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Abstract

Quantitative analysis of clinical language samples is a powerful tool for assessing and screening 

developmental language impairments, but requires extensive manual transcription, annotation, and 

calculation, resulting in error-prone results and clinical underutilization. We describe a system that 

performs automated morphological analysis needed to calculate statistics such as the mean length 

of utterance in morphemes (MLUM), so that these statistics can be computed directly from 

orthographic transcripts. Estimates of MLUM computed by this system are closely comparable to 

those produced by manual annotation. Our system can be used in conjunction with other 

automated annotation techniques, such as maze detection. This work represents an important first 

step towards increased automation of language sample analysis, and towards attendant benefits of 

automation, including clinical greater utilization and reduced variability in care delivery.

1 Introduction

Specific language impairment (SLI) is a neurodevelopmental disorder characterized by 

language delays or deficits in the absence of other developmental or sensory impairments 

(Tomblin, 2011). A history of specific language impairment is associated with a host of 

difficulties in adolescence and adulthood, including poorer quality friendships (Durkin and 

Conti-Ramsden, 2007), a greater risk for psychiatric disturbance (Durkin and Conti-

Ramsden, 2010), and diminished educational attainment and occupational opportunities 

(Conti-Ramsden and Durkin, 2012). SLI is common but remains significantly 

underdiagnosed; one large-scale study estimates that over 7% of kindergarten-aged 

monolingual English speaking children have SLI, but found that the parents of most of these 

children were unaware that their child had a speech or language problem (Tomblin et al., 

1997).

Developmental language impairments are normally assessed using standardized tests such as 

the Clinical Evaluation of Language Fundamentals (CELF), a battery of norm-referenced 

language tasks such as Recalling Sentences, in which the child repeats a sentence, and 

Sentence Structure, in which the child points to a picture matching a sentence. However, 

there has been a recent push to augment norm-referenced tests with language sample 

analysis (Leadholm and Miller, 1992; Miller and Chapman, 1985), in which a spontaneous 
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language sample collected from a child is used to compute various statistics measuring 

expressive language abilities.

Natural language processing (NLP) has the potential to open new frontiers in language 

sample analysis. For instance, some recent work has applied NLP techniques to quantify 

clinical impressions that once were merely qualitative (e.g., Rouhizadeh et al. 2013, van 

Santen et al. 2013) and other work has proposed novel computational features for detecting 

language disorders (e.g., Gabani et al. 2011). In this study, our goal is somewhat simpler: we 

attempt to apply novel NLP techniques to assist the clinician by automating the computation 

of firmly established spontaneous language statistics.

Quantitative analysis of language samples is a powerful tool for assessing and screening 

developmental language impairments. Measures derived from naturalistic language samples 

are thought to be approximately as sensitive to language impairment as are decontextualized 

tests like those that make up the CELF (Aram et al., 1993); they may also be less biased 

against speakers of non-standard dialects (Stockman, 1996). Despite this, language sample 

analysis is still underutilized in clinical settings, in part due to the daunting amount of 

manual transcription and annotation required.

Clinicians may avail themselves of software like Systematic Analysis of Transcripts (SALT; 

Miller and Iglesias 2012), which partially automates the language sample analysis. But this 

tool (and others like it) require the clinician to provide not only a complete orthographic 

transcription, but also detailed linguistic annotations using a complex and unforgiving 

annotation syntax that itself takes significant effort to master. In what follows, we describe a 

system which automates a key part of this annotation process: the tedious and error-prone 

annotation of morphological structure.

In the next section, we describe mean length of utterance in morphemes (MLUM), a widely 

used measure of linguistic productivity, and associated morphological annotations needed to 

compute this measure. We then outline a computational model which uses a cascade of 

linear classifiers and finite-state automata to generate these morphological annotations; this 

allows MLUM to be computed directly from an orthographic transcription. Our evaluation 

demonstrates that this model produces estimates of MLUM which are very similar to those 

produced by manual annotation. Finally, we outline directions for future research.

2 Mean length of utterance and morphological annotations

Mean length of utterance in morphemes is a widely-used measure of linguistic productivity 

in children, consisting essentially of the average number of morphemes per utterance. Brown 

(1973), one of the first users of MLUM, describes it as a simple, face-valid index of 

language development simply because nearly any linguistic feature newly mastered by the 

child—be it obligatory morphology, more complex argument structure, or clausal recursion

—results in an increase in the average utterance length. MLUM has also proven useful in 

diagnosing developmental language impairments. For instance, typically-developing 

children go through a stage where they omit affixes and/or function words which are 

obligatory in their target language (e.g., Harris and Wexler 1996; Legate and Yang 2007). 
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Children with language impairment are thought to omit obligatory morphemes at a higher 

rate than their typically-developing peers (Eisenberg et al., 2001; Rice and Wexler, 1996; 

Rice et al., 1998; Rice et al., 2006), and differences in omission rate can be detected, albeit 

indirectly, with MLUM.

SALT (Miller and Chapman, 1985) provides specific guidelines for estimating MLUM. 

These guidelines are concerned both with what utterances and tokens “count” towards 

MLUM, as well as which tokens are to be considered morphologically complex. The SALT 

guidelines require that complex words be written by writing the free stem form of the word, 

followed by a forward-slash (/) and an unambiguous signature representing the suffix. SALT 

recognizes 13 “suffixes”, including the noun plural (dog/s), possessive (mom/z), preterite/

past participle (walk/ed), progressive/future (stroll/ing), and various enclitics (I/’m, we/’re, 

is/n’t); some SALT suffixes can also be combined (e.g., the plural possessive boy/s/z). Each 

SALT suffix is counted as a single morpheme, as are all stems and simplex words. Irregulars 

affixes (felt), derivational affixes (un-lock, write-r), and compounds (break-fast) are not 

annotated, and words bearing them are counted as a single morpheme unless these words 

happen to contain one of the aforementioned SALT suffixes.

In the next section, we propose a computational model which generates SALT-like 

morphological annotations. Our highest priority is to be faithful to the SALT specification, 

which has proved sufficient for the creators’ well-defined, clinically-oriented aims. We do 

not claim that our system will generalize to any other linguistic annotation scheme, but only 

that we have successfully automated SALT-style morphological annotations. We recognize 

the limitations of the SALT specification: it draws little inspiration from linguistic theory, 

and furthermore fails to anticipate the possibility of the sort of automation we propose. As it 

happens, there is a large body of work in natural language processing on automated methods 

for morphological segmentation and/or analysis, which could easily be applied to this 

problem. Yet, the vast majority of this literature is concerned with unsupervised learning 

(i.e., inducing morphological analyses from unlabeled data) rather than the (considerably 

easier) task of mimicking morphological analyses produced by humans, our goal here. (For 

one exception, see the papers in Kurimo et al. 2010.) While it would certainly be possible to 

adapt existing unsupervised morphological analyzers to implement the SALT specification, 

the experiments presented below demonstrate that simple statistical models, trained on a 

small amount of data, achieve near-ceiling performance at this task. Given this result, we 

feel that adapting existing unsupervised systems to this task would be a purely academic 

exercise.

3 The model

We propose a model to automatically generate SALT-compatible morphological annotations, 

as follows. First, word extraction identifies words which count towards MLUM. Then, suffix 
prediction predicts the most likely set of suffixes for each word. Finally, stem analysis maps 

complex words back to their stem form. These three steps generate all the information 

necessary to compute MLUM. We now proceed to describe each step in more detail.
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3.1 Word extraction

The SALT guidelines excludes any speech which occurs during an incomplete or abandoned 

utterance, speech in utterances that contain incomprehensible words, and speech during 

mazes—i.e., disfluent intervals, which encompass all incomplete words and fillers—for the 

purpose of computing MLUM and related statistics. A cascade of regular expressions are 

used to extract a list of eligible word tokens from individual lines of the orthographic 

transcript.

3.2 Suffix prediction

Once unannotated word tokens have been extracted, they are input to a cascade of two linear 

classifiers. The first classifier makes a binary prediction as to whether the token is 

morphologically simplex or complex. If the token is predicted to be complex, it is input to a 

second classifier which attempts to predict which combination of the 13 SALT suffixes is 

present.

Both classifiers are trained with held-out-data using the perceptron learning algorithm and 

weight averaging (Freund and Schapire, 1999). We report results using four feature sets. The 

baseline model uses only a bias term. The ϕ0 set uses orthographic features inspired by “rare 

word” features used in part-of-speech tagging (Ratnaparkhi, 1997) and intended to 

generalize well to out-of-vocabulary words. In addition to bias, ϕ0 consists of six 

orthographic features of the target token (wi), including three binary features (“wi contains 

an apostrophe”, “wi is a sound effect”, “wi is a hyphenated word”) and all proper string 

suffixes of wi up to three characters in length. The ϕ1 feature set adds a nominal attribute, the 

identity of wi. Finally, ϕ2 also includes four additional nominal features, the identity of the 

nearest tokens to the left and right (wi−2, wi−1, wi+1, wi+2). Four sample feature vectors are 

shown in Table 1.

3.3 Stem analysis

Many English stems are spelled somewhat differently in free and bound (i.e., bare and 

inflected) form. For example, stem-final usually changes to i in the past tense (e.g., buried), 

and stem-final e usually deletes before the progressive (e.g., bouncing). Similarly, the SALT 

suffixes have different spellings depending on context; the noun plural suffix is spelled es 
when affixed to stems ending in stridents (e.g., mixes), but as s elsewhere. To model these 

spelling changes triggered by suffixation, we use finite state automata (FSAs), mathematical 

models widely used in both natural language processing and speech recognition. Finite state 

automata can be used implement a cascade of context-dependent rewrite rules (e.g., “α goes 

to β in the context δ__γ”) similar to those used by linguists in writing phonological rules. 

This makes FSAs particularly well suited for dealing with spelling rules like the ones 

described above.

This spell-out transducer can also be adapted to recover the stem of a wordform, once 

morphological analysis has been performed. If I is the input wordform, S is the spell-out 

transducer, and D is a simple transducer which deletes whatever suffixes are present, then 

the output-tape symbols of I ∘ S−1 ∘ D contain the original stem.1 However, there may be 

multiple output paths for many input wordforms. For instance, a doubled stem-final 
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consonant in the inflected form could either be present in the bare stem (e.g., guess → 
guessing) or could be a product of the doubling rule (e.g., run → running); both are 

permitted by S−1. To resolve these ambiguities, we employ a simple probabilistic method. 

Let W be a weighted finite-state acceptor in which each path represents a stem, and the cost 

of each path is proportional to that stem’s frequency.2 Then, the most likely stem given the 

input wordform and analysis is given by the output-tape symbols of

Both the spell-out transducer and the stemmer were generated using the Thrax grammar-

compilation tools (Roark et al., 2012); a full specification of both models is provided in the 

appendix.

4 Evaluation

We evaluate the model with respect to its ability to mimic human morphological 

annotations, using three intrinsic measures. Suffix detection refers to agreement on whether 

or not an eligible word is morphologically complex. Suffix classification refers to agreement 

as to which suffix or suffixes are borne by a word which has been correctly classified as 

morphologically complex by the suffix detector. Finally, token agreement refers agreement 

as to the overall morphological annotation of an eligible word. We also evaluate the model 

extrinsically, by computing the Pearson product-moment correlation between MLUM 

computed from manual annotated data to MLUM computed from automated morphological 

annotations. In all evaluations, we employ a “leave one child out” cross-validation scheme.

4.1 Data

Our data comes from a large-scale study of autism spectrum disorders and language 

impairment in children. 110 children from the Portland, OR metropolitan area, between 4–8 

years of age, took part in the study: 50 children with autism spectrum disorders (ASD), 43 

typically-developing children (TD), and 17 children with specific language impairment 

(SLI). All participants had full-scale IQ scores of 70 or higher. All participants spoke 

English as their first language, and produced a mean length of utterance in morphemes 

(MLUM) of at least 3. During the initial screening, a certified speech-language pathologist 

verified the absence of speech intelligibility impairments. For more details on this sample, 

see van Santen et al. 2013.

The ADOS (Lord et al., 2000), a semi-structured autism diagnostic observation, was 

administered to all children in the current study. These sessions were recorded and used to 

generate verbatim transcriptions of the child and examiner’s speech. Transcriptions were 

1An anonymous reviewer asks how this “stemmer” relates to familiar tools such as the Porter (1980) stemmer. The stemmer described 
here takes morphologically annotated complex words as input and outputs the uninflected (“free”) stem. In contrast, the Porter 
stemmer takes unannotated words as input and outputs a “canonical” form—crucially, not necessarily a real word—to be used in 
downstream analyses.
2To prevent composition failure with out-of-vocabulary stems, the acceptor W is also augmented with additional arcs permitting it to 
accept, with some small probability, the closure over the vocabulary.
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generated using SALT guidelines. Conversational turns were segmented into individual 

utterances (or “C-units”), each of which consisted of (at most) a main clause and any 

subordinate clauses modifying it.

4.2 Interannotator agreement

Manual annotation quality was assessed using a stratified sample of the full data set, 

consisting of randomly-selected utterances per child. These utterances were stripped of their 

morphological annotations and then re-annotated by two experienced transcribers, neither of 

whom participated in the initial transcription efforts. The results are shown in Table 2. On all 

three intrinsic measures, the original and retrospective annotators agreed an overwhelming 

amount of the time; the K (chance-adjusted agreement) values for the former two indicate 

“almost perfect” (Landis and Koch, 1977) agreement according to standard qualitative 

guidelines.

4.3 Results

Table 3 summarizes the intrinsic evaluation results. The baseline system performs poorly 

both in suffix detection and suffix classification. Increasingly complex feature sets result in 

significant increases in both detection and classification. Even though most eligible words 

are not morphologically complex, the full feature set (ϕ2) produces a good balance of 

precision and recall and correctly labels nearly 99% of all eligible word tokens. MLUMs 

computed using the automated annotations and the full feature set are almost identical to 

MLUMs derived from manual annotations (R = .9998).

This table also shows accuracies for two particularly difficult morphological distinctions, 

between the noun plural S and the 3rd person active indicative suffix 3s (seeks), and between 

the possessive ‘S and Z (the contracted form of is), respectively. These distinctions in 

particular appear to benefit in particular from the contextual features of the ϕ2 feature set.

In the above experiments, the data contained manually generated annotations of mazes. 

These are required for computing measures like MLUM, as speech in mazes is ignored when 

counting the number of morphemes in an utterance. Like morphological annotations, human 

annotation of mazes is also tedious and time-consuming. However, some recent work has 

attempted to automatically generate maze annotations from orthographic transcripts (Morley 

et al., 2014a), and automatic maze annotation would greatly increase the utility of the larger 

system described here.

We thus performed a simple “pipeline” evaluation of the morphological annotation system, 

as follows. First, maze annotations are automatically generated for each transcript. We then 

feed the maze-annotated transcripts into the morphological analyzer described above, which 

is then used to compute MLUM. The maze annotation system used here was originally 

developed by Qian and Liu (2013) for detecting fillers in Switchboard as an early step in a 

larger disfluency detection system; Morley et al. (2014a) adapted it for maze detection. This 

system is trained from a dataset of transcripts with manually-annotated mazes; here we 

depart from the prior work in training it using a leave-one-child-out strategy. Features used 

are derived from tokens and automatically generated part-of-speech tags. This system treats 
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maze detection as a sequence labeling task performed using a max-margin Markov network 

(Taskar et al., 2004); for more details, see Morley et al. 2014a.

We hypothesized that the errors introduced by automated maze annotation would not greatly 

affect MLUM estimates, as maze detection errors do not necessarily impact MLUM. For 

example, an utterance like I went to I go to school might be bracketed as either (I went to) I 

go to school and I went to (I go to) school, but either analysis results in the same MLUM. 

And in fact, MLUMs computed using the combined maze detection/morphological 

annotation system are competitive with MLUMs derived from manual annotations (R = .

9991).

4.4 Discussion

Our results show that the proposed morphological analysis model produces accurate 

annotations, which then can be used to compute relatively precise estimates of MLUM. 

Furthermore, automation of other SALT-style annotations (such as maze detection) does not 

negatively impact automatic MLUM estimates.

We experimented with other feature sets in the hopes of approving accuracy and 

generalizability. We hypothesized that suffix classification would benefit from part-of-

speech features. Since our data was not manually part-of-speech tagged, we extracted these 

features using an automated tagger similar to the one described in (Collins, 2002).3 The 

tagger was trained on a corpus of approximately 150,000 utterances of child-directed speech 

(Pearl and Sprouse, 2013) annotated with a 39-tag set comparable to the familiar PTB tagset. 

Additional POS features were also generated by mapping the 39-tag set down to a smaller 

set of 11 “universal” tags (Petrov et al., 2012). However, neither set of POS features 

produced any appreciable gains in performance. We speculate that these features are 

superfluous given the presence of the ϕ2 word context features.

5 Conclusions

We have described a principled and accurate system for automatic calculation of widely-

used measures of expressive language ability in children. The system we propose does not 
require extensive manual annotation, nor does it require expensive or difficult-to-use 

proprietary software, another potential barrier to use of these measures in practice. It is 

trained using a small amount of annotated data, and could easily be adapted to similar 

annotation conventions in other languages.

We view this work as a first step towards increasing the use of automation in language 

assessment and other language specialists. We foresee two benefits to automation in this 

area. First, it may reduce time spent in manual annotation, increasing the amount of time 

clinicians spend interacting with patients face to face. Second, increased automation may 

lead to decreased variability in care delivery, a necessary step towards improving outcomes 

(Ransom et al., 2008).

3The tagger was tested using the traditional “standard split” of the Wall St. Journal portion of the Penn Treebank, with sections 0–18 
for training, sections 19–21 for development, and sections 22–24 for evaluation. The tagger correctly assigned 96.69% of the tags for 
the evaluation set.
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One remaining barrier to wider use of language sample analysis is the need for manual 

transcription, which is time-consuming even when later annotations are generated 

automatically. Future work will consider whether transcripts derived from automatic speech 

recognition are capable of producing valid, unbiased estimates of measures like MLUM.

Our group has made progress towards automating other clinically relevant annotations, 

including grammatical errors (Morley et al., 2014b) and repetitive speech (van Santen et al., 

2013), and we are actively studying ways to integrate our various systems into a full suite of 

automated language sample analysis utilities. More importantly, however, we anticipate 

collaborating closely with our clinical colleagues to develop new approaches for integrating 

automated assessment tools into language assessment and treatment workflows—an area in 

which far too little research has taken place.
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Appendix

# spellout.grm: finite-state spell-out transducers for English

## alphabets

symbol = “%” | “_” | “-” | “/” | “\\” | “’” | “3”;

V = “A” | “E” | “I” | “O” | “U”;

C = “B” | “C” | “D” | “F” | “G” | “H” | “J” | “K” | “L” | “M” |

    “N” | “P” | “Q” | “R” | “S” | “T” | “V” | “W” | “X” | “Y” | “Z”;

letter = V | C;

stemsym = Optimize[letter | symbol];

## suffixes

s  = “/S” | “/3S”; # since these always behave exactly the same

z  = “/Z”;

ed  = “/ED”;

ing  = “/ING”;

_d  = “/’D”;

_m  = “/’M”;

_s  = “/’S”;

_t   = “/’T”;

_ll  = “/’LL”;

_re  = “/’RE”;

_ve = “/’VE”;

n_t  = “/N’T”;

suffix = Optimize[s | z | ed | ing | _d | _m | _s | _t | _ll | _re |

               _ve | n_t];

alphabet = Optimize[(stemsym | suffix)*];

## stem change rules

# y -> i, as in bury -> buried

y2i_suffix = s | ed;

y2i = Optimize[CDRewrite[“Y”: “IE”, C, y2i_suffix, alphabet]];

# ie -> y, as in die -> dying

ie2y = Optimize[CDRewrite[“IE”: “Y”, C, ing, alphabet]];

# e -> 0 / __ ing

e_exc = “[BOS]” (“BE” | “EYE”);

e_before_ing = Optimize[CDRewrite[“”: “_”, e_exc, ing, alphabet] @

                     CDRewrite[“E”: “”, C,    ing, alphabet] @
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                     CDRewrite[“_”: “”, e_exc, ing, alphabet]];

# f -> ve, as in wolf -> wolves

f2ve_words = “CAL” | “EL” | “DWAR” | “HAL” | “HOO” | “LEA” | “LOA” |

            “SCAR” | “SEL” | “SHEL” | “STAF” | “THIE” | “WOL”;

f2ve = Optimize[CDRewrite[“F”{1,2}: “VE”, f2ve_words, s, alphabet]];

# doubling rules

doubling_left = (C | “QU”) V;

doubling_suffix = ing | ed;

func CopyRule[X, left_context, right_context, alphabet] {

    return CDRewrite[X: X X, left_context, right_context, alphabet];

}

double = Optimize[CopyRule[“B”, doubling_left, doubling_suffix, alphabet] @

                CDRewrite[“C”: “CK”, V, doubling_suffix,    alphabet] @

                CopyRule[“D”, doubling_left, doubling_suffix, alphabet] @

                CopyRule[“F”, doubling_left, doubling_suffix, alphabet] @

                CopyRule[“G”, doubling_left, doubling_suffix, alphabet] @

                CopyRule[“M”, doubling_left, doubling_suffix, alphabet] @

                CopyRule[“N”, doubling_left, doubling_suffix, alphabet] @

                CopyRule[“P”, doubling_left, doubling_suffix, alphabet] @

                CopyRule[“S”, doubling_left, doubling_suffix, alphabet] @

                CopyRule[“T”, doubling_left, doubling_suffix, alphabet] @

                CopyRule[“M”, doubling_left, doubling_suffix, alphabet] @

                CopyRule[“N”, doubling_left, doubling_suffix, alphabet] @

                CopyRule[“P”, doubling_left, doubling_suffix, alphabet] @

                CopyRule[“S”, doubling_left, doubling_suffix, alphabet] @

                CopyRule[“T”, doubling_left, doubling_suffix, alphabet] @

                # now, exceptions

                CDRewrite[“TT”: “T”, “VISI”, doubling_suffix, alphabet] @

                CDRewrite[“NN”: “N”, “E”,   doubling_suffix, alphabet]];

stem_rules = y2i @ ie2y @ f2ve @ double @ e_before_ing;

## suffix rules

es_cntx = (“CH” | “SH” | “S” | “Z” | “X” | “GO”);

s_spellout = Optimize[CDRewrite[“”: “S”, “”, s, alphabet] @

                   CDRewrite[“”: “E”, es_cntx, “S” s, alphabet]];

sz_coalescence = Optimize[CDRewrite[“”: “’”, “”, s z, alphabet]];

z_spellout = Optimize[CDRewrite[“”: “‘S”, “”, z, alphabet] @

                   # this overgenerates when /z is preceded by an /s,

                   # so we just undo that

                   CDRewrite[“‘S”: “”, s, z, alphabet]];

ed_cntx = C | (“I” | “O”);

ed_spellout = Optimize[CDRewrite[“”: “D”, “”, ed, alphabet] @

                    CDRewrite[“”: “E”, ed_cntx, “D” ed, alphabet]];

func SpelloutRule[string, suffix, alphabet] {

    return CDRewrite[“”: string, “”, suffix “[EOS]”, alphabet];
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}

other_spellout = Optimize[SpelloutRule[“ING”, ing, alphabet] @

                      SpelloutRule[“‘D”,  _d,  alphabet] @

                      SpelloutRule[“‘M”,  _m, alphabet] @

                      SpelloutRule[“‘S”,  _s,  alphabet] @

                      SpelloutRule[“‘T”,  _t,  alphabet] @

                      SpelloutRule[“‘LL”, _ll,  alphabet] @

                      SpelloutRule[“‘RE”, _re, alphabet] @

                      SpelloutRule[“‘VE”, _ve, alphabet] @

                      SpelloutRule[“N’T”, n_t, alphabet]];

suffix_rules = s_spellout @ sz_coalescence @ z_spellout @ ed_spellout @

other_spellout;

## putting it all together

export spellout = Optimize[stem_rules @ suffix_rules];
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Table 2

Interannotator agreement statistics for suffix detection, suffix identity, and overall token-level agreement; the 

K values indicate “almost perfect agreement” (Landis and Koch, 1977) according to qualitative guidelines.

Anno. 1 Anno. 2

Suffix detection K .9207 .9529

Suffix classification K .9135 .9452

Token agreement .9803 .9869
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Table 3

Intrinsic analysis results on suffix detection, suffix classification, and overall token accuracy.

Baseline ϕ0 ϕ1 ϕ2

Suffix detection

 Accuracy .8122 .9667 .9879 .9913

 Precision .8710 .9508 .9610

 Recall .8393 .9451 .9644

 F1 .8549 .9479 .9627

Suffix classification

 Overall accuracy .1917 .8916 .9689 .9880

 S vs. 3S accuracy .7794 .9478 .9788

 ‘S vs. Z accuracy .9341 .9469 .9923

Token accuracy .8267 .9663 .9878 .9899
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# spellout.grm: finite-state spell-out transducers for English
## alphabets
symbol = “%” | “_” | “-” | “/” | “\\” | “’” | “3”;
V = “A” | “E” | “I” | “O” | “U”;
C = “B” | “C” | “D” | “F” | “G” | “H” | “J” | “K” | “L” | “M” |
    “N” | “P” | “Q” | “R” | “S” | “T” | “V” | “W” | “X” | “Y” | “Z”;
letter = V | C;
stemsym = Optimize[letter | symbol];
## suffixes
s  = “/S” | “/3S”; # since these always behave exactly the same
z  = “/Z”;
ed  = “/ED”;
ing  = “/ING”;
_d  = “/’D”;
_m  = “/’M”;
_s  = “/’S”;
_t   = “/’T”;
_ll  = “/’LL”;
_re  = “/’RE”;
_ve = “/’VE”;
n_t  = “/N’T”;
suffix = Optimize[s | z | ed | ing | _d | _m | _s | _t | _ll | _re |
               _ve | n_t];
alphabet = Optimize[(stemsym | suffix)*];
## stem change rules
# y -> i, as in bury -> buried
y2i_suffix = s | ed;
y2i = Optimize[CDRewrite[“Y”: “IE”, C, y2i_suffix, alphabet]];
# ie -> y, as in die -> dying
ie2y = Optimize[CDRewrite[“IE”: “Y”, C, ing, alphabet]];
# e -> 0 / __ ing
e_exc = “[BOS]” (“BE” | “EYE”);
e_before_ing = Optimize[CDRewrite[“”: “_”, e_exc, ing, alphabet] @
                     CDRewrite[“E”: “”, C,    ing, alphabet] @
                     CDRewrite[“_”: “”, e_exc, ing, alphabet]];
# f -> ve, as in wolf -> wolves
f2ve_words = “CAL” | “EL” | “DWAR” | “HAL” | “HOO” | “LEA” | “LOA” |
            “SCAR” | “SEL” | “SHEL” | “STAF” | “THIE” | “WOL”;
f2ve = Optimize[CDRewrite[“F”{1,2}: “VE”, f2ve_words, s, alphabet]];
# doubling rules
doubling_left = (C | “QU”) V;
doubling_suffix = ing | ed;
func CopyRule[X, left_context, right_context, alphabet] {
    return CDRewrite[X: X X, left_context, right_context, alphabet];
}
double = Optimize[CopyRule[“B”, doubling_left, doubling_suffix, alphabet] @
                CDRewrite[“C”: “CK”, V, doubling_suffix,    alphabet] @
                CopyRule[“D”, doubling_left, doubling_suffix, alphabet] @
                CopyRule[“F”, doubling_left, doubling_suffix, alphabet] @
                CopyRule[“G”, doubling_left, doubling_suffix, alphabet] @
                CopyRule[“M”, doubling_left, doubling_suffix, alphabet] @
                CopyRule[“N”, doubling_left, doubling_suffix, alphabet] @
                CopyRule[“P”, doubling_left, doubling_suffix, alphabet] @
                CopyRule[“S”, doubling_left, doubling_suffix, alphabet] @
                CopyRule[“T”, doubling_left, doubling_suffix, alphabet] @
                CopyRule[“M”, doubling_left, doubling_suffix, alphabet] @
                CopyRule[“N”, doubling_left, doubling_suffix, alphabet] @
                CopyRule[“P”, doubling_left, doubling_suffix, alphabet] @
                CopyRule[“S”, doubling_left, doubling_suffix, alphabet] @
                CopyRule[“T”, doubling_left, doubling_suffix, alphabet] @
                # now, exceptions
                CDRewrite[“TT”: “T”, “VISI”, doubling_suffix, alphabet] @
                CDRewrite[“NN”: “N”, “E”,   doubling_suffix, alphabet]];
stem_rules = y2i @ ie2y @ f2ve @ double @ e_before_ing;
## suffix rules
es_cntx = (“CH” | “SH” | “S” | “Z” | “X” | “GO”);
s_spellout = Optimize[CDRewrite[“”: “S”, “”, s, alphabet] @
                   CDRewrite[“”: “E”, es_cntx, “S” s, alphabet]];
sz_coalescence = Optimize[CDRewrite[“”: “’”, “”, s z, alphabet]];
z_spellout = Optimize[CDRewrite[“”: “‘S”, “”, z, alphabet] @
                   # this overgenerates when /z is preceded by an /s,
                   # so we just undo that
                   CDRewrite[“‘S”: “”, s, z, alphabet]];
ed_cntx = C | (“I” | “O”);
ed_spellout = Optimize[CDRewrite[“”: “D”, “”, ed, alphabet] @
                    CDRewrite[“”: “E”, ed_cntx, “D” ed, alphabet]];
func SpelloutRule[string, suffix, alphabet] {
    return CDRewrite[“”: string, “”, suffix “[EOS]”, alphabet];
}
other_spellout = Optimize[SpelloutRule[“ING”, ing, alphabet] @
                      SpelloutRule[“‘D”,  _d,  alphabet] @
                      SpelloutRule[“‘M”,  _m, alphabet] @
                      SpelloutRule[“‘S”,  _s,  alphabet] @
                      SpelloutRule[“‘T”,  _t,  alphabet] @
                      SpelloutRule[“‘LL”, _ll,  alphabet] @
                      SpelloutRule[“‘RE”, _re, alphabet] @
                      SpelloutRule[“‘VE”, _ve, alphabet] @
                      SpelloutRule[“N’T”, n_t, alphabet]];
suffix_rules = s_spellout @ sz_coalescence @ z_spellout @ ed_spellout @
other_spellout;
## putting it all together
export spellout = Optimize[stem_rules @ suffix_rules];
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