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ABSTRACT The study is focused on addressing the problem of building genetic maps in the presence of �103–104 of markers per
chromosome. We consider a spectrum of situations with intrachromosomal heterogeneity of recombination rate, different level of
genotyping errors, and missing data. In the ideal scenario of the absence of errors and missing data, the majority of markers should
appear as groups of cosegregating markers (“twins”) representing no challenge for map construction. The central aspect of the
proposed approach is to take into account the structure of the marker space, where each twin group (TG) and singleton markers are
represented as points of this space. The confounding effect of genotyping errors and missing data leads to reduction of TG size, but
upon a low level of these effects surviving TGs can still be used as a source of reliable skeletal markers. Increase in the level of
confounding effects results in a considerable decrease in the number or even disappearance of usable TGs and, correspondingly, of
skeletal markers. Here, we show that the paucity of informative markers can be compensated by detecting kernels of markers in the
marker space using a clustering procedure, and demonstrate the utility of this approach for high-density genetic map construction on
simulated and experimentally obtained genotyping datasets.
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IN recent years, new genotyping technologies based on
DNA-arrays (chips) and next generation sequencing (NGS)

have become widely available for scoring thousands of
single nucleotide polymorphic markers (SNPs) in a wide spec-
trum of model and nonmodel organisms. These datasets pose
new challenges for building high-density genetic maps. With
large-scale chip-based SNP genotyping data, genotyping-
by-sequencing (GBS) or specific-locus-amplified-fragment-
sequencing data (SLAF-Seq) (e.g., Qi et al. 2014), building
genetic maps with 105–106 markers per genome (or 103–104

markers per chromosome) requires new algorithms. Indeed,
the dramatic increase in the number of markers is only one of
the challenges. Among other difficulties with such an amount
of markers are genotyping errors, missing data, and small pop-
ulation size. If the mapping algorithms cannot efficiently cope
with these problems, generating big SNPmarker sets for build-

ing ultradense maps will not achieve the goal. Obviously, the
population size sets an upper limit to the number of markers
per chromosome that can be resolved by recombination; gen-
otyping errors andmissing data callsmay complicate deducing
the correct marker order in the chromosome.

Usually a two-phase approach is applied for genetic map-
ping: clustering of all markers into linkage groups (LGs) and
ordering the markers within each LG. Earlier algorithms and
software packages for genetic mapping were based on a few
approaches suitable in a situation when the number of
markers per population was relatively small, e.g., a few tens
or hundreds per chromosome. In both phases, a full distance
matrix for the chromosome markers is required. In case of a
significantly increased dimension of the problem (n� 104–106),
the existing algorithms for genetic mapping cannot solve the
problem in reasonable computer time, i.e., even using simple
optimization algorithms of order O(n2). Moreover, a huge
computer memory (RAM) for the distance matrix is required
on the clustering and map construction phases (but see
Strandova-Neeley et al. 2015). With big data, even more
challenging are the difficulties caused by missing scores
and genotyping errors. Usually markers with considerable
data missing (e.g., 10–20%) are removed from the dataset

Copyright © 2017 by the Genetics Society of America
doi: https://doi.org/10.1534/genetics.116.197491
Manuscript received November 2, 2016; accepted for publication May 9, 2017;
published Early Online May 16, 2017.
Supplemental material is available online at www.genetics.org/lookup/suppl/doi:10.
1534/genetics.116.197491/-/DC1.
1Corresponding author: Institute of Evolution, Mount Carmel, 199 Aba Khoushi St.,
Haifa 3498838, Israel. E-mail: korol@research.haifa.ac.il

Genetics, Vol. 206, 1285–1295 July 2017 1285

https://doi.org/10.1534/genetics.116.197491
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.197491/-/DC1
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.197491/-/DC1
mailto:korol@research.haifa.ac.il


at the pretreatment stage, while markers with genotyping
errors are not removed. Instead, their positions are slightly
corrected by corresponding maximum likelihood (ML) algo-
rithms (Wu et al. 2008; Rastas et al. 2013, 2016). The inability
of existing map construction algorithms to cope with these fac-
tors, rather unexpectedly for the wide genetics community,
posed a serious problem. In some cases maps of 400–800 cM
have been obtained and required additional “rescaling” correc-
tion in order to correspond to the expectations based on cyto-
genetic analysis of meiosis (Wang et al. 2014).

Several algorithms, proposed to deal with big mapping
datasets, employ the ideas of k-means (Arthur and Vasilevskii
2007) or k-nearest neighbors (Liu et al. 2014) for marker
clustering into LGs followed by the ordering of each LG.
The genetic map is represented as a linear sequence of or-
dered marker subsets Si (bins), with the number of markers
in each subset defined by a neighborhood of radius ri around
a center ci (Liu et al. 2014). Ordering is conducted for bins
rather than markers. In certain cases, genetic mapping can be
reduced to the Minimum Spanning Tree (MST) problem (Wu
et al. 2008) instead of a more traditional reduction to the
Traveler Salesperson Problem (TSP) (Mester et al. 2003).
The MST algorithm gives fast and good solutions for low-
noise data and simple geometry of the spanning tree, i.e.,
when the majority of “leaves” of the tree are interconnected
(via linkage) in a linear-like structure corresponding to the
organization of the eukaryotic chromosome and only a small
part of markers appears in the tree branches (Rastas et al.
2013). But if the number of markers in the branches is large,
the maximal MST path may inadequately represent the chro-
mosome. In such cases, MST can serve only as a source of an
initial solution that should be complemented by markers
from the branches. Thus, the Lep-Map algorithm (Rastas
et al. 2013, 2016) imitates MST construction in finding a
feasible initial order (path of maximum length) and then
inserts markers from MST branches into the path via TSP
heuristics. After this step, local changes in the order are ap-
plied to maximize the likelihood of the final order. However,
the MST approach cannot manage situations with large num-
bers of markers in the presence of genotyping errors and
missing data.

Another approach to solve the problem was first described
in our short report (Ronin et al. 2015). Its central idea is to
take into account the structure of the marker space of the
mapping problem, where each point represents a marker
with n coordinates corresponding to the marker alleles of n
genotypes of the population. With this approach, in addition
to routine filtering ofmarkers based on segregation distortion
and level of missing data, we suggested a heuristic procedure
of selecting high-quality markers. It is based on the assump-
tion that error-free markers are more abundant among
groups of cosegregating (twin) markers, which should
have priority during the selection of “skeletal markers”
for inclusion into the genetic map. If the error rate is low
(e.g., pe � 0.01–0.02), a sufficient number of such markers
can be selected to build a high-quality map. Here we propose

a new approach for constructing genetic maps using big gen-
otyping data (with up to 103–104 markers per chromosome),
which extends the method by Ronin et al. (2015) and in-
cludes an additional filtering step to cope with a higher level
of errors (say, pe � 0.02–0.04 or more). Obviously, with the
higher error rates, the quality of the maps is supposed to
decrease. We show that the increase in the error rate can
be compensated by the availability of a large number of
markers allowing for building good-quality maps. In our al-
gorithm, the procedure of choosing reliable marker candi-
dates from noisier subsets of markers is applied after the
best candidates, representing twin groups (TGs), have al-
ready been selected. The remaining markers are clustered
and the representatives of such clusters, satisfying certain
conditions, are appended to the set of the best candidates
representing the TGs. The choice between the two ap-
proaches or usage of a hybrid strategy integrating both
approaches for any dataset can be based on preliminary
filtering/clustering cycles as described in the paper. The
chromosomal distribution of markers suitable to be tried
as candidates for the skeletal map at the consequent stages
of analysis is shown in Figure 1.

For the ordering of the selected candidatemarkers, various
optimization algorithms can be applied, for example, GES
(Lin and Kernighan 1973; Helsgaun 2000; Applegate et al.
2003; Mester et al. 2010; Ronin et al. 2010) and Concord
(Applegate et al. 2001). The efficiency of our approach for
the selection of the most informative candidates was studied
here on simulated and real datasets. Ordering the selected
candidates, testing, and stepwise improving of the genetic
map is then conducted using the effective scheme described
in our previous publications (Mester et al. 2003, 2004, 2010;
Korol et al. 2009; Ronin et al. 2010, 2012, 2015).

Materials and Methods

Simulation of mapping data

For testing the algorithms, we employed simulated and real
mapping populations of doubled haploid (or backcross) type,
with a population size n = 200, and the number of markers
Nm = 10,000, 20,000, and 40,000 per chromosome. In many
organisms, the distribution of recombination events along
chromosomes is highly heterogeneous, with very high differ-
ences between peri-centromeric and subtelomeric regions
due to the centromere and heterochromatin effects on
recombination (Korol et al. 1994; Akhunov et al. 2003;
Backström et al. 2010; Roesti et al. 2013; Sharma et al.
2013; Hill et al. 2015; Wang et al. 2015; Nambiar and Smith
2016; Tsai et al. 2016). Another contributing factor may be
correlation between recombination rate and chromosomal
variation in GC content along chromosomes (Duret and
Arndt 2008). Obviously, upon an even distribution of poly-
morphic markers with respect to DNA physical length, the
density of markers per unit of recombination in the regions
with a low recombination rate will be much higher than in
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high-recombination regions. Therefore, in our simulations,
three different regions were considered with respect to the
proportion of simulated markers and genetic map length
L (centimorgan). Namely, the peri-centromeric and the two
subtelomeric regions included 80 and 20% of Nm, while the
contribution of the peri-centromeric part to the genetic map
length was much lower compared to the subtelomeric parts
(Supplemental Material, Table S1 in File S1). Simulation of
recombination distances between adjacent markers for each
region was conducted by sampling the distance values from
the preset region-specific ranges of very small, small, and
moderate distances (dvs, ds, and dm, respectively) (Table S2
in File S1). The average characteristics of the resulting maps
constructed for error-free data are presented in Table S3 in
File S1. For all notations in the text and the tables and figures
see File S2 in File S1 (Glossary).

Construction of a skeletal map in the case of a low level
of genotyping errors using the “twin” method

The major part in the proposed approach for building dense
genetic maps is selecting informative skeletal markers.
Depending on the level of genotyping errors (unknown a
priori), we developed and evaluated two procedures to ad-
dress this problem. The first procedure is based on the fact

that under low levels of genotyping errors (e.g., pe= 0.01–0.02
per marker locus), large numbers of markers per LG (e.g.,
Nm � 104) and relatively small sizes of the mapping popula-
tion (n � 102), a considerable proportion of markers will
appear as large groups of twins (TGs) (Ronin et al. 2015). For
such situations, a simple and efficient principle for selecting
reliable skeletal markers is to take representative (“delegate”)
markers with the minimal rate of missing data for each TG
(see File S3).

The process of constructing a skeletal map includes three
stages. The first stage is to select a threshold value ts0 for the
size ts of TGs, which will be represented by their delegate
markers in the initial variant of the skeletal map (Ronin et al.
2015). In our approach, the selected markers are then or-
dered based on the reduction of the mapping problem to
TSP using the Evolutionary Strategy heuristic optimization
(Mester et al. 2003, 2004, 2010; Ronin et al. 2010). The
second step is testing map quality using jackknife resampling
followed by the deletion of markers violating local map sta-
bility and monotonicity (i.e., increase in recombination rate
between a marker and its subsequent neighbors) (Ronin
et al. 2010). After this step, we can insert in the resulting
map additional markers representing TGs with smaller sizes
compared to the chosen ts0 (as well as suitable singleton
markers not causing map inflation), and then check the
map quality again. This step may be helpful for filling in
the gaps in the genetic map. Such cycles can be applied
repeatedly (Figure 2).

Skeletal map construction in the presence of high
genotype-calling error rates using clustering

The second approach is designed to manage situations with
higher levels of errors (e.g., up to pe = 0.02–0.04). The de-
crease in the proportion of error-free markers leads to the
erosion of most of the TGs. Thus, for a marker with pe =
0.03, the probability that in a population with n= 200 geno-
types none of the marker scores could be erroneous is P =
(120.03)200 � e26 � 0.0024. Here, the average number of
errors is six, implying that two markers inseparable-by-
recombination (upon an error-free situation) will show a
“distance” of �6 cM. In order to extend the twin-based filtra-
tion idea to such situations, when the number of TGs is not
sufficient for covering the chromosome even at a low marker
density, we employ marker clustering. An important geomet-
rical fact is that in the n-dimensional space of markers, many
groups of cosegregating markers that should be represented
in this space as one point per group, as a result of errors will
turn into clouds (clusters) of close points. The midpoint of
such a cloud is geometrically close to the position of the
corresponding (error-free) set of completely linked markers
or twins. Thus, in the space of markers, noisy markers geo-
metrically represent a “fuzzy” set of varying density, with
higher density in the vicinity of the residence point of the
original error-free markers. Bearing this in mind, we comple-
ment the procedure based on using TGs with zero intragroup
distances, by a clustering procedure that dissects the entire

Figure 1 Selecting candidate markers for the skeletal map in the pres-
ence of strong regional heterogeneity of recombination, genotyping er-
rors, and missing data. (a) Marker positions along the chromosome in an
error-free situation. The continuous black horizontal bars represent
groups of cosegregating markers (twins) unresolvable by recombination
due to low local recombination rate and small population size. In the
simulated example, much higher marker density is shown for the peri-
centromeric (C) compared to subtelomeric regions (Т1 and Т2). (b) Dis-
turbed distribution of markers due to genotyping errors that lead to
disruption of some twin groups; markers with genotyping errors (shown
in gray) may cause map length inflation if included in the map. (c) Skeletal
map based on representatives of twin groups remained despite the “los-
ses” of markers caused by genotyping errors. (d) Recovering a part of
dissipated twin groups by cluster analysis.
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set of markers into clusters in such a way that the sum of
distances of markers to themeans of their clusters, taken over
all clusters, will be minimal (File S4). This enables covering
the chromosomal regions with relatively high recombination
rates, where the joint effect of an increased proportion of
false (due to errors) “recombinants” and lower real density
of markers per centimorgan may lead to a negligible propor-
tion of the remaining TGs. With this approach, we select a
representative marker from each cluster (the marker closest
to the centroid) and use these representatives as additional
candidate markers. This approach enables good-quality maps
to be built even under the paucity or absence of TGs (due to
genotyping errors) in datasets with high error rate. After
selection of markers representing the obtained clusters, the
next steps are identical to those described above for the twin
approach, i.e., resampling-based detection and removal of
markers violating map stability and monotonicity combined

with saturating the skeletal map by filling in the gaps wher-
ever possible (see Figure 2).

Although a priori we cannot know which of the two fore-
going situations (low or high level of genotypic errors) is
characteristic of the target mapping project, it is easy to ad-
dress this question by a trial analysis and evaluate the num-
ber of TGs and the chromosomal distribution of twin sizes,
and thereby to assign the project to the first or second class.
Obviously, before starting the mapping analysis, trivial pre-
liminary removal of low-quality data is needed based on the
level of missing data and deviation of segregation ratios from
the expected ones. In reality, the foregoing two situations, with
high vs. negligible number of twins, may take place simulta-
neously within the same chromosome. As noted above, this
may happen due to the effect of centromere and heterochro-
matin blocks on recombination. To dealwith such situationswe
employ a hybrid procedure (see Figure 2).

Figure 2 The scheme of the proposed strategy for building ultradense genetic maps. The major difference from other approaches and our previous
algorithm is the proposed premapping filtering (Filter 2) based on twins and clusters of tightly linked markers.
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Characterizing the quality of constructed maps

In the analysis of simulated data, to characterize the quality
of maps constructed using different algorithms or different
parameter settings of the same algorithm, we employ as a
reference the map representing the “true” (simulated) order
of markers, corresponding to the ideal error-free case with no
missing data points. Then, the best algorithm is the one that
generates a solution closest to the simulated order. Several
parameters were used to assess the map quality. Bearing
in mind that in a simulation study we do know the true order,
the simplest score of map quality would be the coefficient of
recovery (Cr), as described in Mester et al. (2003). Upon
error-free genotyping, many markers are expected to cose-
gregate due to a high ratio of the total number of markers to
population size, leading to the limited use of Cr because it
does not take into account the fact that genotyping errors and
missing marker scores can lead to fissions of TGs into groups
of a smaller size (see Results). Thus, instead of Cr we employ
two other characteristics: (a) ne, the number of errors in the
order of markers compared to the simulated order (we con-
sider as an error each situation when the marker’s original
rank in the constructed skeletalmap is higher than the rank of
the next marker in the map); and (b) nr, the number of “re-
peats” resulting from the separation of the initial groups of
cosegregating markers into subgroups due to genotyping er-
rors and missing marker calls; such repeats will appear in the
constructed skeletal map at separate (usually, but not neces-

sarily, adjacent) positions. Figure 3, a and b illustrates the
calculation of ne and nr. Numbers from 1 to 9 are the numbers
of cosegregating groups in the simulated map; the figure
shows the estimated order of noisy marker data. But the de-
gree of deviation from the true order in the skeletal map is
only a partial characteristic of the map quality; map coverage
(mc) is another important score (Figure 3, c and d). Addi-
tional quality scores used in our analysis included: loss factor
lf (%), which is the percentage of lost (noncharacterized)
unique marker positions in the constructed map compared
to the simulated map: lf = 100 [Nskef 2 (Nsk 2 nr)]/Nskef,
whereNskef andNsk are the number of intervals in the skeletal
maps built for the simulated error-free and noisy markers.

In addition to simulated data, we demonstrated our ap-
proaches on several wheat chromosomes using data gener-
ated using the 90 K iSelect SNP genotyping assay for
150 doubled haploid (DH) wheat lines (Wang et al. 2014).

Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article and in the Supplemental Material.

Results

Both procedures considered in this paper are based on select-
ing a subset of most informative markers, referred to as

Figure 3 Illustration of complicating factors causing the need for introduced parameters (ne, nr, and mc) as characteristics of map quality for simulated
data: errors and repeats as indicated by thin and thick lines, respectively (here, ne = 12 and nr = 3). (a) A fragment of a simulated map with nine ordered
markers each representing a twin group. (b) The simulated noise (missing data points and genotyping errors) cause the following changes: (i) some twin
groups undergo weak or zero disturbance implying stability of the corresponding skeletal markers (markers #1 and #5); (ii) for some markers (#2 and #3)
the disturbance caused a slight change in the order; (iii) the noise caused disintegration of twin groups (represented by markers #7 and #8 in the
simulated map) into subgroups with sizes fitting the condition ts $ ts0 for selection of candidate skeletal markers; the generated repeat markers
contributed to the number of errors in the map; and (iv) disintegration of twin groups in such a way that none of the resulting subgroups obeys the
condition ts $ ts0 (markers #4 and #6). (c) Simulated genetic map (with no disturbances); L1 and L2 represent the distances (in centimorgans) between
markers mi and mj, and between m1 and mn, respectively. (d) Constructed genetic map where the first position is represented by a marker that in the
simulated map was at the ith position (marker mi), while the last position is represented by a marker that in the simulated map was at the jth position
(marker mj). Map coverage for a map constructed either for error-free or noisy simulated data is calculated as mc (%) = 100L1/L2.
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“skeletal” markers, as a basis for constructing a quality genetic
map (Mester et al. 2003, 2004, 2010; Ronin et al. 2010). In
the first procedure, the selected subset of markers for the
skeletal map is comprised of “delegate”markers representing
TGs. In the second procedure, when the proportion of TGs
becomes small, we cluster markers into nonoverlapping sub-
sets, e.g., using k-means or other algorithms (Bishop 1995;
Strandova-Neeley et al. 2015); markers with minimal aver-
age distance to all other markers of such a subset serve as
delegates. In reality, upon moderate level of genotyping er-
rors the two situations may coexist within the same project,
e.g., with considerable and very low proportions of cosegre-
gating markers in near-centromeric regions (due to low cen-
timorgan/megabase pair) and subtelomeric regions (due to
high centimorgan/megabase pair), respectively. Therefore, in
the present examples, we illustrate the proposed analytical
schemes on the two types of practically important situations:
(i) with the low level of genotyping errors (hence high pro-
portion of TGs); and (ii) with a relatively high level of errors
(hence much lower proportion of TGs) justifying the efforts
to look for the representatives of “fuzzy TGs” by using cluster
analysis. For both situations, we consider simulated data as
well as real data on wheat.

Analysis of simulated data

Although one of the effects of missing data in error-free
genotyping data is the reduction in the number of TGs, a
nonzero but small level of errors leads to an increase in the
number of TGs (Table S7; for comparison see File S5, File S6,
Table S5, and Table S6 in File S1with results for “no-missing”
situations). Nevertheless, a further increase in the error rate
reverses the direction of changes in the number and size of
TGs, and thereby in the number of and confidence in the
selected candidate skeletal markers. Thus, qualitatively the
effect of missing genotype calls does not change the main
conclusions reached for “no missing” situation. With the in-
creased level of genotyping errors, a more liberal threshold
ts0 should be chosen compared to the situations with low
error rate. In Table 1, for a population of size n = 200 with
two levels of errors (1 and 2%), we show how the results of
the described map construction procedure depend on the
choice of ts0 for different numbers of available markers per
chromosome. As expected, for datasets with higher pe, a more
liberal choice of ts0 should be recommended compared to the
datasets with lower pe. The observed distribution of the num-
bers of groups of size 2, 3, 4 etc. can serve as a diagnostic
characteristic of the underlying real situation.

A more detailed analysis of the joint effect of genotyping
errors andmissing data on the quality of the skeletal map and
its regions with high and low recombination density (sub-
telomeric vs. peri-centromeric) is provided in Table S8. For
that, in addition to the regional characteristics of map length
(L, Lt1, Lt2, and Lc) and number of markers (Nsk, Nt1sk, Nt2sk,
and Ncsk), we also employed the proportion of lost unique
map positions (lf) compared to the simulated map; the cov-
erage level of the skeletal map (mc); the number of errors and

repeats (ne and nr); and map density represented by the ratio
of the map length (for the entire chromosome and/or its
segments) to the number of intervals (d and/or dt1, dt2, dc)
(for explanation see Figure 3 and File S2). The main findings
can be summarized as follows:

Proportion of lost unique positions in the skeletal map (lf):
With increase in the level of genotyping errors (from 0.005 to
0.02) andmissing data-points (from 0 to 20%), the lost factor lf
increased monotonically with ts0 and varied from 10 to 70%
independently on the number of markers within the analyzed
range Nm = 104 2 4 3 104 (see also Table S6).

Map coverage (mc): For the entire range of parameters, mc

was higher than 97%, excluding the cases with simulta-
neously maximal values of pe and ts0. In such cases, the pro-
portion of TGs may become very small (not sufficient to
recruit candidates for a skeletal map), especially in regions
with high centimorgan/megabase values. Such situations re-
quire the complementation of twin markers by markers rep-
resenting the clusters of tightly linked but not cosegregating
markers (see below).

Map density: Map density decreased (d increased) with the
increased level of genotyping errors pe and the chosen thresh-
old ts0, especially in the subtelomeric regions, due to a higher
level of error-driven degradation of TGs. On average, a 2–2.5
increase in d was observed for the maximal considered level
of genotyping errors pe = 0.02.

Table 1 Effect of the selected threshold for minimal twin group
size ts0 on the skeletal map length under low and moderate rates
of genotyping errors and 20% of missing data points

Map Initial
After

cleaning
After

saturation

dpe Nm ts0 Nsk L Nsk L Nsk L

0.01 104 4 349 384.2 81 172.1 99 171.8 1.8
6 128 221.0 65 173.8 77 174.9 2.3
8 108 237.0 47 175.5 65 174.2 2.7

0.02 3 237 397.8 58 207.3 71 187.9 2.7
4 102 213.8 38 128.8 47 126.6 2.8

0.01 2 3 104 6 398 472.1 97 216.1 111 217.1 2.0
8 256 357.9 91 219.9 104 217.4 2.1

10 178 307.3 71 205.8 83 201.7 2.5
0.02 4 305 406.4 85 208.0 103 200.9 2.0

5 175 333.6 57 207.6 73 194.3 2.7
6 110 200.6 42 135.1 56 132.5 2.4

0.01 4 3 104 10 377 461.7 140 244.7 150 253.2 1.7
12 281 399.4 110 244.7 120 243.5 2.0
16 195 339.0 95 245.0 108 248.4 2.3

0.02 6 289 446.0 89 262.4 115 249.1 2.2
8 157 364.9 67 272.9 83 254.4 3.1

10 94 323.6 50 283.0 67 252.2 3.8

Simulated map length was L = 191.3, 214.6, and 273 cM for populations with Nm =
104, 2 3 104, and 4 3 104 markers, respectively; pe, level of genotyping errors per
marker locus; ts, twin group size, ts0, threshold ts value: skeletal markers should
obey the condition ts $ ts0; Nsk, number of intervals in the map; Nm, number of
markers per LG in the initial dataset; d, map density (the ratio of the entire chro-
mosome map length to the number of intervals).
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Number of “repeats” (nr) in the map: As explained in the
Materials and Methods and illustrated in Figure 3, genotyping
errors andmissing data calls may lead to dissociation of a part
of the initial TGs into subgroups; representatives of such sub-
groups appear in the constructed skeletal map at separate
(usually, but not necessarily, adjacent) positions. Table S8
shows that an increase in the chosen ts0 results in lower nr,
implying more efficient filtration in favor of better markers.

Errors in the order of markers (ne): In the resulting skeletal
maps, ne was rather small. Yet, attempts to compensate the
effect of high pe by choosing too stringent ts0 may lead to a
considerable increase of ne due to a drop in the number of
skeletal markers and map coverage.

Two approaches can be used if a small number of TGs (i.e.,
candidate skeletal markers) and low coverage were obtained
for the chosen ts0: (i) reduce ts0, thereby increasing the num-
ber of TGs; and (ii) recruit additional candidate markers
based on the k-means or similar clustering procedures (see
Materials and Methods). With a low level of genotyping er-
rors, the first approach may be sufficient, at least for genomic
regions with a relatively low centimorgan/megabase ratio; in
combination with the second approach it may enable solving
the problem for the whole genome. However, with a high
level of errors, the number of TGs may be too small even at
ts0 = 2. In this case, the second approach can be used as a
major source of candidate skeletal markers. These consider-
ations are reflected in the examples present in Table 2, where
combined analysis enabled considerable improvement of the
map coverage and reducing the proportion of lost map
unique positions.

Thedecrease in thenumberofTGsmayalsobecausedbyan
increase in the population size (n). Indeed, we have noted
above that even for the small level of genotyping errors, an

increase in n leads to a decrease in the size of the TGs. In
Table 3, we show the effect of population size on map char-
acteristics for error-free data and moderate level of genotyp-
ing errors (pe = 0.01) and missing data points (ms = 20%).
For n=200, the twin approachwas sufficient to build a good-
quality map, but for n = 500 it became impractical due to a
catastrophic decrease in the number of TGs in the subtelo-
meric regions. Therefore, the map was constructed using the
combination of twin approach and clustering. And finally, for
n= 1000, only a clustering approach was suitable. It is note-
worthy that despite the growing proportion of lost markers lf
(%), the number of markers in and the genetic length of the
constructed skeletal maps also growwith the population size.
The last effect results from the known fact that genotyping
errors lead to map length inflation.

Analysis of empirical datasets

As was shown above, genotyping errors can result in a de-
crease in thenumber of TGs reducing thenumber of candidate
markers for the skeletal map. Therefore, the usage of some of
the standard mapping algorithms with the large number of
markers can result in maps with inflated intermarker dis-
tances. The ability of our approaches to effectively deal with
the high-density marker datasets was demonstrated by com-
paring the maps constructed for several wheat chromosomes
using the MST algorithm (Wang et al. 2014) and the twin
approach (Table 4). The lengths of MST-maps were 2–3
times longer than those constructed using the twin method
and strongly disagreed with chiasma frequencies (�1.7–2.5/
bivalent) as cytogenetics characteristics of meiotic recombi-
nation in wheat (e.g., Feldman 1966; Koul et al. 2000). For
chromosome 2A, in spite of the high estimated coefficient of
MST-map coverage (0.994) by the markers from the UDM-
map, we observed substantial differences in the estimates of

Table 2 Improvement of the skeletal map using the hybrid approach (tw_cl) for selecting candidate markers as compared to twin
selection

Method pe ts0 Lt1 Nt1sk dt1 Lc Ncsk dc Lt2 Nt2sk dt2 L Nsk d ne nr mc% lf %

Nm =104

tw 0.01 8 57 11 5.2 38 34 1.1 79 19 4.2 174 64 2.7 2 3 0.96 57
tw_cl 0.01 8 61 20 3.1 41 39 1.0 82 25 3.3 184 84 2.2 2 8 0.98 47
tw 0.02 4 30 7 4.3 48 33 1.4 49 6 8.2 127 46 2.8 1 8 0.72 74
tw_cl 0.02 4 74 17 4.4 47 33 1.4 87 22 4.0 208 72 2.9 1 15 0.97 61
Nm = 2 3 104

tw 0.02 6 58 12 4.8 49 36 1.4 26 7 3.7 133 55 2.4 6 4 0.72 72
tw_cl 0.02 6 62 14 4.4 48 34 1.4 89 20 4.5 199 68 2.9 5 6 0.98 65
Nm = 4 3 104

tw 0.02 10 87 15 5.8 57 38 1.5 108 13 8.3 252 66 3.8 16 5 0.92 71
tw_cl 0.02 10 92 21 4.4 74 37 2.0 106 25 4.2 255 83 3.1 2 6 0.98 64

pe, level of genotyping errors per marker locus; Nm, number of markers per LG in the initial dataset; ts, twin group size; ts0, threshold ts value: skeletal markers should obey
the condition ts $ ts0; in all tw_cl variants, the threshold kernel radius was r = 0.04 (for description see File S4); L, Lt1, Lt2, and Lc, the estimated genetic lengths (in
centimorgans) of the entire chromosome map and its subtelomeric and near-centromeric regions, while Nsk, Nt1sk, Nt2sk, and Ncsk are the corresponding numbers of intervals
of the entire map and its subtelomeric and peri-centromeric regions; d, dt1, dt2, and dc, map density (centimorgan/interval) of the entire map and its subtelomeric and peri-
centromeric regions; ne, the number of errors in the estimated order of markers compared to the simulated order; nr, the number of “repeats” caused by fission of the initial
TGs into subgroups due to genotyping errors and missing marker scores; mc (%), map coverage, which represents the proportion of the constructed skeletal map length
relative to the simulated map length; lf (%), loss factor, the percentage of lost (noncharacterized) map unique positions in the constructed skeletal map compared to the
simulated map; it is calculated as lf = 100 [Nskef 2 (Nsk 2 nr)]/Nskef, = 100 (Nskef 2 Nsk + nr)/Nskef, where Nskef represents the number of intervals in the skeletal maps built for
the simulated error-free data, while Nsk and (Nsk 2 nr) represent the number of noisy markers in the skeletal map, noncorrected and corrected for the number of repeats,
respectively.
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genetic distances between themarkers (Table S9). Moreover,
the number of identified unique recombination map intervals
(bins) was substantially higher in the MST-map (220 bins)
than in the UDM-map (125 bins). More than half of the
MST-map bins contained a single marker, whereas on the
UDM-map only three bins had single markers. Considering
the size of the DH population, it is unlikely that the inferred
number of unique recombination bins on the MST-map is
real; most likely it is caused by genotyping errors resulting
in the overestimation of the recombination rate by MST.
Therefore, hundreds of bins or more on the MST-map are
represented by the replicated cosegregating markers that
should be excluded from the map. While it is possible that
some of these single markers do capture unique recombina-
tion events not accounted for in the final UDM-map, the us-
age of our approach would exclude hundreds of erroneously
identified unique recombination events.

As a further complication of the considered example, the
set of 26,000 markers generated based on the 90 K iSelect
platform was merged with a set of �421,000 markers
obtained using genotyping-by-sequencing (GBS) for the
same population (Saintenac et al. 2013). Some of the GBS
markers were used as usual two-allele SNPs, but the majority
were of presence-absence type, representing either M6 or
Opata alleles. The combined dataset was filtered to exclude
markers with too high a level of missing scores (.40) and too
high segregation distortion (x2 . 35), leaving �130,400 for
further analysis. This set was analyzed using a twin approach
with ts0 = 4. After removal of markers violating map stability
and monotonicity (Ronin et al. 2010), followed by map sat-
uration with markers from smaller size TGs and singleton
markers, the total number of skeletal markers was 1481. As
an illustration, we provide here only the results for the 2B
chromosome. The number of skeletal markers in the obtained
map of 158.5 cM length was 81 (total number of markers was
526 when cosegregating markers were taken into account)
(Figure S1). If we also attach markers for which intervals of

2B are their best location (but their inclusion in the skeletal
markers would considerably reduce the map quality), then
the total number of markers associated with 81 markers of
the 2B skeletal map will be 2241 (Table S10).

Comparing MST and UDM algorithms on simulated data

For comparison, we employed a double haploid mapping
population withM= 2000 markers positioned on 84 separa-
ble by recombination positions (for population size n= 200)
of the simulated chromosome of L = 136.8 cM (Kosambi
metric). As can be seen from the results in Table 5, for both
levels of missing data (0 and 10%), the MST map undergoes
an increase in the number of map bins and inflation of the
map length growing with the rate of genotyping errors. This
was the case even for error rates as small as 0.001: i.e., 30–
35% for L and 70–110% for bin number increases as com-
pared to simulated parameters. For a more realistic error
level (1%), the corresponding numbers were: 400–450%
for L and 750–900% for bin number. Unlike MST, the length
of maps constructed with our approach practically does not
vary with the error rate and remains remarkably close to the
simulated map despite one order of magnitude in variation of
genotyping error rate. Interestingly, the obtained results fit
rather well the patterns observed in the above examples on
real data from wheat, especially for chromosomes 2B and 5A
(see Table 4), suggesting that the rate of genotyping errors in
that data could be �1–2%. Additional important criteria that
we used to assess the quality of maps constructed for simu-
lated data were nr (the number of “repeats”) and lf (percent-
age of lost unique positions in the constructed skeletal map
compared to the simulated map) (see Materials and Methods
and File S2). As can be seen from Table 5, even in the worst
cases, the number of repeats does not exceed the rate of one
repeat per 3–4 skeletal markers. For MST, a lower bound
estimation of nr varies with the number of bins, from 2 to
10 repeats per marker. With our approach, the proportion of
lost unique positions in the considered examples is a growing

Table 3 The effect of population size (n) on map characteristics

ms% pe ts0 r Lt1 Nt1sk dt1 Lc Ncsk dc Lt2 Nt2sk dt2 L Nsk d ne nr mc% lf%

Nm = 104, n = 200
0 0 67 41 1.6 41 64 0.6 82 39 2.1 191 144 1.3 0 0 100 0
20 0.01 6 58 18 3.2 39 40 1.0 78 18 4.3 175 76 2.3 3 7 99.5 52
Nm = 104, n = 500
0 0 84 47 1.8 37 118 0.3 85 52 1.6 206 217 0.9 0 0 100 0
20 0.01 3 0.01 94 33 2.8 38 42 0.9 89 28 3.2 238 103 2.3 1 10 100 57
Nm = 104, n = 103

0 0 73 55 1.3 40 194 0.2 85 65 1.3 198 314 0.6 0 0 100 0
20 0.01 2 0.01 86 27 3.2 85 66 1.3 107 38 2.8 278 131 2.1 2 12 100 62

pe, level of genotyping errors per marker;ms, simulated rate of missing data per marker; Nm, number of markers per LG in the initial dataset; ts, twin group size, ts0, threshold
ts value: skeletal markers should obey the condition ts$ ts0; r, kernel radius; L, Lt1, Lt2, and Lc, the estimated genetic lengths (in centimorgans) of the entire chromosome map
and its subtelomeric and near-centromeric regions, while Nsk, Nt1sk, Nt2sk, and Ncsk are the corresponding numbers of intervals of the entire map and its subtelomeric and
peri-centromeric regions; d, dt1,dt2, and dc, map density (centimorgan/interval) of the entire map and its subtelomeric and peri-centromeric regions; ne, the number of errors
in the estimated order of markers compared to the simulated order; nr, the number of “repeats” caused by fission of the initial TGs into subgroups due to genotyping errors
and missing marker scores; mc (%), map coverage, which represents the proportion of the constructed skeletal map length relative to the simulated map length; lf (%), loss
factor, the percentage of lost (noncharacterized) map unique positions in the constructed skeletal map compared to the simulated map; it is calculated as lf = 100 [Nskef 2
(Nsk 2 nr)]/Nskef, = 100 (Nskef 2 Nsk + nr)/Nskef, where Nskef represents the number of intervals in the skeletal maps built for the simulated error-free data, while Nsk and (Nsk 2 nr)
represent the number of noisy markers in the skeletal map, noncorrected and corrected for the number of repeats, respectively.
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function of the error rate and missing data calls (lf varied
from 5 to 40%). Obviously, the increase of lf is an unavoidable
cost for the noise caused by errors when our attitude is to
employ error filtration for getting maps with a minimum
number of errors in the reconstructed order of markers. An
attempt to keep as many markers as possible leads to maps
with unrealistic length and rather questionable marker order.

Discussion

The increase in the number ofmarkers by orders ofmagnitude
achievable by the new technologies (GBS, RAD-seq, RNA-seq,
etc.) was perceived as a breakthrough that enables building
quality ultradense genetic maps. This expectation, being ba-
sically correct, may practically be far from reality, due to
difficulties caused by genotyping errors, missingmarker calls,
strong intrachromosomal variation in recombination density,
etc. These factors may lead to biased estimates of recombina-
tion rates and wrong marker orders, especially for markers
with increased error load. Obviously, if the marker set is
small, there are few possibilities for filtering and most of
the markers will have to remain in the map even if the map
lengths are inflated. However, high-throughput genotyping
provides an ample amount of data that can be filtered to
obtain high-quality datasets. The application of technology-
specific filtering and use of appropriate quality controls is the
first step for generating reliable data usable for map construc-
tion. At the level of genotyping datasets, data filtering not
only allows the detection and removal of markers with high
segregation distortion and massive losses of data but it is also
possible to detect and remove markers violating local map
stability by using jackknife resampling (Mester et al. 2003;
Ronin et al. 2010). Another quality test is detection of non-
monotonicity of recombination rates along themap, although
in some cases such deviation may be caused by negative in-
terference (Denell and Keppy 1979; Peng et al. 2000; Korol
et al. 2009; Aggarwal et al. 2015). Themethod of premapping
filtering described in this paper is based on the idea that with
very large numbers of scoredmarkers, manymarkers remain-
ing irresolvable by recombination and appearing as twin
groups (TGs) exceeding certainminimal preset threshold size
ts0 can be trusted more than singleton markers or markers
from smaller size TGs. Simple analysis shows the importance
of making proper decisions about ts0 for selecting trustable

markers for the skeletal map. We are rather skeptical with
respect to some alternative approaches that first build a trial
genetic map and then apply different ways of marker correc-
tion followed by subsequent map correction. With a higher
level of errors, the proportion of error-free markers may be-
come negligible. To cover such situations as well, we employ
a generalization of the twin approach based on analysis of the
geometry of the n-dimensional space of markers of the map-
ping population with each marker being presented as a point.
With such presentation, the genotyping errors lead to dissi-
pation of TGs, so that the resulting marker agglomerations
are “blurred” around the positions of the (unobservable be-
cause of errors) initial points corresponding to the error-free
situation. Therefore, with a higher level of errors we employ
an additional filtration: after the TGs exceeding the threshold
size ts0 are selected as candidates for the skeletal map,
we conduct clustering of the remaining markers by a proce-
dure similar to the k-means algorithm. Then, representative
markers of clusters are added to the set of selected candidates
for building the skeletal map. The next steps include resam-
pling-based detection and removing markers of violation of
local map stability and monotonicity combined with satura-
tion of the skeletal map by filling in the gaps wherever pos-
sible (Ronin et al. 2010). An important factor in getting a
high-quality map from the available data given the known
parameters (population size, total number of markers, and
missing data) is the choice of threshold value (ts0) for TG size
and initial radius r in the clustering procedure. Although both
these parameters should depend on a priori unknown rate of
genotyping errors pe, several trials should usually be enough
to clarify the situation and allow a rational choice to be made
(as illustrated in Results).

Likeother approaches, our analysis starts frompremapping
filtering based on simple criteria (segregation distortion and

Table 5 Comparison of the proposed approach implemented in
MultiPoint-UDM (MUDM) software with MST on a simulated
double haploid population (of size 200 with 2000 markers per
chromosome)

ms% 0 10

pe 0.001 0.005 0.01 0.001 0.005 0.01

MST LcM 180 294 750 186 408 691
Bins 146 291 708 177 513 862

MUDM LcM 134 134 137 131 135 132
Nsk 81 75 58 75 86 64
nr 1 3 1 6 20 14
lf % 4.8 14.3 32.1 17.9 21.4 40.5

pe, level of genotyping errors per marker; ms, simulated rate of missing data per
marker; LcM, map length (in centimorgans) of a chromosome or LG; lf (%), loss
factor, which represents the percentage of lost (noncharacterized) map unique
positions in the constructed skeletal map compared to the simulated map; it is
calculated as lf = 100 [Nskef 2 (Nsk 2 nr)]/Nskef, = 100 (Nskef 2 Nsk + nr)/Nskef, where
Nskef is the number of intervals in the map built for the simulated error-free data,
while Nsk and (Nsk 2 nr) are the number of noisy markers in the skeletal map,
noncorrected and corrected for the number of repeats, respectively; nr, the number
of “repeats” resulting from fission of the initial groups of cosegregating markers
into subgroups due to genotyping errors and missing marker scores; such repeats
will appear in the constructed map at separate (usually, but not necessarily, adja-
cent) positions.

Table 4 Comparison of genetic maps constructed using the MST
and twin approach implemented in the MultiPoint-UDM (MUDM)
software

MST bins L (cM)

Chr Nm All Singletons MST MUDM Nsk

2A 862 217 125 813.9 181.7 60
2B 1674 317 176 795.4 190.0 81
5A 1556 296 167 787.7 156.7 67
7A 930 269 151 633.8 225.7 78

L, map length using Kosambi metric; Nsk, number of intervals of the map; Nm,
number of markers per LG in the initial dataset.
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missing data). Like other approaches, we also reduce the size
of the target dataset by removing redundancy (by represent-
ing TGs by single markers). However, unlike others, we take
advantage of the information onmarker quality hidden in the
structure of the multidimensional marker space, in particular
in the sizes of TGs as well as in “derivatives” of such groups
resulting from dissipation due to genotyping errors and miss-
ing data. Depending on genotyping quality, the number of
available markers, and the population size, the number of
confidently ordered skeletal markers may vary from several
tens to several hundreds per chromosome. Yet, markers “rep-
resented” by the skeletal markers (i.e., their cosegregants)
plus centroid markers from the blurred clusters and markers
attached to the closest intervals of the skeletal map (but not
included, to prevent map length inflation) may reach tens or
even hundreds of thousands. The described system is imple-
mented in the interactive user-friendly software MultiPoint-
UDM (MUDM) for building ultradense genetic maps for
controlled crosses (backcross, doubled haploids, F2, RIL pop-
ulations); further development will also include F1 progeny
of outbred species and multi-parental populations. Our ap-
proach for premapping filtering, together with previously de-
veloped algorithms (Mester et al. 2003; Ronin et al. 2010)
implemented in the MultiPoint software, enable quality ge-
netic maps to be built, with realistic map length and reliable
marker orders (e.g., Avni et al. 2014; Reddy et al. 2014). A
trial version for Windows with simulated examples can be
downloaded using the link: http://evolution.haifa.ac.il/images/
stories/Software/MultiPointUltradense_Demo.zip.

The proposed approach for building high-quality dense
genetic maps with a possibility of dealing with big datasets of
SNPsmay behelpful in addressing awide range of genetic and
genomic problems. We list below just a few for illustration.
Although several tens of markers per chromosome may be
enough for usual applications of linkage mapping of trait loci
(Mendelian or quantitative) based on biparental mapping
populations, for association mapping and genomic selection
the requirements are much more challenging, especially
in situations with steep decay of linkage disequilibrium.
Similarly, for map-based cloning, a high density of markers
is needed to get as close as possible to the target candidate
gene, implying the availability of an accurate dense map.
Dense genetic maps were successfully used for anchoring
physical contigs (Raats et al. 2013) and sequence scaffolds
(Mascher and Stein 2014) to LGs and controlling the quality
of sequence assembly (Hedgecock et al. 2015; Zeng et al.
2017). High-coverage shotgun sequencing in combination
with new analytical tools of sequence scaffolding, ultradense
mapping, and three-dimensional chromosome-conformation-
capture-sequencing data was successfully used for high-
quality sequencing of such a big and complex genome as
wheat (https://www.wheatgenome.org/News2/RefSeq-
v1.0-URGI). High-quality dense genetic maps have become
a powerful tool for detailed analysis of recombination geno-
mic distribution, sex dependence, genetic variation, and ge-
netic control (Bauer et al. 2013; Rodgers-Melnicka et al.

2015; Ross et al. 2015; Li et al. 2016; Tsai et al. 2016), and
genome comparisons of related species (Hill et al. 2015).
Obviously, high-quality dense genetic maps are vital for suc-
cessful use of genomemapping in these and numerous other
applications in nonmodel organisms, where validated ge-
nome sequences are currently not available. We believe that
such studies will benefit from using the approach described
here.
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