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The Genomic Architecture of Flowering Time Varies
Across Space and Time in Mimulus guttatus
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ABSTRACT The degree to which genomic architecture varies across space and time is central to the evolution of genomes in response
to natural selection. Bulked-segregant mapping combined with pooled sequencing provides an efficient means to estimate the effect
of genetic variants on quantitative traits. We develop a novel likelihood framework to identify segregating variation within multiple
populations and generations while accommodating estimation error on a sample- and SNP-specific basis. We use this method to map
loci for flowering time within natural populations of Mimulus guttatus, collecting the early- and late-flowering plants from each of
three neighboring populations and two consecutive generations. Structural variants, such as inversions, and genes from multiple
flowering-time pathways exhibit the strongest associations with flowering time. We find appreciable variation in genetic effects
on flowering time across both time and space; the greatest differences evident between populations, where numerous factors
(environmental variation, genomic background, and private polymorphisms) likely contribute to heterogeneity. However, the
changes across years within populations clearly identify genotype-by-environment interactions as an important influence on
flowering time variation.
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THE standing genetic variation in a population is the raw
material for evolution. For quantitative traits, a basic

question is whether the architecture of this variation is con-
sistent across populations of a species, or even within a single
population through time.Consistency requiresnot only for the
same polymorphisms to be present in each population, but
also that the genotype-to-phenotype mapping is stable across
space and time. The consistency of genomic architecture is
relevant to many outstanding questions: How general are the
results from QTL mapping studies, typically done on a single
population evaluated in a single environment? How frequently
will parallel selectionpressuresproduceparallel genetic changes
(Cohan 1984a,b; Colosimo et al. 2005; Cooley et al. 2011)?
How influential are factors such as genotype-by-environment
(G3E) interactions in generating inconsistent architecture from

spatial and temporal environmental variation, and to what ex-
tent does this alter the balance of evolutionary forces that main-
tain the quantitative trait variation in the first place?

To address the question of consistency, we performed
bulked-segregant mapping of flowering-time variation across
multiple, natural populations of Mimulus guttatus over two
generations. Bulked-segregant mapping (Michelmore et al.
1991) identifies divergent loci between the tails of the distri-
bution of a phenotype, in this case the earliest and latest
flowering plants in a population. QTL for flowering time
should exhibit allele frequency divergence between groups
(bulks). Because the selection of bulks is equivalent to a sin-
gle generation of (bidirectional) truncation selection, the
expected magnitude of this difference is directly proportional
to the “average effect” of alleles on the trait (Fisher 1941;
Latter 1965; Kimura and Crow 1978). The average effect
measures the association between alleles and phenotypes
(Falconer and Mackay 1996), and the extent to which the
average effect changes with context directly assays the im-
portance of that context on variation. Changes in average
effect across environments reflects G3E interactions, whereas
changes in average effect owing to different genetic back-
grounds estimate the effect of epistasis.

Copyright © 2017 by the Genetics Society of America
doi: https://doi.org/10.1534/genetics.117.201483
Manuscript received February 23, 2017; accepted for publication April 23, 2017;
published Early Online April 27, 2017.
Supplemental material is available online at www.genetics.org/lookup/suppl/doi:10.
1534/genetics.117.201483/-/DC1.
1Corresponding author: Cell and Developmental Biology, John Innes Centre,
Norwich Research Park, Norwich, NR4 7UH, Norfolk, United Kingdom. E-mail:
Patrick.Monnahan@jic.ac.uk

Genetics, Vol. 206, 1621–1635 July 2017 1621

http://orcid.org/0000-0002-3022-8191
https://doi.org/10.1534/genetics.117.201483
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.117.201483/-/DC1
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.117.201483/-/DC1
mailto:Patrick.Monnahan@jic.ac.uk


The three populations chosen for this study are geograph-
ically proximal (within 7 km), have very high nucleotide
variation (Puzey et al. 2017), and exhibit extensive shared
polymorphism (Monnahan et al. 2015). For shared polymor-
phisms, the difference in allele frequency between early- and
late-flowering individuals within a population (DpEL) can dif-
fer between populations for numerous reasons. If the map-
ping from genotype to phenotype is constant, DpEL will differ
if the allele frequency is intermediate in one population but
extreme in the other. Barring this, DpEL will differ if the dis-
tribution of genetic backgrounds differs between the popula-
tions, and that influences the phenotypic expression of the
focal locus. Environmental differences among populations or
across generations can alter the magnitude or even direction
of DpEL. Finally, G3E can generate heterogeneity in DpEL be-
tween generations within a population if there are temporal
changes in the environment.

Flowering time is responsive to multiple environmental
variables, is typically highly polygenic, and is central to numer-
ous ecological andevolutionaryprocesses (FuandRitland1994;
Bernier and Périlleux 2005; Wellmer and Riechmann 2010;
Blümel et al. 2015). For many plants, it is a major determinant
of fitness because access to pollination and resources necessary
for reproduction vary over the course of a growing season. This
is particularly true for annualM. guttatus, in which plants must
flower and set seedbeforewater runsout.Although late-flowering
plants tend to produce more seed, they risk desiccation
prior to seed set (Mojica and Kelly 2010; Mojica et al.
2012). This trade-off may be relevant to the maintenance
of genetic variation in flowering time and will surely affect
how these populations evolve in response to a changing cli-
mate. Shifts in flowering time due to climate change have
already been observed for a number of species (Fitter and
Fitter 2002).

Estimating the contribution of individual loci to quantita-
tive trait variation is a challenge, particularly when genetic
effects are subtle (McCarthy et al. 2008; King et al. 2012). In
bulked-segregant mapping, differences in allele frequency
owing to random sampling should usually be small if bulks
are large; but occasional, large, random fluctuations are in-
evitable. In the present study, statistical difficulties are acute
given that we wish not only to detect loci affecting a trait, but
also to test whether these effects vary across years or popu-
lations. To this end, we develop a likelihood-based, hypoth-
esis-testing framework analogous to the factorial ANOVA, in
which we can test for marginal effects as well as interactions
between factors.

We used pooled population sequencing (Pool-seq)
(Schlötterer et al. 2014) to estimate allele frequencies in each
bulk throughout the genome. Each bulk makes a single pool
of DNA to be sequenced, with the resulting read counts esti-
mating allele frequencies. However, an inherent challenge is
accommodating the variance introduced by the sampling
events prior to sequencing. These include, but are not limited
to, sampling of individuals from populations, sampling DNA
into pools, sampling events during library preparation (par-

ticularly, PCR), and sampling of fragments for sequencing.
Multiple methods have been proposed to estimate the vari-
ance in allele-frequency estimates obtained from Pool-seq
data (Magwene et al. 2011; Gautier et al. 2013; Kelly et al.
2013; Lynch et al. 2014). Here, we build on a method based
on Fisher’s angular transformation of allele frequency (Fisher
and Ford 1947) using a robust estimator for the variance of
dispersive processes (Kelly et al. 2013).

In addition to genome-wide mapping, we estimate flow-
ering-time effects for five structural variants (chromosomal
inversions) segregating in one or more of the populations.
These variants were identified in prior mapping studies
(Fishman and Saunders 2008; Lowry and Willis 2010;
Holeski et al. 2014; Lee et al. 2016), and three of these loci
(inv6, inv8, and D) have demonstrated phenotypic effects,
including developmental timing. The present study pro-
vides further evidence of natural selection on alternative
orientations of the inversions. Also, the inclusion of
“known loci” provides important ground truths for genome
scans in which the overwhelming majority of SNPs are ef-
fectively anonymous.

Considering both SNPs and structural variants, this study
provides several striking observations regarding genomic vari-
ation for flowering time in natural populations of M. guttatus.
Depending on the population and year, we find anywhere from
10s–1000s of SNPs that differ in frequency between early- and
late-flowering plants, broadly distributed throughout the ge-
nome. Although individual SNPs are almost entirely idiosyn-
cratic with regard to significance, there is appreciable overlap
in the genomic regions harboring this variation. Furthermore,
we find that the extent of variability over time itself varies be-
tween populations. The Quarry (Q) population, a recently
established annual/perennial hybrid swarm, exhibits many
more early-late divergent SNPs compared to the other two,
and the allele frequency divergence at these SNPs tends to be
much more consistent across years. In the following sec-
tions, we describe our likelihood framework in detail and
interpret the results in relation to the expected degree and
scale of parallel evolution, as well as the generality of
genetic mapping studies.

Theory

In this section, we describe a likelihood framework for testing
divergence in allele frequency; first between two bulks (Early
vs. Late) and then extend to treat multiple contrasts simulta-
neously. Following Fisher and Ford (1947), we conduct tests
on transformed allele frequencies: x̂ ¼ 2arcsin

ffiffiffi
p̂

p
where p̂ is

the estimated allele frequency (fraction of reads bearing the
specified base) in a bulk. For a single bulk, x̂ � N½x;s2

x̂ �;
where x is the true (transformed) allele frequency and
s2
x̂ ¼ vþ ð1=mÞ: Here, m is read depth at a SNP, and v is a

bulk-specific variance that aggregates the effects of sampling
of individuals into bulks, sampling of DNA into the pooled
sample, and PCR sampling during library preparation. v is
common to all SNPs in the bulk, while m will vary among
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SNPs. The null hypothesis that DpEL = 0 (allele frequency is
the same across bulks) is evaluated as:

E½x̂E 2 x̂L� ¼ 0; (1A)

Var½x̂E 2 x̂L� ¼ Var½x̂E� þ Var½x̂L� ¼ 1
mE

þ 1
mL

þ vE þ vL:

(1B)

Given values for mE; mL; vE; and vL; we calculate the likeli-
hood of any observed difference from the normal density
function. The read depths in a sample are directly observed
while the v terms are estimated from a genome-wide aggre-
gation of data (procedure described below).

A likelihood ratio test statistic (LRT) for a difference be-
tween bulks requires a maximum likelihood estimator (MLE)
for the common allele frequency:

x*i ¼ x̂iEwiE þ x̂iLwiL

wiE þ wiL
: (2)

Here, x̂iE and x̂iL are the estimates from each bulk at site i and
w terms are the reciprocal of ŝ2

iB ¼ ð1=miBÞ þ viB; where B
designates early or late bulk. The log-likelihood of the data
under the null model (after dropping a common term across
models) is:

LLi ¼
2
�
x̂iE2x*i

�2

2ŝiE
2 þ2

�
x̂iL2x*i

�2

2ŝiL
2 : (3)

This can be compared to an unconstrained model, where
xiE 6¼ xiL; with a separate mean estimated for each bulk.
Since there is only one observation (allele frequency) in
each sample, the estimate is simply the observation, and
the log-likelihood becomes zero. The LRT is then 22 times
Equation (3), and a P-value for the test is obtained from a x2

distribution with 1 d.f.
These calculations can be generalized to consider two

contrasts (DpEL from different populations or generations)
simultaneously. Table 1 outlines three models appropriate
to test for heterogeneity of such contrasts. These models
are nested: M1 is a special case of M2, and M2 is a special
case of M3. Comparing two generations within a population,
a significant LRT for M1 vs. M2 indicates a marginal effect
(average divergence) between bulks across the two genera-
tions. A significant test forM2 vs.M3 indicates heterogeneous
divergence; DpEL differs between generations (i.e., an inter-
action between generation and bulk divergence). M1 vs. M3
represents an overall test for divergence across both years
and is simply a sum of the two LRTs from the former tests.
There is 1 d.f. for the former tests, and 2 d.f. for the latter.

The likelihoods of M1 and M3 are calculated as the sum of
the likelihoods for the relevant samples (Equations 2 and 3).
For M2, the MLEs for the three parameters are:

x*L1 ¼ ðŝE1 þ ŝE2 þ ŝL2Þx̂L1 þ ðx̂E12 x̂E2 þ x̂L2ÞŝL1

ðŝE1 þ ŝL1 þ ŝE2 þ ŝL2Þ (4A)

x*L2 ¼ ðŝE1 þ ŝL1 þ ŝE2Þx̂L2 þ ðx̂E22 x̂E1 þ x̂L1ÞŝL2

ðŝE1 þ ŝL1 þ ŝE2 þ ŝL2Þ (4B)

a* ¼ ðŝE2 þ ŝL2Þðx̂E1 2 x̂L1Þ þ ðŝE1 þ ŝL1Þðx̂E22 x̂L2Þ
ðŝE1 þ ŝL1 þ ŝE2 þ ŝL2Þ ;

(4C)

where 1 and 2 simply designate the population (or genera-
tion) being considered. The log-likelihood of the data for M2
is:

LL ¼ 2
�
x̂E12

�
x*L1 þ a*

��2

2ŝE12
þ2

�
x̂L12x*L1

�2

2ŝL12

þ2
�
x̂E22

�
x*L2 þ a*

��2

2ŝE22
þ2

�
x̂L22x*L2

�2

2ŝL22
: (5)

Figure 1 illustrates some key features regarding the marginal
and interaction tests with m and v values typical of our data.
As expected, if the observed Dp is the same in both popula-
tions (or both generations), the LRT for an interaction test
(M2 vs. M3) is zero. When the opposite is true (equal mag-
nitude Dp; but different sign), the LRT for the marginal-
effect test (M1 vs. M2) is zero (note that, when the results
for negative Dp2 are plotted instead of the positive values
displayed in Figure 1, the solid line follows the dotted-line
trajectory and vice versa). When Dp is nonzero in only one
population (or generation), both tests are equally powered
(the dashed and solid black line are perfectly overlapping
when Dp2 = 0). As the magnitude of observed average Dp
increases, so does the LRT for marginal effects, regardless of
whether Dp1 6¼ Dp2: The interaction LRT increases as Dp1
and Dp2 diverge. For a given difference between Dp1 and
Dp2; the interaction LRT increases as average Dp increases.
For example, the interaction LRT is 7.08 when Dp1 is 0.75
and Dp2 is 0.25 (i.e., difference between Dp1 and Dp2 is 0.5),
but is much higher (21.93) when Dp1 is 1.0 and Dp2 is 0.5.

We developed a simulation framework to confirm the
behavior of our testing procedures under different scenarios,
using the real data to calibrate these simulations. We average
the observed allele frequencies in the Early and Late bulks
to set p for each population/year and incorporate sampling
error using observed read counts and v terms. We simu-
late new values for each site and sample by adding to the

Table 1 Models to establish significance of marginal and
heterogeneous genetic effects across the two contrasts
(between years or between populations) within a context

Model Description Parameter constraints

M1 No difference between early/late xE1 ¼ xL1; xE2 ¼ xL2

M2 DpEL consistent xE1 ¼ xL1 þ a;
xE2 ¼ xL2 þ a

M3 DpEL variable xE1 6¼ xL1; xE2 6¼ xL2
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population/year allele frequency a deviation due to sampling
error as well as a deviation due to an effect (a) of that site. For
the sampling error deviation, we add a value drawn from
N½0; ŝ2

iB�; recalling that the sampling variance at a site, ŝ2
iB;

is the sample-specific variance (v) plus 1=m: We first investi-
gated the behavior of our testing procedure under a purely
neutral scenario (i.e., a = 0 for all sites). These simulations
confirm that our LRTs follow the predicted null distributions
(x2 with 1 d.f. for M1 vs.M2 and M2 vs.M3; x2 with 2 d.f. for
M1 vs. M3) for a SNP with no effect on phenotype.

Next, we consider scenarios where a subset of SNPs exhibit
a constant effect onDpEL to provide a baseline for comparison
of observed heterogeneity in DpEL. Given that sampling bulks
is a form of truncation selection, the expected allele fre-
quency difference between early- and late-flowering plants
can be calculated given values for the effect size (a) and the
intensity of selection (i):

pE ¼ p2 pð12 pÞ i  a
sP

(6A)

pL ¼ pþ pð12 pÞ i  a
sP

(6B)

DpEL ¼ 22pð12 pÞ i  a
sP

; (6C)

where p is the overall frequency in the population (Falconer
and Mackay 1996, Chap. 11). The intensity of selection was

determined using a truncated normal distribution in which
10% of individuals exceed the truncation point (i = 1.755).
This was based on approximations of population size during
sampling periods relative to full bloom. We grossly approxi-
mate the distribution of standardized allelic effects ða=sPÞ by
assuming that some fraction of sites are neutral with respect
to flowering time (12 f0) and have a = 0, while the remain-
ing sites have a nonzero effect of constant magnitude, c (the
sign of c is chosen randomly for each site). For each of the
four contexts in which we investigated heterogeneity [Iron
Mountain (IM), Q, 2013, and 2014], we performed a heuris-
tic search for values of f0 and c that generate a distribution of
LRT for the marginal-effect test (M1 vs. M2) that closely
matches the distributions from the real data. Our matching
criteria is based on the observed proportion of sites exceeding
specified values of LRT (10 and 15, in this case). Here, we aim
to match the tails of the LRT distribution as this information
pertains most directly to f0 and c (given that f0 is likely small).
To accumulate this information into a single measure (Zdiff),
we sum the standardized difference between simulated and
real data.

Zdiff ¼
abs

�
Pr½X. 10�sim 2 Pr½X. 10�real

�

Pr½X. 10�real
þ abs

�
Pr½X. 15�sim2 Pr½X. 15�real

�

Pr½X. 15�real
:

Materials and Methods

Populations, plant collection, and phenotyping

The three populations are located in the central Oregon
cascades: Q (44.3454243 N, 122.1362023 W), IM
(44.402217 N, 122.153317 W), and Browder Ridge (BR)
(44.373238 N, 122.130675 W) and are described in detail
in Monnahan et al. (2015). Whole-genome sequencing has
demonstrated very high levels of nucleotide variation in IM
(psyn = 0.033; Puzey et al. 2017) and results from the present
study indicate comparable variation in BR and even greater
diversity within Q. In a particular population and year, we
sampled early- and late-flowering plants (100 plants per sam-
ple) according to the following scheme. First, we established
several parallel transects, perpendicular to the slope of the
hillside, totaling �30 m, and divided each transect into
30-cm intervals. We chose sampling times based on density
of flowering plants along a transect. For the early flowering
plants, we sampled a transect as soon as two flowering plants
could be found within �15 cm on either side of the transect
within each 30-cm interval. We estimate this cohort to be
�5–10% of the total population. For the late-flowering
plants, we waited until plant density was similar to the early
sampling event (5–10% of population remaining relative to
full bloom). If a particular interval along a transect had sev-
eral flowering plants within 15 cm on each side, we randomly
selected the two plants nearest the transect line. Whole

Figure 1 LRT values for the marginal-effect (M1 vs. M2) and interaction
(M2 vs. M3) test as a function of allele-frequency difference in the two
populations. Note that solid and dashed lines are perfectly overlapping
for Dp2 ¼ 0: In all cases, 1=m ¼ v ¼ 0:025 for both populations in the
contrast.
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plants were collected and stored in dry ice until frozen
at 220�. Since collection times were dependent on density
of flowering plants, sample times varied across populations
and across years (see Supplemental Material, Table S1 in File
S2 for collection dates). Early bulks were collected earlier in
2014 for all populations. The late bulk for Q was collected
earlier in 2014. There was a very hot and dry spell that wiped
out the BR population shortly after collecting the Early bulk;
therefore, we did not perform contrasts for BR in 2014.

Sequencing and SNP calling

We extracted DNA from each individual and quantified via
Qubit (double-stranded DNA BR assay; Invitrogen, Carlsbad,
CA). We created 11 pools with equimolar individual contri-
butions corresponding to each of the year-, population-, and
bulk-sampling events.Weperformedwhole-genomesequencing
with five paired-end 100-bp high-output lanes on an Illumina
HiSequation 2500 (three lanes for 2013 samples and two for
2014). Two additional lanes (rapid runs) were performed to
equilibrate coverage across samples. We combined data from
all lanes to create 11 FASTQ sets corresponding to each of the
sampling bulks and ran Scythe (https://github.com/vsbuffalo/
scythe) and Sickle (Robinson et al. 2010) to remove adaptors
and trim low quality sites, respectively. We mapped reads to
theM. guttatus version 2 genome build using Burrows–Wheeler
Aligner and removed PCR duplicates using Picard Tools. We
called SNPs using the GATK UnifiedGenotyper with the down-
sampling feature suppressed (“-dt NONE”). The read counts in
the variant call file corresponding to each of the sampling bulks
are the input for subsequent likelihood analyses. A SNP was in-
cluded for testing only if read depth per bulk was 25–100 reads
and allele frequency (both bulks combined) was between 0.05
and 0.95. We chose 25 as the lower cutoff, so that sampling
variance due to read depth, at its greatest (1/25 = 0.04), would
be on the same scale as that due to bulk-specific variance (Table
1). We used the same cutoffs for all samples despite variation in
median read depth (Table S1 in File S2) in an attempt to equalize
power across samples. Although this differentially removed an
appreciable number of sites, the low power to detect differences
at these low-read depth sites in conjunction with concerns re-
garding corrections for multiple testing justified their removal.
For these reasons and to exclude sequencing errors, we also
chose to filter based on extreme allele frequencies. We imposed
the upper bound of 100 reads to exclude paralogous mappings.

Estimation of v terms

In Equations 1–5, the bulk-specific variance terms (v) are
treated as known constants. Prior to hypothesis testing, we
estimate these variances using a procedure similar to that in
Kelly et al. (2013). We first perform a series of pairwise con-
trasts (difference in transformed allele frequencies at each
site) between the four bulks within a population (six pairwise
contrasts for IM and Q; three for BR). Under the assumption
that divergence among the bulks is random for most of the
genome, each of these contrasts will be centered on zero with
a variance equal to the sum of the individual sample vari-

ances (i.e., the two v terms plus each sample’s variance due
to read depth).We estimate Var½x̂1 2 x̂2� using the interquartile
range (IQR) (File S1) of the genome-wide distribution of
x̂1 2 x̂2; which is robust to the presence of outliers (SNPs that
are correlated with flowering time or divergent across genera-
tions; see further comments below). We also estimate the read-
depth variance as the average of ½ð1=m1Þ þ ð1=m2Þ� across all
SNPs for the contrasted samples. Following Equation 1B, the
two v values are equal to the estimated total variance for the
contrast minus the read-depth variance. Repeating this entire
process for the remaining five pairwise contrasts ultimately pro-
duces six equations that are a function of four unknowns. This
system is overdetermined (i.e., there are more equations than
unknowns), so we use the method of general least squares to
obtain an optimal compromise for the v terms (Lynch andWalsh
1998) as well as an estimate of their sampling variance. The
only additional information necessary to calculate the v terms
are estimates of the (co)variance of the six contrast variances,
which we obtain by jackknifing the original data set of read
counts, recalculating the contrast variances after deleting a por-
tion (0.1) of the original data. The small SE for the v terms
justifies treating these values as constants in our analyses and
simulations (File S1).

Linked selection or hitchhiking (Maynard Smith andHaigh
1974; Gompert et al. 2017), particularly on structural vari-
ants, could make the null-variance estimation procedure de-
scribed above excessively conservative. If a substantial
proportion of SNPs are affected by selection/linkage, the
IQR (third minus first quantile) becomes a less reliable esti-
mate of Var½x̂1 2 x̂2� for neutral SNPs. We recalculated the
v terms following removal of all SNPs from within the geno-
mic regions containing the structural variants described be-
low (Table S1 in File S2), and find that v terms are modestly
reduced (on average). We chose to use the original values,
which are slightly conservative, to include all data simulta-
neously in our analysis. However, we encourage a careful
consideration of linked selection and the null distribution
for testing in future applications of these procedures.

Structural variants

Initial genotyping confirmed that five structural variants
(inv5, inv6, inv8, inv10, and D) were segregating in one or
more of the populations. Two of the variants, inv6 and the
meiotic drive locus (D), were previously only known to seg-
regate within IM. The others were mapped in crosses be-
tween annual and perennial genotypes of M. guttatus. We
cannot identify a single diagnostic SNP for any of these fea-
tures (recognizing alternative orientations from alternative
SNP bases). For inv6 and D, the derived haplotype is associ-
ated with a single predominant nucleotide sequence .4 Mb,
but the ancestral orientation is internally variable. For the
other inversions, both alternative orientations harbor many
distinct sequences. For each feature, however, there are dif-
ferences in SNP allele frequency between the populations of
sequences within each orientation. We thus developed a SNP
set that is predictive of orientation for each inversion.
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Weusedacollectionof10 fully sequenced inbred lines from
the IM population to generate the SNP sets for inv6 and D
(Flagel et al. 2014; Lee et al. 2016). PCR-based genotyping of
length polymorphic markers indicate that 4 of the 10 lines
carry the derived orientation at D, while 2 of 10 have the
derived orientation for inv6. We found 11,848 SNPs for
the D locus in which at least 5/6 of the nondrive lines harbor
the alternative base (the Drive haplotype is always the refer-
ence base because the reference genome is based on a line
homozygous for Driver). These SNPs are located within three
distinct intervals on chromosome 11 (5.7–11.6, 13.9–14.1,
and 16.6–21.1 Mb) due to misassembly in the reference ge-
nome sequence (Holeski et al. 2014). We identified 26,739
SNPs for inv6 where the two lines homozygous for the de-
rived orientation are fixed for the alternative base and the
other eight lines are fixed for reference between 1.34 and
7.61 Mb of chromosome 6 (Lee et al. 2016).

To develop a predictive SNP set for inv5, inv8, and inv10,
we assembled and interrogated 10whole-genome sequences,
one plant from each of five annual populations (MAR3,
REM8-10, CAC6G, LMC 24, and SLP19) and five perennial
populations (TSG3, BOG10, YJS6, SWB, and DUN). All data
are available from the Sequence Read Archive (http://www.
ncbi.nlm.nih.gov/sra). The relevant genomic regions are 10–
18Mb of chromosome 5 (inv5), 1.5–7.0Mb of chromosome 8
(inv8), and 2–6 Mb of chromosome 10 (inv10). To include a
SNP in the diagnostic set for a feature, we required that the
reference base predominate in annuals and vice versa, that at
least three lines of each type were called, and at most one
contradiction (annual line is alternative or perennial line is ref-
erence) was tolerated. With these conventions, the reference
base within a structural variant identifies the derived orienta-
tion for D, the ancestral orientation for inv6, and the annual
orientation for the other three loci. We averaged DpEL across
SNPs within a feature to estimate the change in orientation
frequencies between early- and late-flowering plants. Be-
cause the correlation between SNP alleles (reference vs.
alternative) and orientation is imperfect, the average
SNP DpEL should underestimate the magnitude of DpEL for
inversion orientations.

Data availability

SeeBioProjectunderaccessionnumberPRJNA336318.Accession
numbers for BioSamples: SAMN05508935, SAMN0550981,
SAMN0550982, SAMN0550983, SAMN0550984, SAMN0550985,
SAMN0550986, SAMN0550987, SAMN0550988, SAMN0550989,
and SAMN0550990. Code used for all analyses can be found at
https://github.com/pmonnahan/EarlyLate.

Results

Polymorphism

Afterfiltering,we identified�7.5million SNPs,most ofwhich
were segregating in more than one population. However, the
pattern of shared polymorphism is asymmetric (Figure S1 in
File S2). For SNPs in IM or BR with a minor allele frequency
of at least 10%, 94% are segregating in the samples from the
other two populations. This is a nearly complete overlap
given that a population sample with as few as 25 reads is
counted (and an allele at #10% population frequency will
often fail to be sampled). In contrast, Q has a higher fre-
quency of intermediate frequency SNPs that are rare or fixed
in IM and BR. SNPs in the 10–90% range in Q are not evident
in other populations �25% of the time.

Tests for association with flowering time

We first tested for significant DpEL within each population/
year and then performed the structured hypothesis testing
of Table 1. For the former, the number of significant sites
was an order of magnitude greater in Q [using the Benjamini–
Hochberg procedure to establish genome-wide false discov-
ery rate (FDR) = 0.1] than in IM and BR considering both
years of the study together (Table 2). Generally, DpEL tends
to be larger in magnitude and more variable in Q than in IM
(Figure S2 in File S2). Across years, 2013 exhibits many
more significantDpEL than 2014 (approximately two- to three-
fold reduction in 2014). These tests depend on the bulk-
specific variance for each sample reported in Table 3. If each
plant in each bulk contributed equally to the DNA library,
then v = 0.005. Several samples are only slightly elevated
from this value (e.g., IM, 2014 Early), but the inflation ev-
ident in other samples (e.g., BR, 2013 Late) indicates sub-
stantial differential representation of sampled genomes in
the pool of sequence-suitable DNA.

Figure 2 (top) shows the genome-wide distribution of sig-
nificant sites for each of the three populations from 2013.
Here, we observe very little overlap of significant SNPs
among the different populations (Figure 2, bottom). How-
ever, when we divide the genome into 30-kb or 1-Mb win-
dows, we find that these significant sites are often found in
common regions. At both scales, Q shares many more signifi-
cant regions with IM and BR than the latter share with each
other. In 2014, there is more overlap despite fewer signifi-
cant tests (eight SNPs were shared between IM and Q).
Furthermore, we find few sites to be significant across years
within populations: nine for Q and two for IM.

Table 2 Number of significant sites for the individual DpEL tests

No. of significant tests No. of total tests

2013 2014 2013 2014

IM 590 247 3,798,948 4,488,418
Q 10,914 239 4,248,012 5,089,848
BR 13 – 3,715,897 –

Table 3 The estimates for v, the bulk-specific variance that
aggregates the sampling events prior to sequencing, for each
sample

BR IM Q

2013 early 0.0323 0.0141 0.0152
2013 late 0.0355 0.0200 0.0200
2014 early 0.0165 0.0066 0.0083
2014 late — 0.0110 0.0138
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The lack of overlap among populations is partially due to
significant SNPs in Q that are not segregating in the other
populations. The heterogeneity/interaction test of Table 1 is
limited to SNPs passing the filter in multiple samples (in both
populations for a given year or in both years for a given
population). Results for the three distinct tests (marginal
effect, heterogeneity, and overall) across the four different
contexts are reported in Table 4. As expected, the two con-
texts displaying the strongest evidence for significant DpEL
are Q and 2013. However, the relative proportion of sites that
exhibit a marginal effect vs. an interaction effect varies
greatly with context. In IM, a nearly equal number of sites
are significant for marginal and interaction tests, while in Q
the vast majority of significant tests are for marginal effects.
Similarly, there are no interactions across the two popula-
tions in 2014, whereas 2013 is characterized by an almost
equal number of SNPs with variable DpEL: Importantly, sig-
nificance for the marginal-effect test (M1 vs. M2) should not
be interpreted to mean genuinely fixed effects. Figure 1 indi-
cates that QTL with variable effects can inflate the test statistic
for marginal effects (oftentimes more than the heterogeneity
test) if DpEL has the same direction in each sample.

Simulations of loci with consistent effects

To evaluate the results of Table 4 and other features of the
data, we calibrated a model of consistent QTL effects for each
context (see Table S2 in File S2 for a summary of best-matching
parameter sets; top two matches were used for simulations).
Testing on these simulated data generates a comparable num-
ber of significant tests formarginal effects (M1 vs.M2): 5017 for
real, 3816 for simulated, across contexts (values in parentheses
in Table 4). However, the constant-effect models are otherwise
generally inconsistentwith the real data. The simulations never
produced (genome-wide) significant heterogeneity tests (no
false positives), but they were abundant in the real data. Addi-
tionally, the number of significant outcomes in the overall test
(M1 vs.M3) was invariably far less than for the marginal test in
the simulations, but the opposite is true in the real data (recall

that the overall test incorporates signal from both marginal and
interaction tests). These discrepancies between simulated and
real data indicate genuine variability in DpEL at shared SNPs,
particularly across years within IM and across populations
within 2013.

Further evidence comes from the covariance ofDpEL across
samples (Figure 3 and Figure S3–S6 in File S2). If genetic
effects are constant, this covariance should be substantially
positive. Sampling error in estimates for DpEL will reduce the
strength of association, but this effect is reiterated in simula-
tions, which are subject to the same degree of sampling var-
iance inDpEL: In all contexts, simulations using best-matching
parameters generated an easily detectable positive correla-
tion between DpEL estimates. The real data does not reiterate
this pattern. The most striking difference is seen in the
2013 tests (Figure 3, left) followed by IM (Figure S6 in File
S2), both of which have near-zero slopes for the real data, but
a strong positive slope for the simulated data. For 2014 and
Q, the real data exhibits a noticeable positive correlation,
which is in agreement with their preponderance of significant
marginal-effect tests. In 2014, the slopes for the real and
simulated data are near parallel (Figure S4 in File S2),
whereas in Q the slope for the simulated data are substan-
tially more positive (Figure S5 in File S2). The covariance in
DpEL across populations (or years) provides a quantitative
measure of QTL (in)consistency (Figure 3, right). There is
evidence of both consistent and variable DpEL sites, but the
relative proportion varies across populations and over time.

An interesting secondary conclusion from the simulations
is that the lack of overlap of significant tests from single DpEL
estimates (Figure 2, bottom left) is not compelling evidence
for heterogeneous effects. Even when effects are constant, as
implemented in the simulations, shared significance is rare
due to an abundance of false negatives. For example, for a
pair of populations where consistent effects are relatively
frequent and strong (f0 = 0.1 and a = 0.3), we found only
353 SNPs to be simultaneously significant out of 26,748 that
were deemed significant in either population individually.

Figure 2 (A) 2log10(p) for significant DpEL test
(FDR = 0.1) for each population in 2013. Blue = Q,
green = IM, and red = BR. (B–D.) Overlap in signifi-
cance across populations in 2013 for (B) individual
sites, (C) 30-kb windows, and (D) 1-Mb windows. A
window was considered to be in common between
two populations if both populations possessed at least
one significant site within the window boundaries.
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Structural variation

The five structural polymorphisms show strong, but highly
variable, effects on flowering time (Figure 4). The first obser-
vation is that the D locus, which was previously known to be
polymorphic only in IM and one other population (Case et al.
2016), is segregating in Q. The Drive allele, which enjoys a
segregation advantage in female gametes (Fishman and
Saunders 2008), is elevated in late-flowering samples in IM
in both years and in Q in 2013. It is enriched in early-flowering
plants in Q in 2014. inv8, which had previously been de-
scribed mainly as a fixed difference between ecotypes, is
also segregating in Q. We find no evidence for an inv8 effect
in IM, probably because the perennial orientation is rare due
to strong local selection (Puzey et al. 2017). However, the
strong effects in Q are consistent with the perennial orien-
tation delaying flowering. Results for inv6, inv5, and inv10
are ambiguous, and it is not clear that the latter two loci are
polymorphic in these populations (full results reported in
Table S4 in File S2).

There is also a clear impact of inv8 on our SNP-level anal-
yses. In Figure 2, significant DpEL are evenly dispersed with
the exception of chromosome 8 (Table S3 in File S2), which
has approximately five times more than any other chromo-
some. This inflation is entirely attributable to inv8 within Q
(3749 of the 3801 significant tests on chromosome 8 are due
to Q, 2593 of which are within inv8; Table S3 in File S2).
Figure 5 (top) shows a very high density of SNPs significant
for the marginal-effect test within inv8, and these SNPs are
among the highest observed LRTs (see Figure S7 in File S2 for
comparison with interaction-effect test). Figure 5 (bottom)
plots allele frequency over time for the sites with positiveDpEL
(higher reference frequency in early bulk) and in the 99.95
percentile of the LRT for marginal effect in each population.
These SNPs produce remarkably consistent oscillations in
both IM and Q, but are almost entirely nonoverlapping (only
four of the SNPs in Figure 5 and Figure S8 in File S2 are
common across populations). This discrepancy is, again,
partly due to the presence of inv8 in Q. In Q, 315/1921
(16.3%) of the SNPs in the 99.95 marginal-effect LRT per-
centile are from inv8, whereas only 30/1730 (1.7%) are in
inv8 for IM. Also, nearly all of these 315 inv8 SNPs in Q
exhibit positive DpEL (288/315 = 91.4%), indicating that
the reference (annual) orientation is at a higher frequency
in early-flowering plants. In both populations, there is a tendency
toward positiveDpEL for these consistent SNPs (918positiveDpEL

vs. 812 negative DpEL in IM; 1254 positive DpEL vs. 667 negative
DpEL inQ). This tendency is exaggerated inQ even after account-
ing for the effect of inv8 (966 positive vs. 640 negative sites are
non-inv8). Interestingly, we find that a majority of sites in this
99.95 percentile are at an overall high reference frequency in
both populations, withmany of these sites fixed for the reference
allele in either the early- or late-flowering plants (note the high
density of sites in the upper portion of Figure 5 and Figure S8 in
File S2).

Discussion

Our question is regarding the extent to which the loci gener-
ating intrapopulation variation in quantitative traits are con-
sistent within a species. Across populations, is the same set of
loci responsible for within-population variation? Is the aver-
age effect of aQTL similar in neighboring populations, or even
in the same population from one generation to the next? We
develop a likelihood-based testing procedure to distinguish
consistent and heterogeneous effects and then apply the
procedures to genomic data from 10 population samples.
Synthesizing multiple aspects of the results, the experiment
strongly supports heterogeneity of QTL effects. This suggests
appreciable lability of allelic effects in nature and underscores
the importance of a broad sampling of natural variation in
genetic mapping studies. Additionally, the results inform the
potential for, or perhaps the expected scale at which, parallel
or repeated evolutionmay occur. In the following sections, we
discuss explanations for the observed variation within and
among populations and their implications for evolution in
nature.

Why does DpEL vary across time and space?

The expected value for DpEL depends on allele frequencies,
the selection intensity, the phenotypic variance, and the av-
erage effect of alleles (Equation 6C; Falconer and Mackay
1996, p. 200). We controlled selection intensity with our
sampling method, but it is clear that each of the other three
components varied across space or time in this experiment.
Allele-frequency differences are clearly important in explain-
ing the differences among populations. Many intermediate
frequency SNPs in Q that exhibited significant DpEL are fixed
(or nearly so) within IM and BR. We attribute the elevated
genomic and phenotypic variation in Q to recent hybridiza-
tion of annual and perennial genotypes of M. guttatus
(Monnahan et al. 2015). IM and BR are annual populations,

Table 4 Summary of significance testing

Context Marginal effect M1 vs. M2
Heterogeneity of effect

M2 vs. M3 Overall effect M1 vs. M3 No. of tests

IM 155 (327) 154 (0) 705 (56) 3,458,706
Q 3,565 (3164) 268 (0) 5,168 (498) 3,840,040
2013 1,019 (279) 790 (0) 3,490 (16) 2,416,806
2014 278 (46) 0 (0) 368 (1) 3,193,898

A summary of significance testing for the models of Table 1 is reported for each context. The contrasts are across years within IM and Q and across populations in 2013 and
2014, respectively. The number of genome-wide significant tests is reported for both the real data followed (in parentheses) by those obtained from simulation. Simulations
were conducted assuming consistent genotypic effects (a) and generated with best-matching values of f0 and c.
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and although each has high polymorphism, they produce far
fewer significant DpEL:

Q is about twice as divergent from each annual population
as the annuals are from each other: genome-wide FST = 0.13
(Q vs. IM), 0.12 (Q vs. BR), and 0.07 (BR vs. IM; supplemen-
tal table 3 from Monnahan et al. 2015). This is important not
only because DpEL is proportional to p(1 2 p) at the SNP in
question, but also because divergence among populations
will affect the distribution of genomic backgrounds in which
that SNP is expressed. Changes in average effect with geno-
mic background (epistasis) has been demonstrated in green-
house studies of M. guttatus for numerous life history traits,
including flowering time (Kelly and Mojica 2011; Monnahan
and Kelly 2015a,b).

Also, differences in the environment can alter DpEL in sev-
eral ways. Despite the physical proximity of these populations,
they differ dramatically in a number of environmental variables
that affect flowering time. Q, IM, and BR face south, west, and
east, respectively; each experiencing differing sun exposure.
Snow clears earliest at Q, lengthening the growing period,
and it also has a much shallower grade, particularly in compar-
ison to IM. The primary water source for these plants is from
snowmelt, and the shallowgrademeans thatwatermoves slower
and perhaps lasts longer forQ. Lastly, the edaphic substrate differs
between populations; dirt and gravel at Q whereas the other two
populations grow on a shallow bed of moss atop bedrock. Roots
penetrate much deeper at Q, allowing plants access to additional
water and perhaps a different nutrient profile.

G3E interactions are routinely observed in QTL experi-
ments and can be appreciable in magnitude relative to the
marginal effect across environments (Scheiner 1993). G3E
can change the average effect across populations if there is
spatial variation in environmental variables. G3E is the most
likely cause of temporal heterogeneity in DpEL (e.g., IM in
Table 4), because other factors such as differences in allele
frequency (and thus the distribution of genetic backgrounds)
should be relatively limited between successive generations
within a population. A major temporal fluctuation between
the 2 years of this study was time of snowmelt. Snow cleared
inMay of 2013, but as early as mid-March in 2014. There was
also a late bout of rain in mid-July 2014, extending an al-
ready elongated growing season. Furthermore, epistasis and
G3E may themselves interact. Significant three-way interac-

tions (G3G3E) have been documented in both field and
laboratory studies (Caicedo et al. 2004; Zhu et al. 2014;
Joseph et al. 2015; Monnahan and Kelly 2015b).

In addition to G3E, environmental variation can alterDpEL
via at least two other routes. First, the predicted DpEL is in-
versely proportional to the phenotypic SD of the trait (Equation
6). Thus, a shift in environmental conditions that increases the
environmental component of variationwill reduceDpEL; all else
equal. Consistent with this effect, the phenotypic variance in
flowering time was elevated in 2014 relative to 2013 (a greater
number of days accrued between early and late collections in
both IM and Q) while the number of significant DpEL tests was
reduced. A second effect of environmental variation on DpEL is
indirect. Sustained spatial heterogeneity in environmental var-
iables will generate divergent selection and consequent local
adaptation. This may be a major cause of allele-frequency dif-
ferences among populations, which subsequently generates dif-
ferences in DpEL:

The context with the greatest consistency of effects was
between years in Q (Figure 3 and Table 4), which may be
attributable in part to the hybrid nature of this population.
This population was established nomore than 40 generations
ago when a rock quarry fell into disuse and was subsequently
colonized by nearby M. guttatus. Extensive linkage disequi-
librium (LD) confirms that the population remains highly
admixed (Monnahan et al. 2015), which likely reflects both
recent formation and continued immigration. Nearly all poly-
morphic SNPs in IM and BR also segregate in Q, but the reverse
is not true. Alternative “alleles”may be fairly substantial haplo-
types; descendent from annual or perennial ancestors (or im-
migrants). Such alleles will be “large effect” if they aggregate
the effects of numerous linked polymorphisms. The average
DpEL in this context should be larger relative to estimation error,
increasing the number of significant tests for a marginal effect
(Table 4); and positive, given the annual nature of the reference
genome and typically delayed flowering in perennials (see final
paragraph in Results). The high LD should also inflate the num-
ber of noncausal SNPs exhibiting significantDpEL; hitchhikers in
the terminology of Maynard Smith and Haigh (1974). While Q
has greater actual genetic variation inflowering time, LD should
further inflate the number of significant tests. LD could also
exaggerate our observation in the temporal consistency of
DpEL across years (Figure 5).

Figure 3 (A) DpEL in Q vs. IM in 2013 for simulated
(red) and real (gray) data. Only sites in which
LRT .15 for the individual DpEL in IM are shown.
(B) Covariance in DpEL for sites (LRT.15 for the test
of M1 vs. M3) across time (see bars for IM and Q)
and space (2013 and 2014). Confidence intervals
are observed 5th and 95th percentiles from boot-
strap distribution generated with 100 replicates.
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The results from Q underscore a number of general points
about the analysis. First, while there are 1000s of significant
SNPs across populations/years, the number of functionally
important variants is likely much smaller. A causal locus for
flowering time will “pull” on neighboring SNPs in LD; an
effect most pronounced in Q but not negligible in IM or BR.
Whole-genome sequencing of lines from IM indicates sub-
stantial LD among SNPs at distances of 100s to a few
1000 bp (Puzey et al. 2017). In principle, assortative mating
owing to differences in flowering time might generate sub-
structure within populations. If strong enough, such structure
might allow LD among unlinked SNPs. In the present study,
we do not find strong internal structure. Divergence, mea-
sured as FST, is much lower between early- and late-flowering
plants within populations (�1–2%) than it is between pop-
ulations (12–13% between Q and IM or BR). Still, analysis of
divergence in allele frequency can be substantially improved
if coupled with information on LD and within-population
substructure.

Finally, although polymorphism was largely shared across
populations, Q does exhibit a nontrivial amount of “private
polymorphism” (Figure S1 in File S2). If a private polymor-
phism is causal, it might generate a heterogeneous DpEL at a
linked neutral SNP that is present in multiple populations.
We see potential examples of this in our data set, althoughwe
do not establish causality. For example, a private polymor-
phism in Q on chromosome 10with significantDpEL in 2013 is
within 2 kb of a shared polymorphism (with IM) exhibiting a
significant interaction (M2 vs. M3) test. There are an addi-

tional 82 pairs of such sites within 2 kb of each other; how-
ever, the average distance between such pairs is .100 kb.
Long-range effects of linkage are plausible in Q, particularly
with regards to inv8. The perennial orientation of this inver-
sion segregates only in Q, and within this region, we find
numerous significant interaction tests across populations in
2013 (Figure S7 in File S2). Thus, our method cannot directly
distinguish between a private, causal polymorphism and
truly heterogeneous allelic effects as the source of heteroge-
neousDpEL across populations. Rather, it simply determines if
genomic architecture varies. This is not an issue for interpret-
ing heterogeneous DpEL across years within a population.

Measuring effects for a highly polygenic trait

A recent study of body pigmentation in fruit flies provides a
striking contrast to our results. Endler et al. (2016) compared
populations of Drosophila melanogaster from Europe and
South Africa using a similar bulked-segregant approach. In
contrast to the results here, they found relatively consistent
architecture across populations. Genome-wide significant tests
were contained within two genic regions, both shared between
Europe and South Africa. One important difference is that
Endler et al. (2016) measured phenotypes from animals reared
under common laboratory conditions, thus limiting G3E inter-
actions. A second critical difference is the nature of the traits
under study. Coloration phenotypes in both plants and animals
are frequently influenced by a fewmajor factors (Epperson and
Clegg 1988; Joron et al. 2006; Smith and Rausher 2011; Love
et al. 2014). In contrast, flowering time is a highly polygenic
trait with extensive environmental influence (Coupland 1995;
Simpson and Dean 2002).

The best examples of “major loci” in the present study are
the structural polymorphisms segregating in IM and Q (Figure
4). OurDpEL estimates at these loci are likely themost precise in
the experiment because each is based on an average across
many SNPs. Admittedly, we are likely underestimating themag-
nitude of DpEL for the inversions, owing to imperfect associ-
ation between “diagnostic” SNPs and the actual alternative
alleles (inversion orientations). Assuming underestimation
to beminor, and noting that the additive variance contributed
by a QTL is 2p(12 p)a2 (Falconer andMackay 1996), we use
observed DpEL values to estimate the variance contribution of
QTL. An observed DpEL of 0.1 (like inv8 in Q 2013) is pre-
dicted for a locus that explains almost but not quite 1% of the
phenotypic variance.DpEL =0.15 (like theD locus in Q 2013)
for a locus that explains 1.5% of the phenotypic variance.
While these calculations are coarse, they do emphasize that
major flower-time loci are decidedly quantitative in their
effects.

Many of our estimates forDpEL at significant SNPs are large
in magnitude (.0.4; Figure 3, left). However, when consid-
ering single SNPs, it is essential to recognize that magnitude
is inevitably overestimated in the pool of significant tests
(Beavis 1994; Ioannidis 2008). For this reason, the simulation
study is fundamental to our conclusion of genuine heterogene-
ity in the effects of flowering-time loci. Our simulations reiterate

Figure 4 Mean allele frequency divergence between early- and late-flow-
ering plants for three structural variants. Error bars are 6SE taken across
the SNPs within each feature/population/year. Asterisks denote genome-
wide average calculated in 1 Mb windows.
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the stochastic processes generating exaggerated values for DpEL
and, also, the ascertainment process by which overestimated
values are used for subsequent analyses. These factors are
clearly important. For example, the association ofDpEL between
two populationswith data generated from constant-effect loci is
positive (red line of Figure 3), but the slope is greatly reduced
from 1 (the slope of the regression if there were no estimation
error). It is the fact that the covariance ofDpEL between samples
within each context is significantly lower than predicted (Figure
3, right), after accounting for error and ascertainment, which
indicates heterogeneity.

Our SNP-level hypothesis-testing framework was devel-
oped to address two basic issues. The first was to provide
statistical evidence regarding the marginal effects of QTL
(averaged over populations) as well as the heterogeneity of
effects (across populations). The second issue is proper ac-
counting for multiple sources of error inherent to serial
sampling in Pool-seq studies. Despite best efforts in DNA
quantification, pipetting, etc., variable representation of indi-
viduals among the sequenced reads is unavoidable. Contin-
gency tables based directly on read counts (e.g., chi square,
Fisher’s exact test) ignore all sampling events prior to the last;
essentially treating each read as an independent draw from
the ancestral population. Figure S9 in File S2 (see Table S5
for data) illustrates that contingency-table tests can be sub-
stantially anticonservative with respect to our method, at
least when the bulk-specific sampling variance is nontrivial.

P-values can be 1000-fold lower (more extreme) using Fisher’s
exact test or chi square. However, the comparisons also indicate
that our LRT can occasionally produce lower P-values than the
table analyses if the average allele frequency is close to 0 or 1.
Such SNPs will not usually be genome-wide significant because
there is limited scope for differences in allele frequency between
samples if the average is close to 0 or 1. However, for rigorous
testing on SNPs where the rare allele is present in only a few
copies across populations, generalized linear models that work
directly with allele count data, in conjunction with genome-
wide variance estimation, might provide a better testing plat-
form. Such software exists for differential expression analyses,
for example, EdgeR (Robinson et al. 2010) and DEseq2 (Love
et al. 2014), but these methods would need to be generalized
(perhaps a fruitful area for future studies) to consider allele
frequency differences as opposed to raw total counts.

The elegance of testing arcsin, square root-transformed,
allele frequencies is based on two features, each of which can
be evaluated by comparison to the full distribution of changes
across SNPs. First, the distribution of divergences should be
approximately normal, a prediction strongly supported by the
observed distributions (Figure S10 in File S2). Normality
justifies the likelihood model (Equations 3–5), which also
assumes homoscedastic variance. Untransformed allele-
frequency differences, generated from a binomial sampling
process, are highly heteroscedastic (i.e., the sampling vari-
ance of DpEL depends on �pÞ; and this heteroscedasticity is

Figure 5 (A)2log10(p) for the marginal-effect test plotted along chromosome 8. (B) Reference frequency across the four sampling events for sites in the
99.95 percentile of the marginal-effect test that exhibit a positive DpEL: Left = Q, right = IM. Color indicates whether site is within inv8 (blue) or not (red).
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greatly reduced for transformed allele frequencies (Table
S6). With transformed allele frequencies, average change
appears to be slightly greater when the minor allele fre-
quency is ,0.1. This is actually an effect of ascertainment
and not an “overcorrection” by the transform. If the true
frequency of the minor allele at a SNP is,5%, it will only pass
filters if sampling substantially moves the allele frequency away
from the boundary in either Early or Late. Because we require
that the average allele frequency is 0.05–0.95 to include a SNP,
we nonrandomly include rare-allele SNPs that exhibit elevated
change. This effect does not undermine the conclusions in this
article (our significant tests come disproportionately from in-
termediate frequency SNPs), but the effect of ascertainment on
testing should always be considered in genome-wide analyses.

Flowering-time loci

Twoqualitatively different kinds of loci are investigated in this
experiment. The first are structural polymorphisms, previ-
ously mapped inM. guttatus although not necessarily known
from these populations. The second are SNPs outside of these
regions in (presumably) freely recombining parts of the ge-
nome. While the strength of evidence for flowering-time ef-
fects of this latter class may be weaker, they potentially
provide much finer resolution. For the structural variants,
we cannot distinguish the effects of polymorphisms across
the 100s of genes within each inversion. For other significant
SNPs, we located each in relation to putative flowering time
genes (based on M. guttatus version 2 genome annotation).
We considered all SNPs significant for the M1 vs. M3 test
within a candidate gene or 62 kb of the flanking DNA. We
confirmed, using BLAST, the homology of each candidate to
Arabidopsis thaliana flowering time genes, but do not perform
formal enrichment analyses given the imperfect, ad-hoc nature
of the gene list.

In Q, 46 significant SNPs were located to flowering-time
genes. These include genes from the photoperiod pathway
and gibberellic acid pathway, as well as multiple interacting
genes within each pathway. Gibberellic acid has direct effects
onfloral development, but also indirectly influencesflowering
time via its effects on germination and general growth regu-
lation (Mouradov et al. 2002). A total of 7 of the 12 candi-
dates in this pathway are gibberellin (GA) oxygenases, which
generally degrade GA and its precursors (Wuddineh et al.
2015). Three of these (Migut.M00902, Migut.M00908, and
Migut.M00909) are on a 50-kb stretch of chromosome 13 and
all show highly consistent DpEL across years ðD�p13 ¼ 2 0:36
andD�p14 ¼ 2 0:24Þ: Interestingly, two of these genes (Migut.
M00908 and Migut.M00909) were also identified in IM and
exhibit a similar pattern across years ðD�p13 ¼ 2 0:44 and
D�p14 ¼ 2 0:26Þ: In addition, both Q and IM identified GAI
(Migut.H01666), a transcription factor that represses GA re-
sponses (Peng et al. 1997), as a candidate. In aggregate,
these results support the GA pathway as a general source of
natural variation in flowering time.

Critical photoperiod requirements are typically much
longer for perennial M. guttatus, with most perennials (and

even some annuals) requiring vernalization upon previous
exposure to short-day conditions (Friedman and Willis 2013).
InQ, a SNP�1.5-kb downstreamof VERNALIZATION1 (VRN1)
(Migut.H02193) shows a consistent difference across years
ðDp13 ¼ 0:54 and Dp14 ¼ 0:27Þ; and this SNP is within the
major photoperiod and vernalization QTL mapped by
Friedman andWillis (2013). VRN1 is also transcription respon-
sive to photoperiod (Dubcovsky et al. 2006) and has distinct
effects on flowering time apart from vernalization (Levy et al.
2002). Early Flowering 6 (ELF6) (Migut.F01729) (Clouse
2008), a repressor of the photoperiod pathway, also shows
a consistently higher reference base frequency in the early-
flowering samples ðDp13 ¼ 0:29 and Dp14 ¼ 0:20; signifi-
cant for both the M1 vs.M2 andM1 vs.M3 tests). Significant
SNPs were also found adjacent to ELF3 and ELF4 (Migut.
E01551 andMigut.J00944, respectively), and again, the ref-
erencebase frequencywashigher in early-floweringplants.How-
ever,DpEL was less consistent across years (ELF3,Dp13 ¼ 2 0:07
and Dp14 ¼ 0:38; ELF4,Dp13 ¼ 0:55 and Dp14 ¼ 0:04Þ: The
direction of these differences ðDpEL usually positive) may reflect
the fact that the reference genome is based on an annual geno-
type. Thus, the reference base is more likely to be the “annual”
allele in an annual/perennial population. Lastly, GIGANTEA
(Migut.C00380), a major photoperiod-response regulator that
interacts with multiple ELF transcription factors (Mishra and
Panigrahi 2015), exhibited a significant interaction across years
in Q, with Dp13 ¼ 2 0:25 and Dp14 ¼ 0:14:

Both IM and Q also have significant SNPs in a tandem pair
of GDSL-motif lipase genes (Migut.M01081 and Migut.
M01082) as well as an RNA-ligase gene (Migut.N02091).
The former belong to a class of lipases with broad, ecologi-
cally relevant functions includingmicrobial defense (Oh et al.
2005; Kwon et al. 2009), morphogenesis and development
(Riemann et al. 2007; Lee et al. 2009), and abiotic stress
responses (Hong et al. 2007). While these genes may play a
direct role in development, they may function in defense
against pests associated with early/late season conditions.
RNA ligase is involved in the maturation of transfer RNAs
andwas recently shown to play a role in auxin-related growth
processes (Leitner et al. 2015).

The structural polymorphisms provide clear evidence of
flowering-time effects (Figure 4), although without gene-
level resolution. However, the estimates for phenotypic and
fitness effects for entire karyotypes is valuable when consid-
ering the evolutionary dynamics of these polymorphisms.
The results for inv8 are fully consistent with expectations
based on previous studies of this locus. Alternative orienta-
tions distinguish annual and perennial ecotypes of M. gutta-
tus and QTL mapping reveals large effects of inv8 on
flowering time, anthocyanin production, and growth-related
traits (Lowry and Willis 2010). As in the mapping study, our
experiment shows that the perennial orientation delays flow-
ering, and its presence confirms the annual/perennial origin
of this population. This study provides the most direct evi-
dence of inv8 segregating within a natural population and
contributing to phenotypic variation; although presence in
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other populations is suggested from marker data (Twyford
and Friedman 2015).

The strong effect of the meiotic drive locus on flowering
time is more surprising. However, field experiments have
demonstrated Drive effects on both male and female fitness
components (Fishman and Kelly 2015), which may depend
on flowering time. Direct effects of this locus on developmen-
tal timing have been documented in a greenhouse experi-
ment (Scoville et al. 2009). It is possible that some delay
in flowering is due to the reduction in pollen viability caused
by the Drive karyotype. Bee pollinators discriminate against
flowers with lower viable pollen (Boluarte-Medina and
Veilleux 2002) and lack of visitation prolongs flower life
span (Arathi et al. 2002). Finally, the derived orientation
of inv6 was associated with earlier flowering in IM in 2014,
but not the previous year (Figure 4). Several greenhouse stud-
ies have shown inv6 effects on days to flower (Lee 2009;
Scoville et al. 2009), although the direction of effect varies
with genetic background and perhaps the sequence of the
ancestral orientation (which is highly variable and differ-
ent among experiments).

Conclusion

We have developed and implemented a method to map
genomic regions affecting ecologically relevant traits directly
within natural populations, while accounting for estimation
error in observed allele frequencies. Replicated comparative
mapping can inform fundamental biological questions such as
how the evolutionary trajectories of local populations will
transforman entire species. Uniform selection across a species
range generated by climate change might set the stage for
parallel evolution, but atwhat scalewill parallelism occur? As
sequencing costs continue to decrease, the number of pop-
ulations and range of distribution that can be surveyed will
increase. Though our study focuses on a narrow geographic
range, it provides a baseline understanding for how genomic
variation in flowering time varies across neighboring popu-
lations and from generation to generation.

While most flowering-time loci varied between popula-
tions andover time, a subset exhibited fairly consistent effects.
These consistent loci, which include large structural variants
such as inversions and genes in known flowering-time path-
ways, are most likely to evolve in parallel if populations were
to experience uniform selection on flowering time. The actual
degree of parallelism will depend on genetic factors (e.g., the
distribution of additive and dominance effects), demographic
factors (e.g., population sizes, growth rates, and migration),
and selective factors (e.g., strength and consistency of selec-
tion on flowering time). However, the existence of consistent
loci supports the growing body of evidence that parallel evo-
lution can occur from the recruitment of standing genetic
variation (Pigeon et al. 1997; Colosimo et al. 2005; Jones
et al. 2012). Statistical considerations aside, this consistency
also supports the utility of mapping studies to identify a sub-
set of loci that are general contributors to natural variation
within and between populations.

In contrast, the observed variation in genomic architecture
testifies, in part, to the influence of divergent environmental
conditions and genomic backgrounds on the average effects
exhibited by segregating variants. For highly polygenic traits
such as flowering time, we would almost certainly expect to
find some loci to have evolved in parallel, but this would
likely account for a relatively minor portion of the total se-
lection response. Furthermore, a lack of parallelism at the
genetic level would not necessarily imply that populations
did not have access to the same standing variation and thus
evolutionary trajectories. Although private polymorphisms
would play a bigger role for more isolated/divergent popu-
lations, a lack of parallelism could simply reflect the idiosyn-
cratic interplay between the factors outlined above. Additional
studies will help determine whether variation in genomic ar-
chitecture is a trait- or species-specific phenomenon as well as
highlight those genes that are consistently important drivers
for natural variation.
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