LQ relationship), more than likely accounts for
the smaller RMSE error and the optimal tradeoff of sensi-
tivity and specificity of the proposed method. Furthermore,
the use of the negative binomial, as justified by our theo-
retical investigations, rather than the gamma distribution
assumption underlying the CR transformation, likely con-
tributes to the more favorable balance between false omis-
sion and FDRs exhibited by our proposal.

Irrespective of the particular factors underlying the be-
havior of these widely-used algorithms, there are grave im-
plications of for the reproducibility of RNA-seq signals
against other quantification techniques. In particular, if the
measures of DE for a given sequence are dependent on other
sequences that were included in the analysis, then one de-
pending on filtering may never recover the DE signal against
a technique, e.g. qRT-PCR that does not refer to other se-
quences. Another implication of this behavior is the de-
facto inability of these methods to recover global DE ex-
changes that are directional in nature, rather than symmet-
ric around a reference expression level. This is particularly
relevant for microRNAs in which global downregulation of
miRNAs has been observed in a number of states as a re-
sult of reduced DICER activity (83–87), DROSHA (88–90)
or through yet unidentified mechanisms (91–93). It follows
that application of a method that implicitly constraints esti-
mated DE changes to be symmetric in nature, will misclas-
sify the direction of expression changes of up to half of the
RNAs species assayed, while misquantifying the magnitude
of the expression changes of the remaining 50% of RNAs.
This undesirable behavior is clearly avoided by using our
proposal.

Limitations

The encouraging results reported with the distributional re-
gression models reported here have several limitations that
should be noted. First, the proposed approach has specific
data requirements due to the large number of parameters
that are estimated (two per each sequence and sequence
run). Fitting thousands of parameters requires that one pro-
vides the model with the necessary data and we have found
that one may not reliably estimate unconstrained models
with less than 15 libraries. Shrinkage estimation will in gen-
eral decrease these requirements so one could use as lit-
tle as four sequencing runs (libraries). Nevertheless, one
will encounter numerical convergence issues for such under-
replicated data. Overcoming these problems so as to obtain
reliable estimate values, may involve extensive troubleshoot-
ing of the values of the tuning parameters of the algorithms
and even the initial values of the parameter estimates.

Second, our method for bias reduction using offset vari-
ables, ignores the uncertainty in the estimates of these cor-
rection factors. A proper adjustment would require the
use of techniques from measurement error models (such
as regression-calibration, the simulation-extrapolation al-
gorithm or bona fide Bayesian methods) (61) to account for
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this uncertainty. Such methods may be particularly impor-
tant when one is working with samples in which the initial
abundance varies over more than three orders of magnitude
and one is interested in obtaining reliable estimates for low
abundance RNA species. We did not attempt to provide re-
sults with these methods, as they are straightforward techni-
cal modifications that may not be relevant for the majority
of applied work that focuses on high to medium strength
signals. Nevertheless, these directions should be pursued as
extensions of our bias reduction approach in future investi-
gations.

Third, we assumed that the PCR efficiency will be the
same for all the RNAs sequenced in the same library. This
is a working assumption that allowed us to employ gen-
eralized linear modeling to derive correction factors. Due
to the co-linearity between the PCR efficiency factors and
the ligase bias, removing this assumption will require that
non-linear models be applied instead. Non-linear modeling,
may lead to more precise quantification of ligase bias and
possibly increased performance of the empirical correction
factors. These putative benefits should be weighed against
the computational complexity of fitting non-linear models.
Given the acceptable performance of empirical correction
factors, we decided against pursuing this possibility in this
report.

Fourth, our validation experiments were undertaken en-
tirely using the Illumina sequencing platform and thus the
bias correction factor approach may not translate to other
sequencing platforms in use. We consider this somewhat un-
likely though, due to the generic nature of the derivations of
our approach that do not rely on specifics of any sequencing
platforms. Furthermore, the LQ relationship, which pro-
vides a testable prediction of our modeling framework, was
verified in datasets created by multiple sequencing instru-
ments and approaches.

Fifth, our approach to bias reduction assumes the exis-
tence of a calibration dataset in which the sequences under
investigation have been measured. This will present a chal-
lenge for the immediate future, but we have at least pointed
the way forward with a clear picture of what is needed. The
availability of commercial mixes of miRNAs ensures that
these bias correction factors will be available for sequences
that are included in these reference samples. This is rather
similar to the previous application of universal references to
account for biases related to labeling or hybridization in mi-
croarray analyses of microRNAs (94). However, for the vast
number of sequence variants that are potentially recovered
in biofluid samples, but not included in these reference sets,
this approach is not applicable. In this case, correction will
by necessity have to be applied only to a subset of RNAs.
Our work shows that bias correction will be successful for
such RNAs even if the relevant factors are estimated from
a universal reference of a different composition and even
drastically different total input than the samples of interest.

Last but certainly not least, the sensitivity and speci-
ficity metrics reported for our method relative to other ap-
proaches, were derived from datasets in which the antici-
pated changes of clusters of RNA sequences were rather
large, i.e. the smallest change was a 64.2% reduction in ex-
pression. Furthermore, cluster separation was rather large,
i.e. one or two orders of magnitude. It is likely that sensi-

tivity and specificity will be less favorable for smaller DE
changes and for sequence profiles which exhibit more tight
clustering of DE values. Future studies should examine
datasets which simulate both smaller DE changes and more
challenging clustering structure, to assess the robustness of
the proposed DE algorithm.

Applications and future extensions

The proposed methods for bias correction were developed
with the intention to support applications that go beyond
the usual goal of assessing DE of short RNAs between ex-
perimental conditions. In fact, analysis of DE does not re-
quire the use of bias correction factors as long as one is not
interested in the absolute expression values of the referent
experimental state. On the other hand, the application of
bias correction factors is warranted when one is interested
in comparing expression across different RNAs within ex-
perimental conditions. This could take the form of a path-
way analysis, or more sophisticated systems biology mod-
eling (95,96). For such applications, bias correction should
eliminate non-biological, technical factors affecting the ex-
pression level (count), allowing one to concentrate on in-
ferring biologically relevant influences and the underlying
design principles. Last, but certainly not least, bias correc-
tion opens the possibility of elevating the status of RNAseq
to clinical diagnostic applications. The relevant issues here
pertain to analytical validity (recently reviewed by Byron et
al. (97)) and ‘resolution of serious standardization prior to
general applications’ in personalized medicine as pointed
out by Raabe et al. (22). Our present work clearly demon-
strates that bias may be substantially eliminated across a
wide variety of protocols and sequencing platforms using
a combination of calibration (reference) samples and ad-
vanced statistical modeling. This should support additional
investigations in advanced systems biology modeling across
non-clinical and clinical domains. Even if one does not con-
template such applications, one may still take advantage of
the higher accuracy, sensitivity and specificity of the pro-
posed methodology to undertake DE analysis.

We consider various extensions of the proposed methods.
First, to expand the scope of the method to encompass se-
quences not included in the reference sets, one may consider
performing a small discovery pilot to identify these variant
sequences that may be found in a given application. Subse-
quently, one may include these variants in a commercially
available reference sample and generate a custom, equimo-
lar synthetic mix. The latter, is then used to derive correction
factors for all sequences that one may potentially encounter
in the context of one’s application. However, the flexible
regression approach we introduced suggests that one may
model these correction factors using sequence-dependent
features of the RNA species and the adapter. Future stud-
ies should thus concentrate on exploring suitable features
of sequences that could be used to adjust regression mod-
els for counts and thus circumvent the need for calibration
samples to estimate the bias correction factors.

A second, potential extension concerns the improvement
of execution time of the method. This is currently a minor
factor considering that bias corrected expression values and
DE measures may be obtained in reasonable time (about 1
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min in high end processors available at the time of this writ-
ing) relative to the time required to construct and sequence
lobraries. However, execution times may become trouble-
some for larger datasets, involving hundreds of experiments,
thousands of sequences, many more groups and correlated
expression patterns (e.g. time series experiments). In such
a case, faster implementations would be useful. We antic-
ipated these needs, by implementing our methods in soft-
ware libraries (the TMB framework) that can utilize paral-
lel computation infrastructure (e.g. multicore processors, or
even computer clusters).

Third, one should consider extensions of the proposed
methodology to long RNA sequencing. The restriction of
the scope to microRNAs and other short RNAs largely
stems from the context of our applied work in the field
of short RNA biomarker discovery and is not an inher-
ent shortcoming of our methodology. However, one should
explicitly acknowledge that long and short RNA-seq are
different methodologies before attempting such an exten-
sion of scope. The most notable difference is that long RNA
sequencing includes an additional experimental step to re-
duce RNAs to smaller fragments that are subsequently am-
plified and sequenced. This step is rather less characterized
in terms of the statistics of its output. e.g. number of frag-
ments and the length of the sequences generated than the
other steps in the RNA-seq pipeline. Even though we do not
claim to have a definitive answer, we think that the proposed
method may be applied very cautiously to long RNA-seq
data, since sequence fragmentation functions as a form of
signal (pre)amplification. This is a length-dependent form
of amplification, as longer sequences would be expected to
yield more fragments than shorter ones. Furthermore, there
is clearly a branching process at work: fragments generated
may themselves be subject to additional rounds of fragmen-
tation upon continuing exposure to the reaction reagents,
up until their final reduction to single nucleotides. One
can postulate that our framework would still apply in long
RNA-seq, by applying theoretical innovations from the the-
ory of length dependent branching processes to characterize
both fragmentation and PCR amplification. In such a case,
one should expect to forego the interpretation of amplifica-
tion efficiency factors appearing in our equations as arising
only from PCR. Nevertheless, we cannot endorse such an
interpretation and this application without reservation, un-
til further theoretical investigations and empirical studies
demonstrate that long RNA sequencing obeys the LQ vari-
ance mean relationship highlighted by our approach. This
appears to be the case by visual inspection of the figures in
the papers introducing the competing methodologies (e.g.
edgeR, voom or DESeq2). However, it is clearly evident that
further theoretical, experimental and metrological studies
beyond our subjective assessment are needed in this area.

AVAILABILITY

Source code for the implementation of the LQNO distribu-
tion in the gamlss package and for fitting the LQNO/NBI
gamlssAD models in the TMB package is included
in the bitbucket repository https://bitbucket.org/chrisarg/
rnaseqgamlss. The repository also includes examples for the

use of both the gamlss and gamlssAD packages as well as
the R scripts used to compare approaches to DE analysis.
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