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ABSTRACT FST is one of the most widely used statistics in population genetics. Recent mathematical studies have identified constraints
that challenge interpretations of FST as a measure with potential to range from 0 for genetically similar populations to 1 for divergent
populations. We generalize results obtained for population pairs to arbitrarily many populations, characterizing the mathematical
relationship between FST; the frequency M of the more frequent allele at a polymorphic biallelic marker, and the number of subpop-
ulations K. We show that for fixed K, FST has a peculiar constraint as a function ofM, with a maximum of 1 only ifM ¼ i=K; for integers
i with ⌈K=2⌉# i#K2 1: For fixed M, as K grows large, the range of FST becomes the closed or half-open unit interval. For fixed K,
however, some M, ðK2 1Þ=K always exists at which the upper bound on FST lies below 2

ffiffiffi
2

p
2 2 � 0:8284: We use coalescent

simulations to show that under weak migration, FST depends strongly onM when K is small, but not when K is large. Finally, examining
data on human genetic variation, we use our results to explain the generally smaller FST values between pairs of continents relative to
global FST values. We discuss implications for the interpretation and use of FST:
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GENETIC differentiation, in which individuals from the
samesubpopulationaremoregenetically similar thanare

individuals fromdifferent subpopulations, is a central concept
in population genetics. It can arise from a large variety of
processes, including fromaspects of the physical environment
suchasgeographicbarriers, variablepermeability tomigrants,
and spatially heterogeneous selection pressures, as well as
from biotic phenomena such as assortative mating and self-
fertilization. Genetic differentiation among populations is
thus a pervasive feature of population-genetic variation.

To measure genetic differentiation, Wright (1951) intro-
duced the fixation index FST; defined as the “correlation
between random gametes, drawn from the same subpopula-
tion, relative to the total.”Many definitions of FST and related
statistics have since been proposed (reviewed by Holsinger
and Weir 2009). FST is often defined in terms of a ratio in-
volving mean heterozygosity of a set of subpopulations, HS;

and “total heterozygosity” of a population formed by pooling
the alleles of the subpopulations, HT (Nei 1973):

FST ¼ HT 2HS

HT
: (1)

For apolymorphic biallelicmarkerwhosemore frequent allele
has mean frequency M across K subpopulations, denoting by
pk the frequency of the allele in subpopulation k, HS ¼
12 ð1=KÞPK

k¼1½p2k þ ð12pkÞ2� and HT ¼ 12 ½M2 þ ð12MÞ2�
FST and related statistics have a wide range of applica-

tions. For example, FST is used as a descriptive statistic whose
values are routinely reported in empirical population-genetic
studies (Holsinger and Weir 2009). It is considered as a test
statistic for spatially divergent selection, either acting on a
locus (Lewontin and Krakauer 1973; Bonhomme et al. 2010)
or, using comparisons to a corresponding phenotypic statistic
QST; on a trait (Leinonen et al. 2013). FST is also used as a
summary statistic for demographic inference, to measure
gene flow between subpopulations (Slatkin 1985); or via
approximate Bayesian computation, to estimate demographic
parameters (Cornuet et al. 2008).

Applications of FST generally assume that values near 0
indicate that there are almost no genetic differences
among subpopulations, and that values near 1 indicate that
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subpopulations are genetically different (Hartl and Clark
1997; Frankham et al. 2002; Holsinger and Weir 2009).
Mathematical studies, however, have challenged the simplic-
ity of this interpretation, commenting that the range of values
that FST can take is considerably restricted by the allele fre-
quency distribution (Table 1). Such studies have highlighted
a direct relationship between allele frequencies and con-
straints on the range of FST through functions of the allele
frequency distribution such as the mean heterozygosity
across subpopulations, HS: The maximal FST has been shown
to decrease as a function of HS; both for an infinite (Hedrick
1999) and for a fixed finite number of subpopulations K$ 2
(Long and Kittles 2003; Hedrick 2005). Consequently, if sub-
populations differ in their alleles but separately have high
heterozygosity, then HS can be high and FST can be low; FST
can be near 0 even if subpopulations are completely geneti-
cally different in the sense that no allele occurs in more than
one subpopulation.

Detailed mathematical results have clarified the rela-
tionship between allele frequencies and FST in the case of
K ¼ 2 subpopulations. Considering a biallelic marker,
Maruki et al. (2012) evaluated the constraint on FST by
the frequency M of the most frequent allele: the maximal
FST decreases monotonically from 1 to 0 with increasing
M, 1=2#M, 1: Jakobsson et al. (2013) extended this re-
sult to multiallelic markers with an unspecified number of
distinct alleles, showing that the maximal FST increases
from 0 to 1 as a function of M when 0,M, 1=2; and
decreases from 1 to 0 when 1=2#M, 1 in the manner
reported by Maruki et al. (2012). Edge and Rosenberg
(2014) generalized these results to the case of a fixed finite
number of alleles, showing that the maximal FST differs
slightly from the unspecified case when the fixed number
of distinct alleles is odd.

In this study, we characterize the relationship between FST
and the frequencyM of the most frequent allele, for a biallelic
marker and an arbitrary number of subpopulations K. We
derive the mathematical upper bound on FST in terms of M,
extending the biallelic two-subpopulation result to arbitrary
K. To assist in interpreting the bound, we simulate the joint
distribution of FST and M in the island migration model, de-

scribing its properties as a function of the number of subpop-
ulations and the migration rate. The K-population upper
bound on FST as a function of M facilitates an explanation
of counterintuitive aspects of global human genetic differen-
tiation. We discuss the importance of the results for applica-
tions of FST more generally.

Mathematical Constraints

Model

Our goal is to derive the range of values FST can take, the lower
and upper bounds on FST; as a function of the frequencyM of
the most frequent allele for a biallelic marker when the num-
ber of subpopulations K is a fixed finite value $2. We con-
sider a polymorphic locus with two alleles, A and a, in a
setting with K subpopulations contributing equally to the
total population. We denote the frequency of allele A in sub-
population k by pk: The frequency of allele a in subpopulation
k is 12 pk: Each allele frequency pk lies in the interval ½0; 1�:

Themean frequency of alleleAacross the subpopulations is
M ¼ ð1=KÞPK

k¼1pk; and the mean frequency of allele a is
12M: Without loss of generality, we assume that allele A is
the more frequent allele in the total population, so that
M$ 1=2$ 12M: Because by assumption the locus is poly-
morphic, M 6¼ 1:

We assume that the allele frequencies M and pk are
parametric allele frequencies of the total population and
subpopulations, and not estimated values computed from
data.

FST as a function of M

Equation 1 expresses FST as a ratio involving within-
subpopulation heterozygosity, HS; and total heterozygosity,
HT:We substitute HS and HT in Equation 1 with their respec-
tive expressions in terms of allele frequencies:

FST ¼
1
K
PK

k¼1

h
p2k þ ð12pkÞ2

i
2
h
M2 þ ð12MÞ2

i
12

h
M2 þ ð12MÞ2

i : (2)

Simplifying Equation 2 by noting that
PK

k¼1pk ¼ KM leads to:

Table 1 Studies describing the mathematical constraints on FST

Reference Number of alleles Number of subpopulations
Variable in terms of which
constraints are reporteda

Hedrick (1999) unspecified value $ 2 N HS

Long and Kittles (2003) unspecified value $ 2 fixed finite value $2 HS

Rosenberg et al. (2003) 2 2 d

Hedrick (2005) unspecified value $ 2 fixed finite value $2 HS

Maruki et al. (2012) 2 2 HS; M
Jakobsson et al. (2013) unspecified value $ 2 2 HT; M
Edge and Rosenberg (2014) fixed finite value $2 2 HT; M
This article 2 fixed finite value $2 M

HS and HT denote the within-subpopulation and total heterozygosities, respectively. d denotes the absolute difference in the frequency of a specific
allele between two subpopulations, and M denotes the frequency of the most frequent allele.
a Instead of heterozygosities HS or HT; some studies consider homozygosities JS ¼ 12HS or JT ¼ 12 JT:
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FST ¼

 
1
K

XK
k¼1

p2k

!
2M2

Mð12MÞ : (3)

For fixed M, we seek the vectors ðp1; p2; . . . ; pKÞ; with
pk 2 ½0; 1� and ð1=KÞPK

k¼1pk ¼ M; that minimize and maxi-
mize FST:

We clarify here that in mathematical analysis of the re-
lationship between FST and allele frequencies, we adopt an
interpretation of FST as a “statistic” that describes a mathemat-
ical function of allele frequencies rather than as a “parameter”
that describes coancestry of individuals in a population.Multiple
interpretations of FST exist, giving rise to different expressions
for computing it (e.g., Nei 1973; Nei and Chesser 1983; Weir
andCockerham1984;Holsinger andWeir 2009). Our interest is
in disentangling properties of the mathematical function by
which true allele frequencies are used to compute FST from
the population-genetic relationships among individuals and
sampling phenomena that could be viewed as affecting the
computation. As a result, it is natural to follow the statistic in-
terpretation that has been used in earlier scenarios involving FST
bounds in relation to allele frequencies viewed as parameters,
rather than as estimates or outcomes of a stochastic process
(Table 1), and in which such a disentanglement is possible.
We return to this topic in the Discussion.

Lower bound

From Equation 3, for all M 2 ½1=2; 1Þ; setting pk ¼ M in all
subpopulations k yields FST ¼ 0: The Cauchy–Schwarz in-
equality guarantees that K

PK
k¼1p

2
k $ ðPK

k¼1pkÞ2; with equal-
ity if and only if p1 ¼ p2 ¼ . . . ¼ pK : Hence, K

PK
k¼1p

2
k ¼

ðPK
k¼1pkÞ2; or by dividing both sides by K2 to give

ð1=KÞPK
k¼1p

2
k ¼ M2; requires p1 ¼ p2 ¼ . . . ¼ pK ¼ M: Ex-

amining Equation 3, ðp1; p2; . . . ; pKÞ ¼ ðM;M; . . . ;MÞ is thus
the only vector that yields FST ¼ 0:We can conclude that the
lower bound on FST is equal to 0 irrespective of M, for any
value of the number of subpopulations K.

Upper bound

To derive the upper bound on FST in terms of M, we must
maximize FST in Equation 3, assuming that M and K are con-
stant. Because all terms in Equation 3 depend only onM and
K except the positive term

PK
k¼1p

2
k in the numerator, maxi-

mizing FST corresponds to maximizing
PK

k¼1p
2
k at fixedM and

K.
Denote by ⌊x⌋ the greatest integer less than or equal to x,

and by fxg ¼ x2⌊x⌋ the fractional part of x. Using a result
from Rosenberg and Jakobsson (2008), Theorem 1 from Ap-
pendix A states that the maximum for

PK
k¼1p

2
k satisfies

XK
k¼1

p2k #⌊KM⌋þ fKMg2; (4)

with equality if and only if allele A has frequency 1 in ⌊KM⌋
subpopulations, frequency fKMg in a single subpopulation,

and frequency 0 in all other subpopulations. Substituting
Equation 4 into Equation 3, we obtain the upper bound
for FST:

FST #
⌊KM⌋þ fKMg2 2KM2

KMð12MÞ : (5)

The upper bound on FST in terms of M has a piecewise struc-
ture, with changes in shape occurring when KM is an integer.

For i ¼ ⌊K=2⌋;⌊K=2⌋þ 1; . . . ;K2 1; define the interval Ii
by ½1=2; ðiþ 1Þ=KÞ for i ¼ ⌊K=2⌋ in the case that K is odd and
by ½i=K; ðiþ 1Þ=KÞ for all other ði;KÞ: For M 2 Ii; ⌊KM⌋ has a
constant value i. Writing x ¼ KM2⌊KM⌋ ¼ KM2 i so that
M ¼ ðiþ xÞ=K; for each interval Ii; the upper bound on FST
is a smooth function:

QiðxÞ ¼
K
�
iþ x2

�
2 ðiþ xÞ2

ðiþ xÞðK2 i2 xÞ ; (6)

where x lies in ½0; 1Þ (or in ½1=2; 1Þ for odd K and i ¼ ⌊K=2⌋Þ;
and i lies in

�
⌊K=2⌋;K2 1

�
:

The conditions under which the upper bound is reached
illuminate its interpretation. Themaximum requires the most
frequent allele to have frequency 1 or 0 in all except possibly
one subpopulation, so that the locus is polymorphic in atmost
a single subpopulation. Thus, FST is maximal when fixation is
achieved in as many subpopulations as possible.

Figure 1 shows the upper bound on FST in terms of M for
various values of K. It has peaks at values i=K; where it is
possible for the allele to be fixed in all K subpopulations and
for FST to reach a value of 1. Between i=K and ðiþ 1Þ=K; the
function reaches a local minimum, eventually decreasing to
0 asM approaches 1. The upper bound is not differentiable at
the peaks, and it is smooth and strictly,1 between the peaks.
If K is even, then the upper bound begins from a local max-
imum atM ¼ 1=2; if K is odd, it begins from a local minimum
at M ¼ 1=2:

Properties of the upper bound

Local maxima: We explore properties of the upper bound on
FST as a function of M for fixed K by examining the local
maxima and minima. The upper bound is equal to 1 on in-
terval Ii if and only if the numerator and denominator in
Equation 6 are equal. Noting that K$ 2; this condition
is equivalent to x2 ¼ x and hence, because 0# x,1;
x ¼ fKMg ¼ 0: Thus, on interval Ii for M, the maximal FST
is 1 if and only if KM is an integer.

KM has exactly⌊K=2⌋ integer values forM 2 ½1=2; 1Þ: Con-
sequently, given K, there are exactly ⌊K=2⌋ maxima at which
FST can equal 1, at M ¼ ðK þ 1Þ=ð2KÞ; ðK þ 3Þ=ð2KÞ; . . . ;
ð2K2 2Þ=ð2KÞ if K is odd and at M ¼ K=ð2KÞ; ðK þ 2Þ=
ð2KÞ; . . . ; ð2K2 2Þ=ð2KÞ if K is even.

This analysis finds that FST is only unconstrained within
the unit interval for a finite set of values of the frequencyM of
themost frequent allele. The size of this set increases with the
number of subpopulations K.

Mathematical Constraints on FST 1583



Local minima: Equality of the upper bound at the right
endpoint of each interval Ii and the left endpoint of Iiþ1

for each i from ⌊K=2⌋ to K2 2 demonstrates that the upper
bound on FST is a continuous function of M. Consequently,
local minima necessarily occur between the local maxima. If
K is even, then the upper bound on FST has K=22 1
local minima, each inside an interval Ii; i ¼ K=2;
K=2þ 1; . . . ;K2 2: If K is odd, then the upper bound has
ðK21Þ=2 local minima, the first in interval ½1=2;
ðK þ 1Þ=ð2KÞÞ; and each of the others in an interval Ii; with
i ¼ ðK þ 1Þ=2; ðK þ 3Þ=2; . . . ;K2 2: Note that because we
restrict attention to M 2 ½1=2; 1Þ; we do not count the point
at M ¼ 1 and FST ¼ 0 as a local minimum.

Theorem2fromAppendixBdescribes the relativepositions
of the local minima within intervals Ii; as a function of the
number of subpopulations K. From Proposition 1 of Appendix
B, for fixed K, the relative position of the local minimum
within interval Ii increases with i; as a result, the leftmost
dips in the upper bound (those near M ¼ 1=2Þ are less tilted
toward the right endpoints of their associated intervals
than are the subsequent dips (nearer M ¼ 1Þ: The unique
local minimum in interval Ii lies either exactly at
M ¼ ½iþ ð1=2Þ�=K ¼ 1=2 for the leftmost dip for oddK (Prop-
osition 2), or slightly to the right of the midpoint
½iþ ð1=2Þ�=K of interval Ii in other intervals, but no farther
from the center than M ¼ ðiþ 22

ffiffiffi
2

p Þ=K � ðiþ 0:5858Þ=K
(Proposition 3; Figure B1).

The values of the upper bound on FST at the localminima as
a function of i are computed in Appendix B (Equation B5) by
substituting the positionsM of the local minima into Equation
5. From Proposition 4 of Appendix B, for fixed K, the value of
FST at the local minimum in interval Ii decreases as i in-
creases. The maximal FST among local minima increases as
K increases (Proposition 5). The upper bound on FST at the
local minimum closest toM ¼ 1=2 tends to 1 as K/N (Prop-
osition 5). The upper bound on FST at the local minimum
closest to M ¼ 1; however, is always smaller than
2
ffiffiffi
2

p
2 2 � 0:8284 (Proposition 6).

In conclusion, although FST is constrained below 1 for all
values of M in the interior of intervals Ii ¼ ½i=K; ðiþ 1Þ=KÞ;
the constraint is reduced as K/N; and in the limit it even
completely disappears in the interval Ii closest to M ¼ 1=2:

Nevertheless, there always exists a value of M, ðK2 1Þ=K
for which the upper bound on FST is lower than
2
ffiffiffi
2

p
2 2 � 0:8284:

Mean range of possible FST values: We now evaluate how
strongly M constrains the range of FST as a function of K.
Following similar computations for other settings where FST
is considered in relation to a quantity that constrains it
(Jakobsson et al. 2013; Edge and Rosenberg 2014), we com-
pute the mean maximum FST across all possible M values.
This quantity, denoted AðKÞ; is the area between the lower
and upper bounds on FST divided by the length of the domain
for M, or 1=2: AðKÞ near 0 indicates a strong constraint.

Because the lower bound on FST is 0 for allM between 1=2
and 1, AðKÞ corresponds to the area under the upper bound
on FST divided by 1=2; or twice the integral of Equation 5 be-
tween 1=2 and 1:

AðKÞ ¼ 2
Z 1

M¼1=2

⌊KM⌋þ fKMg22KM2

KMð12MÞ dM: (7)

The integral is computed in Appendix C. We obtain

AðKÞ ¼ 12K þ 2ðK þ 1Þln K2
4
K

XK
i¼2

i ln i: (8)

We also obtain an asymptotic approximation ~AðKÞ � AðKÞ in
Appendix C, where

~AðKÞ ¼ 12
ln K
3K

2
4 ln C
K

: (9)

Here, C � 1:2824 represents the Glaisher–Kinkelin constant.
Að2Þ ¼ 2 ln 22 1 � 0:3863; in accord with the K ¼ 2 case

of Jakobsson et al. (2013). Interestingly, the constraint on the
mean range of FST disappears as K/N: Indeed, from Equa-
tion 9, we immediately see that lim K/NAðKÞ ¼ 1 (Figure 2).
As a mean of 1 indicates that FST ranges from 0 to 1 for allM
(except possibly on a set of measure 0), for large K, the range
of FST is approximately invariant with respect to M.

The increase of AðKÞ with K is monotonic (Theorem 3 of
Appendix C). By numerically evaluating Equation 8, we find
that although Að2Þ � 0:3863; for K$7; AðKÞ. 0:75; and for

Figure 1 Bounds on FST as a function of the frequency of the most frequent allele, M, for different numbers of subpopulations K: (A) K ¼ 2; (B) K ¼ 3;
(C) K ¼ 7; (D) K ¼ 10; and (E) K ¼ 40: The shaded region represents the space between the upper and lower bounds on FST: The upper bound is
computed from Equation 5; for each K, the lower bound is 0 for all values of M.
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K$ 46; AðKÞ. 0:95: Nevertheless, although the mean of the
upper bound on FST approaches 1, we have shown in Prop-
osition 6 from Appendix B that for large K, values of M
continue to exist at which the upper bound is constrained
substantially below 1.

Evolutionary Processes and the Joint Distribution
of M and FST for a Biallelic Marker and
K Subpopulations

Thus far, we have described the mathematical constraint
imposed on FST by M without respect to the frequency with
which particular values of M arise in evolutionary scenarios.
As an assessment of the bounds in evolutionary models can
illuminate the settings in which they are most salient in pop-
ulation-genetic data analysis (Hedrick 2005; Whitlock 2011;
Rousset 2013; Alcala et al. 2014; Wang 2015), we simulated
the joint distribution of FST andM in three migration models,
in each case relating the distribution to the mathematical
bounds on FST: This analysis considers allele frequency dis-
tributions, and hence values ofM and FST; generated by evo-
lutionary models.

Simulations

We simulated independent SNPs under the coalescent, using
the softwareMS (Hudson 2002).We considered a population
of total size KN diploid individuals subdivided into K sub-
populations of equal size N. At each generation, a propor-
tion m of the individuals in a subpopulation originated
from another subpopulation. Thus, the scaled migration
rate is 4Nm; and it corresponds to twice the number of

individuals in a subpopulation that originate elsewhere.
We focus on the finite island model (Maruyama 1970;
Wakeley 1998), in which migrants have the same proba-
bility m=ðK2 1Þ to come from any specific other subpopu-
lation. The finite rectangular and linear stepping-stone
models generate similar results (Figures S1–S4 in File S1).

We examined three values of K (2, 7, 40) and three values
of 4Nm (0.1, 1, 10). Note that in MS, time is scaled in units of
4N generations, so there is no need to specify the subpopu-
lation sizes N. To obtain independent SNPs, we used the MS
command “-s” to fix the number of segregating sites S to 1.
For each parameter pair ðK; 4NmÞ; we performed 100,000
replicate simulations, sampling 100 sequences per subpopu-
lation in each replicate. FST values were computed from the
parametric allele frequencies.

Fixing S ¼ 1 and accepting all coalescent genealogies en-
tails an implicit assumption that all genealogies have equal
potential to produce exactly one segregating site. We there-
fore also considered a different approach to generating SNPs,
assuming an infinitely-many-sites model with a specified
scaled mutation rate u and discarding simulations leading
to S. 1: We chose u so that the expected number of segre-
gating sites in a constant-sized population, or

PKN21
i¼1 u=i;was

1. This approach produces similar results to the fixed-S sim-
ulation (Figure S5 in File S1).

Weak migration

Under the island model with weak migration ð4Nm ¼ 0:1Þ;
the joint distribution of M and FST is highest near the upper
bound on FST in terms of M, for all K (Figure 3, A–C). For
K ¼ 2; most SNPs have M near 0.5, representing fixation of
the major allele in one subpopulation and absence in the
other, and FST near 1 (Figure 3A). The mean FST in sliding
windows for M closely follows the upper bound on FST: For
K ¼ 7;most SNPs haveM near 4=7; 5=7; or 6=7; representing
fixation of the major allele in four, five, or six subpopulations
and absence in the others, and FST � 1 (Figure 3B). Themean
FST closely follows the upper bound. For K ¼ 40; most SNPs
either have M near 37=40; 38=40; or 39=40; and FST � 1; or
M, 37=40 and FST � 0:92 (Figure 3C). The mean FST fol-
lows the upper bound for M. 37=40: For M, 37=40; it lies
below the upper bound and does not possess its characteristic
peaks.

We can interpret these patterns using the model of
Wakeley (1999), which showed that when migration is in-
frequent compared to coalescence, coalescence follows two
phases. In the scattering phase, lineages coalesce in each sub-
population, leading to a state with a single lineage per sub-
population. In the collecting phase, lineages from different
subpopulations coalesce. As a result, considering K subpopu-
lations with equal sample size n, when 4Nm � 1, genealo-
gies tend to have K long branches close to the root, each
corresponding to a subpopulation and each leading to n
shorter terminal branches. The long branches coalesce as
pairs accumulate by migration in shared ancestral subpopu-
lations. A random mutation on such a genealogy is likely to

Figure 2 The mean AðKÞ of the upper bound on FST over the interval
M 2 ½1=2; 1Þ; as a function of the number of subpopulations K. AðKÞ
is computed from Equation 8 (black line). The approximation ~AðKÞ is
computed from Equation 9 (gray dashed line). A numerical compu-
tation of the relative error of the approximation as a function of K,���AðKÞ2 ~AðKÞ

���=AðKÞ; finds that the maximal error for 2#K#1000 is

0.00174, achieved when K ¼ 2: The x-axis is plotted on a logarithmic
scale.
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occur in one of two places. It can occur on a long branch
during the collecting phase, in which case the derived allele
will have frequency 1 in all subpopulations whose lineages de-
scend from the branch, and 0 in the others. Alternatively, it can
occur toward the terminal branches in the scattering phase, in
which case the mutation will have frequency pk . 0 in one sub-
population and 0 in all others. These scenarios that are likely
under weak migration, one allele fixed in some subpopulations
or present only in one subpopulation, correspond closely to
conditions under which the upper bound on FST is reached at
fixed M. Thus, the properties of likely genealogies explain the
proximity of FST to its upper bound.

Intermediate and strong migration

With intermediate migration ð4Nm ¼ 1Þ; for all K, the joint
density of M and FST is highest at lower values of FST than
with 4Nm ¼ 0:1 (Figure 3, D–F). For K ¼ 2; most SNPs have
M. 0:8 and the mean FST is almost equidistant from the
upper and lower bounds on FST; nearing the upper bound
as M increases (Figure 3D). For K ¼ 7; most SNPs have
M. 0:9; as was seen for K ¼ 2; the mean FST is almost equi-
distant from the upper and lower bounds, moving toward the
upper bound as M increases (Figure 3E). For K ¼ 40; the
pattern is similar, most SNPs having M. 0:95 (Figure 3F).

Under intermediate migration, migration is sufficient that
more mutations than in the weak-migration case generate
polymorphism inmultiple subpopulations. A randommutation is
likely to occur on a branch that leads to many terminal branches
from the same subpopulation, but also to branches from other
subpopulations. Thus, the allele is likely to have intermediate
frequency in multiple subpopulations. This setting does not gen-

erate the conditions under which the upper bound on FST is
reached, so that except at the largest M, intermediate migration
leads to values farther from the upper bound than in the weak-
migration case. For largeM, the rarer allele is likely to be only in
one subpopulation, so that FST is nearer to the upper bound.

With strong migration ð4Nm ¼ 10Þ; the joint density of M
and FST nears the lower bound (Figure 3, G–I). For each K,
most SNPs have M. 0:9 and FST � 0; with the mean FST in-
creasing somewhat as K increases. Under strong migration,
because lineages can migrate between subpopulations
quickly, they can also coalesce quickly, irrespective of their
subpopulations of origin. As a result, a random mutation is
likely to occur on a branch that leads to terminal branches in
many subpopulations. The allele is expected to have compa-
rable frequency in all subpopulations, so that FST is likely to
be small. This scenario corresponds to the conditions under
which the lower bound on FST is approached.

Proximity of the joint density of M and FST to the
upper bound

To summarize features of the relationship of FST to the upper
bound seen in Figure 3, we can quantify the proximity of the
joint density ofM and FST to the bounds on FST: For a set of Z
loci, denote by Fz and Mz the values of FST and M at locus z.
The mean FST for the set, or �FST; is

�FST ¼ 1
Z

XZ
z¼1

Fz: (10)

Using Equation 5, a corresponding mean maximum FST given
the observed Mz; z ¼ 1; 2; . . . ; Z; denoted �Fmax; is

Figure 3 Joint density of the frequency M of the most
frequent allele and FST in the island migration model,
for different numbers of subpopulations K and scaled
migration rates 4Nm (where N is the subpopulation size
and m the migration rate): (A) K ¼ 2; 4Nm ¼ 0:1; (B)
K ¼ 7; 4Nm ¼ 0:1; (C) K ¼ 40; 4Nm ¼ 0:1; (D) K ¼ 2;
4Nm ¼ 1; (E) K ¼ 7; 4Nm ¼ 1; (F) K ¼ 40; 4Nm ¼ 1;
(G) K ¼ 2; 4Nm ¼ 10; (H) K ¼ 7; 4Nm ¼ 10; and (I)
K ¼ 40; 4Nm ¼ 10: The black solid line represents
the upper bound on FST in terms of M (Equation 5);
the red dashed line represents the mean FST in sliding
windows of M of size 0.02 (plotted from 0.51 to 0.99).
Colors represent the density of SNPs, estimated using a
Gaussian kernel density estimate with a bandwidth of
0.007, with density set to 0 outside of the bounds. SNPs
are simulated using coalescent software MS, assuming
an island model of migration and conditioning on one
segregating site. See Figure S5 in File S1 for an alterna-
tive algorithm for simulating SNPs. Each panel considers
100,000 replicate simulations, with 100 lineages sam-
pled per subpopulation. Figures S2 and S3 in File S1
present similar results under finite rectangular and lin-
ear stepping-stone migration models.
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�Fmax ¼ 1
Z

XZ
z¼1

⌊KMz⌋þ fKMzg22KM2
z

KMzð12MzÞ : (11)

The ratio �FST=�Fmax gives a sense of the proximity of the FST
values to their upper bounds: it ranges from 0, when
FST values at all SNPs equal their lower bounds, to 1, when
FST values at all SNPs equal their upper bounds.

Figure 4 shows the ratio �FST=�Fmax under the island model
for different values of K and 4Nm: For each value of the num-
ber of subpopulations, �FST=�Fmax decreases with 4Nm: This
result summarizes the influence of the migration rate ob-
served in Figure 3: FST values tend to be close to the upper
bound under weak migration, and near the lower bound
under strong migration. �FST=�Fmax is only minimally influ-
enced by the number of subpopulations K (Figure 4). Even
though the upper bound on FST in terms of M is strongly
affected by K, the proximity of FST to the upper bound is
similar across K values.

Application to Human Genomic Data

We now use our theoretical results to explain observed pat-
terns of human genetic differentiation, and in particular, to
explain the impact of the number of subpopulations. We
examine data from Li et al. (2008) on 577,489 SNPs from
938 individuals of the Human Genome Diversity Panel
(HGDP) (Cann et al. 2002), as compiled by Pemberton
et al. (2012). We use the same division of the individuals into
seven geographic regions that was examined by Li et al.
(2008) (Africa, Middle East, Europe, Central and South
Asia, East Asia, Oceania, and America). Previous studies
of these individuals have used FST to compare differenti-
ation in regions with different numbers of subpopulations
sampled (Rosenberg et al. 2002; Ramachandran et al. 2004;
Rosenberg 2011).

We computed the parametric allele frequencies for each
region, averaging across regions to obtain the frequencyM of
themost frequent allele.We then computed FST for each SNP,
averaging FST values across SNPs to obtain the overall FST for
the full SNP set. To assess the impact of the number of sub-
populations K on the relationship between M and FST; we
computed FST for all 120 sets of two or more geographic
regions (Figure 5). The 21 pairwise FST values range from
0.007 (between Middle East and Europe) to 0.101 (Africa
and America), with a mean of 0.057, SD of 0.027, and me-
dian of 0.061. FST is substantially larger for sets of three geo-
graphic regions. The smallest value is larger, 0.012 (Middle
East, Europe, Central/South Asia); as is the largest value,
0.133 (Africa, Oceania, America); the mean of 0.076; and
the median of 0.089. Among the 213 5 ¼ 105 ways of add-
ing a third region to a pair of regions, 83 produce an increase
in FST: For 17 sets of three regions, the value of FST exceeds
that of each of its three component pairs.

The pattern of increase of FST with the inclusion of addi-
tional subpopulations can be seen in Figure 6A, which plots the

FST values from Figure 5 as a function of K. The magnitude of
the increase is greatest from K ¼ 2 to K ¼ 3; decreasing with
increasing K. From K ¼ 3 to 4, 82 of 140 additions of a region
increase FST; 54 of 105 produce an increase from K ¼ 4 to 5;
21 of 42 from K ¼ 5 to 6; and 3 of 7 from K ¼ 6 to 7. The
seven-region FST of 0.102 exceeds all the pairwise FST values.

The larger FST values with increasing K can be explained
by the difference in constraints on FST in terms of M (Figure
7). For fixed M, as we saw in the increase of AðKÞ with K
(Figure 2), the permissible range of FST values is smaller on
average for FST values computed among smaller sets of pop-
ulations than among larger sets. For example, the maximal
FST value at the mean M of 0.76 observed in pairwise com-
parisons is 0.33 for K ¼ 2 (black line in Figure 7A), while the
maximal FST value at the mean M of 0.77 observed for the
global comparison of seven regions is 0.86 for K ¼ 7 (Figure
7B). Given the stronger constraint in pairwise calculations, it
is not unexpected that pairwise FST values would be smaller
than the values computed with more regions, such as in the
seven-region computation. Interestingly, the effect ofK on FST
is largely eliminated when FST values are normalized by their
maxima (Figure 6B). The normalization, which takes both K
and M into account, generates nearly constant means and
medians of FST as functions of K, with higher values for K ¼ 2:

Data availability

MS commands for the coalescent simulations appear in
File S2. See Li et al. (2008) for the human SNP data.

Figure 4 �FST=�Fmax; the ratio of the mean FST to the mean maximal FST
given the observed frequencyM of the most frequent allele, as a function
of the number of subpopulations K and the scaled migration rate 4Nm for
the island migration model. Colors represent values of K. FST values are
computed from coalescent simulations using MS for 10,000 independent
SNPs and 100 lineages sampled per subpopulation. �Fmax is computed
from Equation 11. Figure S4 in File S1 presents similar results under
rectangular and linear stepping-stone migration models.
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Discussion

Wehave evaluated the constraint imposed by the frequencyM
of the most frequent allele at a biallelic locus on the range of
FST; for arbitrarily many subpopulations. Although FST is un-
constrained in the unit interval when M ¼ i=K for integers i
satisfying ⌈K=2⌉# i#K2 1; it is constrained below 1 for all
otherM. We have found that the number of subpopulations K
has considerable impact on the range of FST; with a weaker
constraint on FST as K increases. As shown by Jakobsson et al.
(2013) forK ¼ 2; across possible values ofM, FST is restricted to
38.63% of the possible space. For K ¼ 100; however, FST can
occupy 97.47% of the space. Although the mean overM values
of the permissible interval for FST approaches the full unit in-
terval as K/N; for any K, an allele frequency M, ðK2 1Þ=K
exists for which the maximal FST is lower than 2

ffiffiffi
2

p
2 2:

Multiple studieshavehighlighted the relationshipbetween
FST and M in two subpopulations for biallelic markers
(Rosenberg et al. 2003; Maruki et al. 2012) and, more gen-
erally, for an unspecified (Jakobsson et al. 2013) or specified
number of alleles (Edge and Rosenberg 2014). We have
extended these results to the case of biallelic markers in a
specified but arbitrary number of subpopulations, compre-
hensively describing the relationship between FST and M for
the biallelic case. The study is part of an increasing body of
work characterizing the mathematical relationship of popu-
lation-genetic statistics with quantities that constrain them
(Hedrick 1999, 2005; Rosenberg and Jakobsson 2008; Reddy
and Rosenberg 2012). As we have seen, such relationships
contribute to understanding the behavior of the statistics
in evolutionary models and to interpreting counterintuitive
results in human population genetics.

Properties of FST in evolutionary models

Our work extends classical results about the impact of evolu-
tionary processes on FST values. Wright (1951) showed that
in an equilibrium population, FST is expected to be near 1 if
migration is weak, and near 0 if migration is strong. On the
basis of our simulations, we canmore precisely formulate this
proposition: considering a SNP at frequency M in an equilib-
rium population, FST is expected to be near its upper bound in
terms of M if migration is weak and near 0 if migration is
strong. This formulation of Wright’s proposition makes it
possible to explain why SNPs subject to the same migration
process can display a variety of FST patterns; indeed, under
weak migration, we expect FST values to mirror the consider-
able variation in the upper bound on FST in terms of M.

Figure 5 Mean FST values across loci for sets of geographic regions. Each
box represents a particular combination of two, three, four, five, six, or all
seven geographic regions. Within a box, the numerical value shown is FST

among the regions. The regions considered are indicated by the pattern
of “.” and “X” symbols within the box, with X indicating inclusion and
“.” indicating exclusion. From left to right, the regions are Africa, Middle
East, Europe, Central/South Asia, East Asia, Oceania, and America. Thus,
for example, X...X.. indicates the subset {Africa, East Asia}. Lines are
drawn between boxes that represent nested subsets. A line is colored
red if the larger subset has a higher FST value, and blue if it has a lower
FST: Computations rely on 577,489 SNPs from the HGDP.
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Lower FST values in pairwise comparisons than in
comparisons of more subpopulations

FST values have often been compared across computations
with different numbers of subpopulations. Such comparisons
appear frequently, for example, in studies of domesticated
animals such as horses, pigs, and sheep (Cañon et al. 2000;
Kim et al. 2005; Lawson Handley et al. 2007). In human
populations, table 1 of the microsatellite study of Rosenberg
et al. (2002) presents comparisons of FST values for scenarios
withK ranging from2 to 52. Table 3 of Rosenberg et al. (2006)
compares FST values for microsatellites and biallelic indels
in population sets with K ranging from 2 to 18. Major SNP
studies have also compared FST values for scenarios with
K ¼ 2 and K ¼ 3 groups (Hinds et al. 2005; International
HapMap Consortium 2005).

Our results suggest that such comparisons between FST
values with different K can hide an effect of the number of
subpopulations, especially when some of the comparisons in-
volve the most strongly constrained case of K ¼ 2: For human
data, we found that owing to a difference in the FST constraint
for different K values, pairwise FST values between continental
regions were consistently lower than FST values computed
using three or more regions, and sets of three regions were
identified for which the FST value exceeded the values for all
three pairs of regions in the set. The effect of K might help
illuminate why SNP-based pairwise human FST values (table
S11 of 1000 Genomes Project Consortium 2012) are generally
smaller than estimates that use all populations together
(11.1% of genetic variance due to between-region or be-
tween-population differences; Li et al. 2008). We find that
comparing FST values with different choices of K can generate
as much difference—twofold—as comparing FST with differ-
ent marker types (Holsinger and Weir 2009). This substantial
impact of K on FST merits further attention.

Consequences for the use of FST as a test statistic

The effects of constraints on FST extend beyond the use of FST
as a statistic for genetic differentiation. In FST-based genome

scans for local adaptation, tracing to the work of Lewontin
and Krakauer (1973), a hypothesis of spatially divergent se-
lection at a candidate locus is evaluated by comparing FST at
the locus with the FST distribution estimated from a set of
putatively neutral loci. Under this test, FST values smaller or
larger than expected by chance are interpreted as being un-
der stabilizing or divergent selection, respectively. Modern
versions of this approach compare FST values at single loci
with the distribution across the genome (Beaumont and
Nichols 1996; Akey et al. 2002; Foll and Gaggiotti 2008;
Bonhomme et al. 2010; Günther and Coop 2013).

The constraints on FST in our work and the work of
Jakobsson et al. (2013) and Edge and Rosenberg (2014) sug-
gest that FST values strongly depend on the frequency of the
most frequent allele. Consequently, we expect that FST outlier
tests that do not explicitly take into account this constraint
will result in a deficit of power at loci with high- and low-
frequency alleles. Because pairwise FST and FST values in
many populations have different constraints, we predict
that the effect of the constraint on outlier tests relying on
a single global FST (e.g., Beaumont and Nichols 1996; Foll
and Gaggiotti 2008) will be smaller than in tests relying on
pairwise FST (e.g., Günther and Coop 2013).

FST as a statistic or as a parameter

The perspective we used in obtaining FST bounds treats FST as
a mathematical function of allele frequencies rather than as a
population-genetic parameter. Thus, the starting point for
our mathematical analysis (Equation 3) is that the allele fre-
quencies are mathematical constants rather than random
outcomes of an evolutionary process.

In the alternative perspective that FST is a parameter rather
than a statistic, both the sample of alleles drawn from a set of
subpopulations and the sample of subpopulations drawn
from a larger collection of subpopulations are treated as ran-
dom. An analysis of mathematical bounds analogous to our
analysis of Equation 3 in terms of M would then investigate
bounds on estimators of FST;where the value of the estimator
is bounded in terms of the largest sample allele frequency.
In this perspective, the estimator of Weir and Cockerham
(1984) for a biallelic locus ðû; Weir 1996, p. 173), under an

Figure 6 FST values for sets of geographic regions as a function of K, the
number of regions considered. (A) �FST computed using Equation 10. (B)
�FST=�Fmax computed using Equation 11. For each subset of populations,
the value of FST is taken from Figure 5. The mean across subsets for a
fixed K appears as a solid red line, and the median as a dashed red line.

Figure 7 Joint density of the frequencyM of the most frequent allele and
FST in human population-genetic data, considering 577,489 SNPs. (A) FST
computed for pairs of geographic regions. The density is evaluated from
the set of FST values for all 21 pairs of regions. (B) FST computed among
K ¼ 7 geographic regions. The figure design follows Figure 3.
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assumption of equal sample sizes in the K subpopulations
and either haploid data or a random union of gametes in dip-
loids, is

û ¼
s2 2 1

2n21

h
~M
�
12 ~M

	
2 K21

K s2
i

~M
�
12 ~M

	
þ s2

K

: (12)

Here, 2n is the sample size per subpopulation (n diploid in-
dividuals or 2n haploids), ~M is the mean sample frequency
of the most frequent allele across subpopulations, and
s2 ¼ ½1=ðK2 1Þ�PK

k¼1ð~pk2 ~MÞ2 is the empirical variance of
the sample frequency ~pk of the most frequent allele across
subpopulations.

Although Equation 12 hasmore terms thanEquation 3, it can
be shown that for fixed ~M with 1=2# ~M, 1 and fixed K$ 2
and 2n$ 2; s2 and hence û are minimized and maximized un-
der corresponding conditions to those that minimize and max-
imize Equation 3. In particular, Theorem 1 applies to f~pkgKk¼1;

with
PK

k¼1~pk ¼ K ~M:We then expect that corresponding math-
ematical results to those seen for FST as computed in Equation
3 will hold for û from Equation 12. Such computations indicate
that our “statistic” perspective on FST generates mathematical
results of interest to a “parameter” interpretation of FST:

Conclusions

Many recent articles have noted that FST often behaves coun-
terintuitively (Whitlock 2011; Alcala et al. 2014; Wang
2015), for example, indicating low differentiation in cases
in which populations do not share any alleles (Balloux et al.
2000; Jost 2008) or suggesting less divergence among pop-
ulations than is visible in clustering analyses (Tishkoff et al.
2009; Algee-Hewitt et al. 2016). It has thus become clear that
observed FST patterns often trace to peculiar mathematical
properties of FST—in particular its relationship to other sta-
tistics such as homozygosity or allele frequency—instead of
to biological phenomena of interest. Our work here, extend-
ing approaches of Jakobsson et al. (2013) and Edge and
Rosenberg (2014), seeks to characterize those properties,
so that the influence of mathematical constraints on FST can
be disentangled from biological phenomena.

One response to the dependence of FST on M may be to
compute FST only when allele frequencies lie in a specific class,
such asM# 0:95: Such choices can potentially avoid a mislead-
ing interpretation that a genetic differentiationmeasure is low in
scenarios when minor alleles, though rare, are in fact private to
single populations. We note, however, that the dependence of
FST spans the full range of values ofM, and exists for values ofM
both above and below a choice of cutoff. In addition, this de-
pendence varies with the number of subpopulations K, so that
use of the same cutoff could have a different effect on FST values
in scenarios with different numbers of subpopulations.

In a potentially more informative approach, addressing the
mathematical dependence of FST on the within-subpopulation
mean heterozygosity HS; Wang (2015) has proposed plotting
the joint distribution of HS and FST to assess the correlation

between the two statistics. Using the island model, Wang
(2015) argued that when HS and FST are uncorrelated, FST is
expected to be more revealing about the demographic history
of a species than when they are strongly correlated and FST
merely reflects the within-subpopulation diversity. Our results
suggest a related framework: studies can compare plots of the
joint distribution ofM and FST with the bounds on FST in terms
of M. This framework, which examines constraints on FST in
terms of allele frequencies in the total population, comple-
ments that of Wang (2015), which considers constraints in
terms of subpopulation allele frequencies. Such analyses, con-
sidering FST together with additional measures of allele fre-
quencies, are desirable in diverse scenarios for explaining
counterintuitive FST phenomena, for avoiding overinterpreta-
tion of FST values, and for making sense of FST comparisons
across settings that have a substantial difference in the nature
of one or more underlying parameters.
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Appendix A: Demonstration of Equation 4

This appendix provides the derivation of the upper bound on
PK

k¼1p
2
k as a function of K and M.

Theorem 1. Suppose s.0 and K$⌊s⌋þ 1 are specified, where K is an integer. Considering all sequences fpkgKk¼1 with
pk 2 ½0; 1�; PK

k¼1pk ¼ s; and k, ℓ implies pk , pℓ;
PN

k¼1p
2
k is maximal if and only if pk ¼ 1 for 1# k#⌊s⌋; p⌊s⌋þ1 ¼ s2⌊s⌋;

and pk ¼ 0 for k.⌊s⌋þ 1; and its maximum is ðs2⌊s⌋Þ2 þ ⌊s⌋:

Proof. This theorem is a special case of lemma 3 from Rosenberg and Jakobsson (2008), which states (changing notation for
some of the variables to avoid confusion): “Suppose A.0 and C. 0 and that ⌈C=A⌉ is denoted L. Considering all sequences
fpigNi¼1 with pi 2 ½0;A�;PN

i¼1pi ¼ C; and i, j implies pi $ pj; HðpÞ ¼
PN

i¼1p
2
i is maximal if and only if pi ¼ A for 1# i# L2 1;

pL ¼ C2 ðL2 1ÞA; and pi ¼ 0 for i. L; and its maximum is LðL2 1ÞA2 2 2CðL2 1ÞAþ C2:”

In our special case, we apply the lemma with A ¼ 1 and C ¼ s: We also restrict consideration to sequences of finite rather
than infinite length; however, our conditionK$⌊s⌋þ 1 for the number of terms in the sequence guarantees that themaximum
in the case of infinite sequences, which requires ⌈s⌉#⌊s⌋þ 1 nonzero terms, is attainable with sequences of the finite length
we consider. For convenience in numerical computations, we state our result using the floor function rather than the ceiling
function, requiring some bookkeeping to obtain our corollary.

If s is not an integer, then in lemma 3 of Rosenberg and Jakobsson (2008), L ¼ ⌊s⌋þ 1; and the maximum occurs with
p1 ¼ p2 ¼ . . . ¼ p⌊s⌋ ¼ 1; p⌊s⌋þ1 ¼ s2⌊s⌋; and pk ¼ 0 for k.⌊s⌋þ 1; equaling LðL2 1ÞA2 2 2CðL21ÞAþ C2 ¼
ð⌊s⌋þ 1Þ⌊s⌋2 2s⌊s⌋þ s2:

If s is an integer, then ⌊s⌋ ¼ ⌈s⌉¼ s; and the maximum occurs with p1 ¼ p2 ¼ . . . ¼ ps ¼ 1; psþ1 ¼ s2⌊s⌋ ¼ 0; and
pk ¼ 0 for k.s þ 1; equaling LðL2 1ÞA2 2 2CðL2 1ÞAþ C2 ¼ ⌊s⌋ð⌊s⌋21Þ2 2sð⌊s⌋2 1Þ þ s2:

In both cases, the maximum simplifies to ðs2⌊s⌋Þ2 þ ⌊s⌋; noting that ⌊s⌋ ¼ ⌈s⌉¼ s in the latter case. h

In our application of the theorem in themain text, the definition ofM gives
PK

k¼1pk ¼ KM; so that KM plays the role of s. We
thus obtain that the maximal value of

PK
k¼1p

2
k for sequences fpkgKk¼1 with pk 2 ½0; 1�; k, ℓ implies pk , pℓ; and

PK
k¼1pk ¼ KM is

ðKM2⌊KM⌋Þ2 þ ⌊KM⌋ with equality if and only if pk ¼ 1 for 1# k#⌊KM⌋; p⌊KM⌋þ1 ¼ fKMg; and pk ¼ 0 for k.⌊KM⌋þ 1:
Considering all sequences fpkgKk¼1 with pk 2 ½0; 1� and not necessarily ordered such that k, ℓ implies pk , pℓ; the maximum is
achieved when any ⌊KM⌋ terms equal 1, one term is fKMg; and remaining terms are 0.

Appendix B: Local Minima of the Upper Bound on FST

This appendix derives the positions and values of the local minima in the upper bound on FST in terms of M (Equation 5).

Positions of the Local Minima

To derive the positions of the local minima of the upper bound on FST in terms ofM, we study the functionQiðxÞ (Equation 6) on
the interval ½0; 1Þ for x, where i ¼ ⌊KM⌋ and x ¼ KM2 i; so thatM ¼ ðiþ xÞ=K: Recall that K and i are integers with K$ 2 and i
in ½⌊K=2⌋;K2 1�: Note that x, 1 ensures that M, 1; in accord with our assumption of a polymorphic locus.

Theorem 2. Consider fixed integers K$ 2 and i in
�
⌊K=2⌋;K2 1

�
:

(i) QiðxÞ has no local minimum on ½0; 1Þ for K ¼ 2 or for i ¼ K2 1:
(ii) For K$ 3 and i in

�
⌊K=2⌋;K2 2

�
; QiðxÞ has a unique local minimum on the interval ½0; 1Þ for x, with position denoted xmin:

(iii) For odd K$ 3 and i ¼ ðK2 1Þ=2; xmin ¼ 1=2:
(iv) For all other ðK; iÞ with K$ 3 and i in

�
⌊K=2⌋;K2 2

�
; xmin ¼ lðK; iÞ; where

lðK; iÞ ¼ iðK2 iÞ2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iðiþ 1ÞðK2 iÞðK2 i2 1Þp
2i2K þ 1

: (B1)

Proof. We take the derivative of QiðxÞ:

dQiðxÞ
dx

¼ 2Kð2i2K þ 1Þx2 þ 2iKðK2 iÞx2 iKðK2 iÞ
ðiþ xÞ2ðK2i2xÞ2 : (B2)
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As 1=2#M ¼ ðiþ xÞ=K, 1; the denominator in Equation B2 is nonzero, and dQiðxÞ=dx ¼ 0 is equivalent to a quadratic
equation in x:

2Kð2i2K þ 1Þx2 þ 2iKðK2 iÞx2 iKðK2 iÞ ¼ 0: (B3)

If i ¼ ðK21Þ=2; then the quadratic term in Equation B3 vanishes and Equation B3 becomes a linear equation in x, with solution
x ¼ 1=2: That the solution is a local minimum follows from the continuity of QiðxÞ on ½0; 1Þ together with the fact that
Qið0Þ ¼ Qið1Þ ¼ 1 and QiðxÞ, 1 for 0, x, 1: Consequently, if K is odd, then the local minimum for i ¼ ðK2 1Þ=2 occurs
at M ¼ ðiþ xÞ=K ¼ 1=2; the lowest possible value of M. This establishes (iii).

Excluding i ¼ ðK2 1Þ=2 for odd K, for all i 2 �⌊K=2⌋;K2 2
�
with K$ 3; Equation B3 has a unique solution in ½0; 1Þ; this

solution has x ¼ lðK; iÞ (Equation B1). The other root of Equation B3 exceeds 1. That x ¼ lðK; iÞ represents a local minimum is
again a consequence of the continuity of QiðxÞ on ½0; 1Þ together with Qið0Þ ¼ Qið1Þ ¼ 1 and QiðxÞ,1 for 0, x,1: This
establishes (ii) and (iv).

For the case of i ¼ K2 1; Equation B3 has a double root at x ¼ 1; outside the permissible domain for x, ½0; 1Þ: Qið0Þ ¼ 1;
0#QiðxÞ# 1 on ½0; 1Þ; and QiðxÞ approaches 0 as x/1: Consequently, QiðxÞ has no local minimum for i ¼ K2 1: For K ¼ 2;
i ¼ K21 is the only possible value of i, and QiðxÞ has no local minimum. This establishes (i). h

Positions of the Local Minima for Fixed K as a Function of i

Having identified the locations of the localminima, we now explore how those locations change at fixedKwith increasing i. For
fixed K$ 3;we consider xmin from Theorem 2 as a function of i on the interval

�
⌊K=2⌋;K2 2

�
: It is convenient to define interval

I*; equaling ½K=2;K2 2� for even K and ððK2 1Þ=2;K2 2� for odd K.

Proposition 1. Consider a fixed integer K$ 3:

(i) The function xminðiÞ increases as i increases from ⌊K=2⌋ to K22:
(ii) Its minimum is xmin½ðK21Þ=2� ¼ 1=2 if K is odd, and xminðK=2Þ ¼ ðK=4ÞðK2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 2 4

p
Þ if K is even.

(iii) Its maximum is xminð1Þ ¼ 1=2 for K ¼ 3; and for K.3 it is

xminðK2 2Þ ¼ 2ðK2 2Þ2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðK2 2ÞðK2 1Þp

K2 3
: (B4)

Proof. By Theorem 2, for fixed K$ 3 and i 2 I*; xminðiÞ is given by Equation B1. Treating i as continuous, we take the derivative:

dxminðiÞ
di

¼ ½ðK2 iÞðK2 i2 1Þ þ iðiþ 1Þ��2iðK2 i2 1Þ þ K2 122
ffiffiffiffiffiffiffi
f ðiÞp �

2ð2i2K þ 1Þ2 ffiffiffiffiffiffiffi
f ðiÞp ;

where f ðiÞ ¼ iðiþ 1ÞðK2 iÞðK2 i2 1Þ: Because all other terms of dxminðiÞ=di are positive for i in ððK2 1Þ=2;K2 2�; dxminðiÞ=di
has the same sign as 2iðK2 i2 1Þ þ K2 12 2

ffiffiffiffiffiffiffi
fðiÞp

:

Rearranging terms, we have

ffiffiffiffiffiffiffi
f ðiÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

iðK2i21Þ þ K21

2

�2
2

ðK22i21Þ2
4

s
:

Because 2ðK22i21Þ2=4, 0 for i in ððK2 1Þ=2;K2 2�; ffiffiffiffiffiffiffi
fðiÞp

,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½iðK2i21Þ þ ðK21Þ=2�2

q
and 22

ffiffiffiffiffiffiffi
f ðiÞp

.
2 2iðK2 i2 1Þ2K þ 1: Consequently, 2iðK2 i2 1Þ þ K2 12 2

ffiffiffiffiffiffiffi
fðiÞp

.0 for all i in ððK2 1Þ=2;K2 2�: Thus,
dxminðiÞ=di.0 for all i in I*; and xminðiÞ increases with i in this interval.

For odd K and i ¼ ðK21Þ=2; Equation B1 gives lim i/ðK21Þ=2þlðK; iÞ ¼ 1=2: Thus, because xmin½ðK21Þ=2� ¼ 1=2 by The-
orem 2, xminðiÞ is continuous at ðK2 1Þ=2: The function xminðiÞ therefore increases with i in the closed interval ½⌊K=2⌋;K22�:
This proves (i).

Because xminðiÞ increases with i for all i in
�
⌊K=2⌋;K2 2

�
; xminðiÞ is minimal when i is minimal. For odd K, the minimal value

of i is ðK2 1Þ=2: From Theorem 2, xmin½ðK2 1Þ=2� ¼ 1=2 for all odd K. For even K, theminimal value of i is K=2: From Theorem
2, xminðK=2Þ ¼ ðK=4ÞðK2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 2 4

p
Þ: This proves (ii).
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Similarly, xminðiÞ is maximal when i is maximal. From Theorem 2, themaximal value of i for which there exists aminimum of
QiðxÞ is i ¼ K2 2; and the position of this local minimum is xminðK2 2Þ ¼ ½2ðK2 2Þ2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðK2 2ÞðK2 1Þp �=ðK2 3Þ: In partic-
ular, forK ¼ 3; ðK2 1Þ=2 ¼ K22 ¼ 1; so there is a unique localminimum at position xmin½ðK2 1Þ=2� ¼ 1=2: This proves (iii).h

Positions of the First and Last Local Minima as Functions of K

We now fix i and examine the effect of K on the local minimum at fixed i. We first focus on the interval closest toM ¼ 1=2; the
first local minimum of the upper bound on FST:

Proposition 2. Consider integers K$ 3:

(i) For odd K, the relative position xmin½ðK2 1Þ=2� of the first local minimum does not depend on K and is 1=2:
(ii) For even K, the relative position xminðK=2Þ of the first local minimum decreases as K/N; tends to 1=2; and is bounded above

by 42 2
ffiffiffi
3

p � 0:5359:

Proof. For odd K, the interval closest to M ¼ 1=2 is ½1=2; 1=2þ 1=ð2KÞÞ: In this interval, from Proposition 1ii, the minimum
occurs at xmin½ðK2 1Þ=2� ¼ 1=2 irrespective of K. This proves (i).

For even K, the interval forM closest toM ¼ 1=2 is ½1=2; 1=2þ 1=KÞ: In this interval, from Proposition 1ii, the minimum has
position xminðK=2Þ ¼ ðK=4ÞðK2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 24

p Þ: The derivative of this function is

dxminðK2Þ
dK

¼ 2

�
K2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
K224

p 	2
4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K22 4

p ;

which is negative for all K$ 3: Thus, xminðK=2Þ decreases with K for K$ 3: In addition, as K/N; xminðK=2Þ/1=2: Because
xminðK=2Þ decreases with K, its maximum value is reached when K is minimal. The minimal even value of K is K ¼ 4: Thus,
xminðK=2Þ# xminð4=2Þ ¼ 42 2

ffiffiffi
3

p
: This proves (ii). h

By Proposition 2, if K is large and even, then the first local minimum lies near the center of the interval ½1=2; 1=2þ 1=KÞ forM.

Proposition 3. For integers K$3; the relative position xminðK2 2Þ of the last local minimum increases as K/N and tends to
22

ffiffiffi
2

p � 0:5858:

Proof. FromTheorem 2, forK ¼ 3 andK ¼ 4; there is a single local minimum.Hence, from Proposition 2, the position of the last
local minimum is xminð1Þ ¼ 1=2 for K ¼ 3 and xminð2Þ ¼ 42 2

ffiffiffi
3

p � 0:5359 for K ¼ 4: The position of the last local minimum
then increases from K ¼ 3 to K ¼ 4:

If K. 3; from Proposition 1iii, the position of the last local minimum follows Equation B4. We take the derivative

dxminðK2 2Þ
dK

¼ ð3K2 5Þ2 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðK22ÞðK2 1Þp

ðK23Þ2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðK2 2ÞðK2 1Þp :

For K.3; the denominator is positive and dxminðK2 2Þ=dK has the same sign as its numerator. Because for K. 3;
ð3K25Þ2 2 8ðK22ÞðK2 1Þ ¼ ðK23Þ2 .0; we have 3K2 5. 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðK2 2ÞðK2 1Þp

and a positive numerator. Then
dxminðK2 2Þ=dK.0 and xminðK2 2Þ increases for K. 3:

From Equation B4, xminðK22Þ tends to 22
ffiffiffi
2

p � 0:5858 as K/N: Thus, the last local minimum is not at the center of
interval IK22; rather, it is nearer to the upper endpoint. Because xminðK2 2Þ increases with K, xminðK2 2Þ, limK/NxminðK22Þ
and the last local maximum has position bounded above by 22

ffiffiffi
2

p
: h

As we have shown in Proposition 1i that for fixed K, as i increases from ⌊K=2⌋ to K22; the relative position of the
local minimum increases, this relative position is restricted in the interval ½xminð⌊K=2⌋Þ; xminðK22Þ�: Further, because from
Proposition 2, xmin½ðK2 1Þ=2� ¼ 1=2 for odd K and xminðK=2Þ. 1=2 for even K; and from Proposition 3, xminðK2 2Þ,22

ffiffiffi
2

p
;

the relative positions of the local minima must be in the interval ½1=2; 22 ffiffiffi
2

p Þ:
Figure B1 illustrates as functions of K the relative positions of the first local minimum ðxmin½ðK2 1Þ=2� for odd K and

xminðK=2Þ for even KÞ and the last local minimum ðxminðK2 2ÞÞ: The restriction of these positions to the interval ½1=2; 22 ffiffiffi
2

p Þ
is visible, with the first local minimum lying closer to the center of interval ½0; 1Þ for x than the last local minimum. The decrease
in the position of the first local minimum for even K alternating with values of 1=2 for odd K (Proposition 2) and the increase in
the position of the last local minimum (Proposition 3) are visible as well.
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Figure B1 The first and last local minima of FST as func-
tions of the frequency M of the most frequent allele,
for K$3 subpopulations. (A) Relative positions within
the interval ½i=K; ði þ 1Þ=KÞ of the first and last
local minima, as functions of K. The position xminðiÞ of
the local minimum in interval Ii is computed from Equation
B1. If K is odd, then this position is xmin½ðK21Þ=2�; if K is
even, then it is xminðK=2Þ: The position of the last
local minimum is xminðK22Þ: Dashed lines indicate the
smallest value for xminðiÞ of 1=2; and the limiting largest
value of 22

ffiffiffi
2

p
: (B) The value of the upper bound on FST

at the first and last local minima, as functions of K. These
values are computed from Equation 5, taking ⌊KM⌋ ¼ i
and fKMg ¼ xminðiÞ; with xminðiÞ as in part (A). Dashed
lines indicate the limiting values of 1 and 2

ffiffiffi
2

p
22 for

the first and last local minima, respectively.

Values at the Local Minima

Weobtain the value of the localminima of the upper bound on FST in each interval Ii by substituting into Equation 6 the value of i
for interval Ii and its associated xminðiÞ from Theorem 2. We obtain

Qi½xminðiÞ� ¼
K
h
iþ xminðiÞ2

i
2 ½iþ xminðiÞ�2

½iþ xminðiÞ�½K2 i2 xminðiÞ� : (B5)

Note that for odd K, although lðK; iÞ is undefined at i ¼ ðK2 1Þ=2; xminðiÞ is continuous. Thus, Qi½xminðiÞ� is also defined and
continuous for all i 2 ½⌊K=2⌋;K2 2� We consider Qi as a function of i on this interval.

Proposition 4. For fixed K$ 3; the local minima Qi½xminðiÞ� decrease as i increases from ⌊K=2⌋ to K2 2:

Proof. We take the derivative dQi½xminðiÞ�=di for fixed K and i 2 I*: From Equations B5 and B1,

dQiðxminðiÞÞ
di

¼
ffiffiffiffiffiffiffi
f ðiÞp

Kð2i2K þ 1ÞuðiÞ
wðiÞ2½wðiÞ þ Kð2i2K þ 1Þ�2;

where wðiÞ ¼ ffiffiffiffiffiffiffi
f ðiÞp

2 iðiþ 1Þ and uðiÞ ¼ 2ðK2 2 1Þ ffiffiffiffiffiffiffi
f ðiÞp þ 2ðK2 þ 1Þi2 2 ðK2 1Þð2iK2 þ K2 2K þ 2iÞ:

For all i 2 I*; the denominator of the derivative is positive, as are
ffiffiffiffiffiffiffi
f ðiÞp

; K, and 2i2K þ 1: Hence, dQi½xminðiÞ�=di has the
same sign as uðiÞ:

Because fðiÞ decreases for i 2 ½ðK21Þ=2;K2 2�; ffiffiffiffiffiffiffi
f ðiÞp

$
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ½ðK2 1Þ=2�p ¼ ðK2 2 1Þ=4 and K2 2 12 4

ffiffiffiffiffiffiffi
fðiÞp

$ 0: We factor
uðiÞ:

uðiÞ ¼ 2
�
K2 þ 1

�

i2 vðiÞ2K2 1

2

�

iþ vðiÞ2K2 1

2

�
;

where vðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK2 2 1ÞðK2 2 12 4

ffiffiffiffiffiffiffi
f ðiÞp Þ

q
=ð2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K2 þ 1
p Þ: Because vðiÞ$ 0; for all i$ ðK2 1Þ=2; iþ vðiÞ2 ðK2 1Þ=2$ 0: Thus,

the sign of uðiÞ is given by the sign of

i2 vðiÞ2K2 1
2

¼
ð2i2K þ 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K2 þ 1
p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK2 2 1Þ�K2 212 4

ffiffiffiffiffiffiffi
f ðiÞp �q

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ 1

p :

For i 2 ððK2 1Þ=2;K2 2�;
K2ð2i2K21Þ4

4ðK21Þ2ðK þ 1Þ2 ¼
"
K221
4

2

�
K2 þ 1

�½i2K21
2 �2

K221

#2
2 f ðiÞ. 0;

and hence,
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24

�����K
2 2 1
4

2

�
K2 þ 1

�½i2ðK21Þ=2�2
K22 1

�����, 2 4
ffiffiffiffiffiffiffi
fðiÞ

p
: (B6)

The term ½i2ðK21Þ=2�2 increases as a function of i for i 2 ½ðK2 1Þ=2;K22� Hence,
ðK2 2 1Þ=42 fðK2 þ 1Þ½i2ðK21Þ=2�2g=ðK2 2 1Þ decreases with i. It is minimal at the largest value in the permissible domain
for i, or i ¼ K2 2; with minimum ½3KðK21Þ2 2 4�=½2ðK2 1ÞðK þ 1Þ�: The denominator of this quantity is positive and the
numerator increases with K. It is thus minimal for K ¼ 3; at which 3KðK21Þ2 2 4 ¼ 32. 0: This proves that
½ðK2 2 1Þ=4�2 fðK2 þ 1Þ½i2ðK21Þ=2�2g=ðK2 2 1Þ. 0 for i 2 ½ðK2 1Þ=2;K2 2�:

We can then remove the absolute value in Equation B6 and rearrange to obtain
ðK2 þ 1Þð2i2K þ 1Þ2 , ðK2 2 1Þ�K2 2 12 4

ffiffiffiffiffiffiffi
f ðiÞp �

: Both sides of this inequality are positive for i 2 ððK2 1Þ=2;K2 2� and
we can take the square root to obtain

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ 1

p ð2i2K þ 1Þ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK2 2 1Þ½K2 2 124

ffiffiffiffiffiffiffi
f ðiÞp �

q
: Hence i2 vðiÞ2 ðK2 1Þ=2, 0

for i 2 ððK2 1Þ=2;K2 2�; dQi½xminðiÞ�=di,0 for i 2 I*; and the local minima Qi½xminðiÞ� decrease with i. h

Proposition 5. For K ¼ 3; the first local minimum Qi½xminðiÞ� has value 2=3; for K$ 3; the first local minimum increases as a
function of K and tends to 1 as K/N:

Proof. From Proposition 2i, for odd K, the first local minimum is reached for i ¼ ðK2 1Þ=2 and x ¼ 1=2; and the upper bound
on FST is QðK21Þ=2ð1=2Þ ¼ 12 ð1=KÞ: Thus, for K ¼ 3; the first local minimum has value Q1ð1=2Þ ¼ 2=3: For even K, the first
local minimum is reached if i ¼ K=2 and x ¼ xminðK=2Þ; with upper bound on FST equal to

QK
2



xmin

�
K
2


�
¼

ðK2 2Þ
h
KðK þ 1Þ2 ðK þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K22 4

p
2 2
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 24

p �
K2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K22 4

p 	 : (B7)

Denote byD1ðKÞ ¼ QK=2½xminðK=2Þ�2 ½12 1=ðK2 1Þ� the difference between the first local minimum for evenK and the first
local minimum for odd K2 1; and by D2ðKÞ ¼ ½12 1=ðK þ 1Þ�2QK=2½xminðK=2Þ� the difference between the first
local minimum for odd K þ 1 and the first local minimum for even K. To show that the first local minimum increases with
K, we must show that for all even K$ 4; (i) D1ðKÞ.0; and (ii) D2ðKÞ.0:

For (i), subtracting 12 ½1=ðK2 1Þ� from Equation B7, we have

D1ðKÞ ¼
ðK2 2Þ

h
ðK þ 2Þ�K2 2K21

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 2 4

p �
K2 þ K2 1

�i
ðK2 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 2 4

p �
K2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 2 4

p 	 :

Because all other terms are positive forK$ 3;D1ðKÞhas the same sign as ðK þ 2ÞðK2 2K21Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 2 4

p
ðK2 þ K2 1Þ:Dividing

by
ffiffiffiffiffiffiffiffiffiffiffiffi
K þ 2

p
; this quantity in turn has the same sign as

ffiffiffiffiffiffiffiffiffiffiffiffi
K þ 2

p ðK2 2K2 1Þ2 ffiffiffiffiffiffiffiffiffiffiffiffi
K2 2

p ðK2 þ K21Þ: This last quantity is positive
for K$ 4; as when we multiply it by the positive

ffiffiffiffiffiffiffiffiffiffiffiffi
K þ 2

p ðK2 2K2 1Þ þ ffiffiffiffiffiffiffiffiffiffiffiffi
K2 2

p ðK2 þ K21Þ; the result reduces simply to the
number 4. This proves (i).

For (ii), subtracting Equation B7 from 12 1=ðK þ 1Þ; we have

D2ðKÞ ¼
ðK þ 2Þ

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 2 4

p �
K22K2 1

�
2 ðK22Þ�K2 þ K2 1

�i
ðK þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 2 4

p �
K2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 2 4

p 	 :

Because all other terms are positive forK$ 3;D2ðKÞ has the same sign as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 2 4

p
ðK2 2K2 1Þ2 ðK2 2ÞðK2 þ K21Þ:Dividing

by
ffiffiffiffiffiffiffiffiffiffiffiffi
K2 2

p
; this quantity has the same sign as

ffiffiffiffiffiffiffiffiffiffiffiffi
K þ 2

p ðK2 2K2 1Þ2 ffiffiffiffiffiffiffiffiffiffiffiffi
K2 2

p ðK2 þ K2 1Þ; which was shown to be positive in
the proof of (i). This demonstrates (ii).

From (i) and (ii), the value of the upper bound on FST at the first localminimum increases withK for allK$ 3: To see that the
limiting value is 1 as K/N;we note that the subsequence of values 12 ð1=KÞ at odd K tends to 1 as K/N: As the sequence of
values of the first local minimumwith increasing K is monotonic and bounded above by 1, it is therefore convergent; as it has a
subsequence converging to 1, the sequence converges to 1. h
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Proposition 6. For K ¼ 3; the last local minimum Qi½xminðiÞ� has value 2=3; for K$ 3; the last local minimum increases as a
function of K and tends to 2

ffiffiffi
2

p
22 as K/N:

Proof. From Proposition 5, for K ¼ 3; the single local minimum has value 2=3: By Theorem 2, for K. 3; the last local minimum
is reached when i ¼ K2 2 and x ¼ xminðK2 2Þ; in which case from Equations B5 and B1 the upper bound on FST is

QK22½xminðK2 2Þ� ¼
2ðK2 2Þ

h ffiffiffi
2

p ðK21Þ22 ffiffiffiffiffiffiffiffiffiffi
hðKÞp ðK þ 1Þ

i
ffiffiffiffiffiffiffiffiffiffi
hðKÞp � ffiffiffiffiffiffiffiffiffiffi

hðKÞp
2

ffiffiffi
2

p �2 ; (B8)

where hðKÞ ¼ ðK2 2ÞðK21Þ:
We examine the derivative of QK22½xminðK2 2Þ� with respect to K. For K$3; hðKÞ. 0 and

dQK22½xminðK2 2Þ�
dK

¼ aðKÞ ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffi
hðKÞp � ffiffiffiffiffiffiffiffiffiffi

hðKÞp
2

ffiffiffi
2

p �4;

where aðKÞ ¼ 3KðK21Þ2 2 42 2
ffiffiffi
2

p ðK21ÞðK þ 1Þ ffiffiffiffiffiffiffiffiffiffi
hðKÞp

: For K. 3; the derivative has the same sign as aðKÞ:
We note that

ðK23Þ4K2

8ðK21Þ2ðK þ 1Þ2 ¼
"

3ðK21Þ2K24

2
ffiffiffi
2

p ðK21ÞðK þ 1Þ

#2
2 hðKÞ$0;

with equality only at K ¼ 3: Because 3KðK21Þ2 2 4 is positive for K$ 3; ½3KðK21Þ2 2 4�=½2 ffiffiffi
2

p ðK2 1ÞðK þ 1Þ�$ ffiffiffiffiffiffiffiffiffiffi
hðKÞp

;with
equality only at K ¼ 3: Thus, aðKÞ.0 and dQK22½xminðK2 2Þ�=dK. 0 for K. 3; and hence, the last local minimum increases
with K.

For the limit as K/N; we take the limit of QK22½xminðK22Þ� in Equation B8, obtaining 2
ffiffiffi
2

p
2 2 � 0:8284: h

Appendix C: Computing the Mean Range of FST

This appendix provides the computation of the integral AðKÞ (Equation 7) and its asymptotic approximation ~AðKÞ:

Computing A(K)

To compute AðKÞ; we break the integral into a sum over intervals. If K is even, then we consider intervals Ii ¼ ½i=K; ðiþ 1Þ=KÞ
with i ¼ K=2; ðK=2Þ þ 1; . . . ;K2 1: If K is odd, then we use intervals I ¼ ½1=2; ðK þ 1Þ=ð2KÞÞ and Ii ¼ ½i=K; ðiþ 1Þ=KÞ with
i ¼ ðK þ 1Þ=2; ðK þ 3Þ=2; . . . ;K2 1:

By construction ofQiðxÞ (Equation 6), in each interval Ii; the upper bound on FST is equal toQiðxÞwith x ¼ fKMg: In the odd
case, because ðK þ 1Þ=2 is an integer, on interval ½1=2; ðK þ 1Þ=ð2KÞÞ; ⌊KM⌋ has a constant value ðK2 1Þ=2 and
fKMg ¼ KM2 ðK2 1Þ=2; and the upper bound is equal to QðK21Þ=2ðxÞ: Making the substitution x ¼ KM2 i; we obtain
dx ¼ K   dM and we can write Equation 7 in terms of QiðxÞ :

AðKÞ ¼

2
K

XK21

i¼ K
2

Z 1

0
QiðxÞdx; K   even

2
K

�Z 1

1
2

QK21
2
ðxÞdx þ

XK21

i¼ Kþ1
2

Z 1

0
QiðxÞdx



; K   odd:

8>>>>>><
>>>>>>:

(C1)

We next use a partial fraction decomposition. For ⌊K=2⌋# i#K2 2;

QiðxÞ ¼ 12K þ iðiþ 1Þ
iþ x

þ ðK2 iÞðK2 i2 1Þ
K2 i2 x

;
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Z 1

0
QiðxÞdx ¼ 12K þ iðiþ 1Þln

�
iþ 1
i



þ ðK2 iÞðK2 i2 1Þln

�
K2 i

K2 i2 1



:

For i ¼ K2 1;

QiðxÞ ¼ 12K þ iðiþ 1Þ
iþ x

;

Z 1

0
QK21ðxÞdx ¼ 12K þ ðK2 1ÞK ln

�
K

K2 1



:

For i ¼ ðK2 1Þ=2; Z 1

1
2

QK21
2
ðxÞdx ¼ 12K

2
þ
�
K2 1
2


�
K þ 1
2



ln
�
K þ 1
K2 1



:

Thus, when K is even,

AðKÞ ¼ 2
K

XK21

i¼ K
2

Z 1

0
QiðxÞdx

¼ 2
2
K

XK21

i¼ K
2

ðK21Þ þ 2
K

XK21

i¼ K
2

"
iðiþ 1Þln

�
iþ 1
i


#

þ 2
K

XK22

i¼ K
2

"
ðK2 iÞðK2 i2 1Þln

�
K2 i

K2 i2 1


#

¼ 12K þ 2
K

XK21

i¼1

"
iðiþ 1Þln

�
iþ 1
i


#
:

When K is odd,

AðKÞ ¼ 2
K

Z 1

1
2

QK21
2
ðxÞdx þ 2

K

XK21

i¼ Kþ1
2

Z 1

0
QiðxÞdx

¼ 2
K
12K
2

þ 2
K

�
K2 1
2


�
K þ 1
2



ln
�
K þ 1
K2 1




2
2
K

XK21

i¼ Kþ1
2

ðK2 1Þ þ 2
K

XK21

i¼ Kþ1
2

"
iðiþ 1Þln

�
iþ 1
i


#

þ 2
K

XK22

i¼ Kþ1
2

"
ðK2 iÞðK2 i2 1Þln

�
K2 i

K2 i2 1


#

¼ 12K þ 2
K

XK21

i¼1

"
iðiþ 1Þln

�
iþ 1
i


#
: (C2)

The expressions for AðKÞ are equal for even and odd K. We can simplify further:

XK21

i¼1

iðiþ 1Þln
 
iþ 1
i

!
¼
XK
i¼2

ði21Þi ln i2
XK21

i¼2

iðiþ 1Þln i

¼ KðK þ 1Þ ln K2 2
XK
i¼2

i ln i: (C3)
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Substituting the expression from Equation C3 into Equation C2 and simplifying, we obtain Equation 8.

Asymptotic Approximation for A(K) (Equation 9)

To asymptotically approximate AðKÞ; we first need a large-K approximation of
PK

i¼2i ln i: Because
PK

i¼2i ln i ¼ ln ½HðKÞ�;
where HðKÞ ¼QK

i¼1i
i is the hyperfactorial function, we can use classical results about the asymptotic behavior of HðKÞ:

lim
K/N

HðKÞ
expð2K2

4 ÞK
K2

2 þK
2þ 1

12

¼ C; (C4)

where C is the Glaisher–Kinkelin constant. Because the logarithm function is continuous at C,
ln ½HðKÞ�=½expð2K2=4ÞK½ðK2=2ÞþðK=2Þþð1=12Þ�� has limit ln C as K/N: Thus, if we write f ðKÞ � gðKÞ for two functions that satisfy
lim K/N½f ðKÞ=gðKÞ� ¼ 1; then

XK
i¼2

i ln i � 2
K2

4
þ
�
K2

2
þ K

2
þ 1
12



ln K þ ln C: (C5)

Substituting the expression from Equation C5 into Equation 8, we obtain function ~AðKÞ (Equation 9) and the relationship
~AðKÞ � AðKÞ:

Monotonicity of Equation 8 in K

Theorem 3. AðKÞ increases monotonically in K for K$ 2:

Proof. We must show that DAðKÞ ¼ AðK þ 1Þ2AðKÞ. 0 for all K$ 2: From the expression for AðKÞ in Equation 8, we have:

DAðKÞ ¼ 2 1þ 2 K ln
�
1þ 1

K



2 2 ln K þ

4
XK
i¼2

i ln i

KðK þ 1Þ : (C6)

To show that DAðKÞ. 0; we find a lower bound for DAðKÞ; denoted DðKÞ; and then show that DðKÞ. 0:
We first find a lower bound for

PK
i¼2i ln i: From the Euler–Maclaurin summation formula, we have

XK
i¼2

i ln i ¼
�Z K

1
x ln x   dx



þ K ln K

2
þ
Z K

1
ðln x þ 1Þ

�
x2⌊x⌋2

1
2



dx:

For all positive integers i$ 2;

Z i

i21
ðln x þ 1Þ

�
x2⌊x⌋2

1
2



dx ¼ 1

4

"
2i2 12 2iði2 1Þln

�
i

i2 1


#
: (C7)

This integral can be seen to be positive from the equivalence for i. 1 of 2i2 122iði21Þlnði=½i2 1�Þ.0 with
exp½ð2i2 1Þ=½2iði2 1Þ��. i=ði2 1Þ: This latter inequality follows from the inequality expðxÞ. 1þ x þ x2=2 for x.0 from
the Taylor expansion of ex; noting that 1þ ð2i2 1Þ=½2iði2 1Þ� þ ð1=2Þ½ð2i21Þ=½2iði21Þ��2 . i=ði21Þ:

Consequently, as the integral in Equation C7 is positive for each i$ 2;
R K
1 ðln x þ 1Þ½x2⌊x⌋2 ð1=2Þ�dx. 0; and

XK
i¼1

i ln i.
�Z K

i¼1
x ln x   dx



þ K ln K

2
¼ KðK þ 1Þln K

2
þ 12K2

4
: (C8)

As a result, the following function is a lower bound for DA:
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DðKÞ ¼ 2 1þ 2 K ln

 
1þ 1

K

!
2 2 ln K þ

4


KðK þ 1Þln K

2
þ 12K2

4

�
KðK þ 1Þ

¼ 2 2þ 1
K
þ 2 K ln

 
1þ 1

K

!
:

Dividing by 2K and substituting u ¼ 1=K for K. 0;DðKÞ. 0 if and only if fðuÞ ¼ lnð1þ uÞ2 uþ ðu2=2Þ. 0 for u. 0: It can be
seen that this latter inequality holds by noting that f ð0Þ ¼ 0 and f 9ðuÞ ¼ ½1=ð1þ uÞ�2 1þ u ¼ u2=ð1þ uÞ. 0: h
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