Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Nov;87(21):8575–8579. doi: 10.1073/pnas.87.21.8575

Volume-sensitive K-Cl cotransport in inside-out vesicles made from erythrocyte membranes from sheep of low-K phenotype.

G R Kracke 1, P B Dunham 1
PMCID: PMC54999  PMID: 2236068

Abstract

Unidirectional K ion effluxes were measured from inside-out vesicles prepared from erythrocyte membranes from sheep of the low-K phenotype. Total K efflux was 150 nmol per mg of protein per hr in a Cl medium of 295 mosmol/kg (with the Na/K pump inhibited). Cl-dependent K efflux (determined with methanesulfonate replacing Cl) was 54 nmol/(mg.hr). Cl-dependent K efflux (K-Cl cotransport) increased to 77 nmol/(mg.hr) with osmotic swelling of approximately 30% in 230-mosmol/kg medium and decreased to 13 nmol/(mg.hr) after shrinkage of approximately 60% in 430-mosmol/kg medium. Osmotically induced changes in transport and vesicle volume were reversible. K-Cl cotransport was enhanced by ATP. Nonhydrolyzable ATP analogues failed to substitute for ATP, indicating that phosphorylation is involved. However, in the absence of added ATP there was significant K-Cl cotransport, suggesting that phosphorylation is not essential for function. The results provide clues about the nature of the signals detected by the sensor of cell volume changes and demonstrate that inside-out vesicles from sheep erythrocyte membranes provide an advantageous experimental system for investigation of the volume sensor.

Full text

PDF
8575

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bergh C., Kelley S. J., Dunham P. B. K-Cl cotransport in LK sheep erythrocytes: kinetics of stimulation by cell swelling. J Membr Biol. 1990 Aug;117(2):177–188. doi: 10.1007/BF01868684. [DOI] [PubMed] [Google Scholar]
  2. Brown A. M., Ellory J. C., Young J. D., Lew V. L. A calcium-activated potassium channel present in foetal red cells of the sheep but absent from reticulocytes and mature red cells. Biochim Biophys Acta. 1978 Aug 4;511(2):163–175. doi: 10.1016/0005-2736(78)90311-5. [DOI] [PubMed] [Google Scholar]
  3. Brugnara C., Van Ha T., Tosteson D. C. Role of chloride in potassium transport through a K-Cl cotransport system in human red blood cells. Am J Physiol. 1989 May;256(5 Pt 1):C994–1003. doi: 10.1152/ajpcell.1989.256.5.C994. [DOI] [PubMed] [Google Scholar]
  4. Dunham P. B., Ellory J. C. Passive potassium transport in low potassium sheep red cells: dependence upon cell volume and chloride. J Physiol. 1981 Sep;318:511–530. doi: 10.1113/jphysiol.1981.sp013881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dunham P. B., Farquharson B. E., Bratcher R. L. Stimulation of Na+-K+ pump in sheep red blood cells by heteroimmune anti-sheep red cell antibodies. Am J Physiol. 1984 Jul;247(1 Pt 1):C120–C123. doi: 10.1152/ajpcell.1984.247.1.C120. [DOI] [PubMed] [Google Scholar]
  6. Dunham P. B., Logue P. J. Potassium-chloride cotransport in resealed human red cell ghosts. Am J Physiol. 1986 Apr;250(4 Pt 1):C578–C583. doi: 10.1152/ajpcell.1986.250.4.C578. [DOI] [PubMed] [Google Scholar]
  7. Ellory J. C., Dunham P. B., Logue P. J., Stewart G. W. Anion-dependent cation transport in erythrocytes. Philos Trans R Soc Lond B Biol Sci. 1982 Dec 1;299(1097):483–495. doi: 10.1098/rstb.1982.0146. [DOI] [PubMed] [Google Scholar]
  8. Eveloff J., Warnock D. G. K-Cl transport systems in rabbit renal basolateral membrane vesicles. Am J Physiol. 1987 May;252(5 Pt 2):F883–F889. doi: 10.1152/ajprenal.1987.252.5.F883. [DOI] [PubMed] [Google Scholar]
  9. Forbush B., 3rd Characterization of right-side-out membrane vesicles rich in (Na,K)-ATPase and isolated from dog kidney outer medulla. J Biol Chem. 1982 Nov 10;257(21):12678–12684. [PubMed] [Google Scholar]
  10. Fujise H., Lauf P. K. Swelling, NEM, and A23187 activate Cl(-)-dependent K+ transport in high-K+ sheep red cells. Am J Physiol. 1987 Feb;252(2 Pt 1):C197–C204. doi: 10.1152/ajpcell.1987.252.2.C197. [DOI] [PubMed] [Google Scholar]
  11. Grinstein S., Rothstein A., Sarkadi B., Gelfand E. W. Responses of lymphocytes to anisotonic media: volume-regulating behavior. Am J Physiol. 1984 Mar;246(3 Pt 1):C204–C215. doi: 10.1152/ajpcell.1984.246.3.C204. [DOI] [PubMed] [Google Scholar]
  12. Haas M., McManus T. J. Effect of norepinephrine on swelling-induced potassium transport in duck red cells. Evidence against a volume-regulatory decrease under physiological conditions. J Gen Physiol. 1985 May;85(5):649–667. doi: 10.1085/jgp.85.5.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hall A. C., Ellory J. C. Evidence for the presence of volume-sensitive KCl transport in 'young' human red cells. Biochim Biophys Acta. 1986 Jun 26;858(2):317–320. doi: 10.1016/0005-2736(86)90338-x. [DOI] [PubMed] [Google Scholar]
  14. Hoffmann E. K., Simonsen L. O. Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol Rev. 1989 Apr;69(2):315–382. doi: 10.1152/physrev.1989.69.2.315. [DOI] [PubMed] [Google Scholar]
  15. Jennings M. L., al-Rohil N. Kinetics of activation and inactivation of swelling-stimulated K+/Cl- transport. The volume-sensitive parameter is the rate constant for inactivation. J Gen Physiol. 1990 Jun;95(6):1021–1040. doi: 10.1085/jgp.95.6.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kaji D. Volume-sensitive K transport in human erythrocytes. J Gen Physiol. 1986 Dec;88(6):719–738. doi: 10.1085/jgp.88.6.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kramhøft B., Lambert I. H., Hoffmann E. K., Jørgensen F. Activation of Cl-dependent K transport in Ehrlich ascites tumor cells. Am J Physiol. 1986 Sep;251(3 Pt 1):C369–C379. doi: 10.1152/ajpcell.1986.251.3.C369. [DOI] [PubMed] [Google Scholar]
  18. Kregenow F. M. Osmoregulatory salt transporting mechanisms: control of cell volume in anisotonic media. Annu Rev Physiol. 1981;43:493–505. doi: 10.1146/annurev.ph.43.030181.002425. [DOI] [PubMed] [Google Scholar]
  19. Lauf P. K. K+:Cl- cotransport: sulfhydryls, divalent cations, and the mechanism of volume activation in a red cell. J Membr Biol. 1985;88(1):1–13. doi: 10.1007/BF01871208. [DOI] [PubMed] [Google Scholar]
  20. Lauf P. K. Thiol-dependent passive K+-Cl- transport in sheep red blood cells. V. Dependence on metabolism. Am J Physiol. 1983 Nov;245(5 Pt 1):C445–C448. doi: 10.1152/ajpcell.1983.245.5.C445. [DOI] [PubMed] [Google Scholar]
  21. Lauf P. K. Thiol-dependent passive K+Cl- transport in sheep red blood cells: VI. Functional heterogeneity and immunologic identity with volume-stimulated K+(Rb+) fluxes. J Membr Biol. 1984;82(2):167–178. doi: 10.1007/BF01868941. [DOI] [PubMed] [Google Scholar]
  22. Lauf P. K. Thiol-dependent passive K/Cl transport in sheep red cells: I. Dependence on chloride and external ions. J Membr Biol. 1983;73(3):237–246. doi: 10.1007/BF01870538. [DOI] [PubMed] [Google Scholar]
  23. Lauf P. K. Volume and anion dependency of ouabain-resistant K-Rb fluxes in sheep red blood cells. Am J Physiol. 1988 Sep;255(3 Pt 1):C331–C339. doi: 10.1152/ajpcell.1988.255.3.C331. [DOI] [PubMed] [Google Scholar]
  24. Logue P., Anderson C., Kanik C., Farquharson B., Dunham P. Passive potassium transport in LK sheep red cells. Modification by N-ethyl maleimide. J Gen Physiol. 1983 Jun;81(6):861–885. doi: 10.1085/jgp.81.6.861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mercer R. W., Dunham P. B. Membrane-bound ATP fuels the Na/K pump. Studies on membrane-bound glycolytic enzymes on inside-out vesicles from human red cell membranes. J Gen Physiol. 1981 Nov;78(5):547–568. doi: 10.1085/jgp.78.5.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Moronne M. M., Mehlhorn R. J., Miller M. P., Ackerson L. C., Macey R. I. ESR measurement of time-dependent and equilibrium volumes in red cells. J Membr Biol. 1990 Apr;115(1):31–40. doi: 10.1007/BF01869103. [DOI] [PubMed] [Google Scholar]
  27. Muallem S., Schoeffield M., Pandol S., Sachs G. Inositol trisphosphate modification of ion transport in rough endoplasmic reticulum. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4433–4437. doi: 10.1073/pnas.82.13.4433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. O'Neill W. C. Volume-sensitive, Cl-dependent K transport in resealed human erythrocyte ghosts. Am J Physiol. 1989 Jan;256(1 Pt 1):C81–C88. doi: 10.1152/ajpcell.1989.256.1.C81. [DOI] [PubMed] [Google Scholar]
  29. Perrone J. R., Blostein R. Asymmetric interaction of inside-out and right-side-out erythrocyte membrane vesicles with ouabain. Biochim Biophys Acta. 1973 Feb 16;291(3):680–689. doi: 10.1016/0005-2736(73)90473-2. [DOI] [PubMed] [Google Scholar]
  30. RAND R. P., BURTON A. C. MECHANICAL PROPERTIES OF THE RED CELL MEMBRANE. I. MEMBRANE STIFFNESS AND INTRACELLULAR PRESSURE. Biophys J. 1964 Mar;4:115–135. doi: 10.1016/s0006-3495(64)86773-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Reeves W. B., Dudley M. A., Mehta P., Andreoli T. E. Diluting power of thick limbs of Henle. II. Bumetanide-sensitive 22Na+ influx in medullary vesicles. Am J Physiol. 1988 Dec;255(6 Pt 2):F1138–F1144. doi: 10.1152/ajprenal.1988.255.6.F1138. [DOI] [PubMed] [Google Scholar]
  32. Reuss L. Basolateral KCl co-transport in a NaCl-absorbing epithelium. Nature. 1983 Oct 20;305(5936):723–726. doi: 10.1038/305723a0. [DOI] [PubMed] [Google Scholar]
  33. Rossi J. P., Schatzmann H. J. Is the red cell calcium pump electrogenic? J Physiol. 1982 Jun;327:1–15. doi: 10.1113/jphysiol.1982.sp014215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sachs F. Mechanical transduction in biological systems. Crit Rev Biomed Eng. 1988;16(2):141–169. [PubMed] [Google Scholar]
  35. Sachs J. R., Ellory J. C., Kropp D. L., Dunham P. B., Hoffman J. F. Antibody-induced alterations in the kinetic characteristics of the Na:K pump in goat red blood cells. J Gen Physiol. 1974 Apr;63(4):389–414. doi: 10.1085/jgp.63.4.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sachs J. R. Volume-sensitive K influx in human red cell ghosts. J Gen Physiol. 1988 Nov;92(5):685–711. doi: 10.1085/jgp.92.5.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Smallwood J. I., Gügi B., Rasmussen H. Regulation of erythrocyte Ca2+ pump activity by protein kinase C. J Biol Chem. 1988 Feb 15;263(5):2195–2202. [PubMed] [Google Scholar]
  38. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  39. Steck T. L., Kant J. A. Preparation of impermeable ghosts and inside-out vesicles from human erythrocyte membranes. Methods Enzymol. 1974;31:172–180. doi: 10.1016/0076-6879(74)31019-1. [DOI] [PubMed] [Google Scholar]
  40. Stewart G. W., Ellory J. C., Klein R. A. Increased human red cell cation passive permeability below 12 degrees C. Nature. 1980 Jul 24;286(5771):403–404. doi: 10.1038/286403a0. [DOI] [PubMed] [Google Scholar]
  41. Zarda P. R., Chien S., Skalak R. Elastic deformations of red blood cells. J Biomech. 1977;10(4):211–221. doi: 10.1016/0021-9290(77)90044-6. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES