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ABSTRACT The aim of the present study was to analyze the interplay between gastrointestinal tract (GIT) microbiota, host genetics,
and complex traits in pigs using extended quantitative-genetic methods. The study design consisted of 207 pigs that were housed and
slaughtered under standardized conditions, and phenotyped for daily gain, feed intake, and feed conversion rate. The pigs were
genotyped with a standard 60 K SNP chip. The GIT microbiota composition was analyzed by 16S rRNA gene amplicon sequencing
technology. Eight from 49 investigated bacteria genera showed a significant narrow sense host heritability, ranging from 0.32 to 0.57.
Microbial mixed linear models were applied to estimate the microbiota variance for each complex trait. The fraction of phenotypic
variance explained by the microbial variance was 0.28, 0.21, and 0.16 for daily gain, feed conversion, and feed intake, respectively. The
SNP data and the microbiota composition were used to predict the complex traits using genomic best linear unbiased prediction
(G-BLUP) and microbial best linear unbiased prediction (M-BLUP) methods, respectively. The prediction accuracies of G-BLUP were
0.35, 0.23, and 0.20 for daily gain, feed conversion, and feed intake, respectively. The corresponding prediction accuracies of M-BLUP
were 0.41, 0.33, and 0.33. Thus, in addition to SNP data, microbiota abundances are an informative source of complex trait
predictions. Since the pig is a well-suited animal for modeling the human digestive tract, M-BLUP, in addition to G-BLUP, might be
beneficial for predicting human predispositions to some diseases, and, consequently, for preventative and personalized medicine.
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HOST–MICROBIOTA interactions have received consid-
erable attention in human studies in recent years, and

it has been shown repeatedly that host genetics, as well as the
environment, affect gut microbiota composition (Spor et al.
2011). In order to unravel host genetic effects, the use of
a model organism that is kept in a stable environment
with minimum environmental variations is needed (Zhao
et al. 2013). Kostic et al. (2013) described different model
organisms, such as mice, zebrafish, the fruit fly Drosophila,
and the bobtail squid, as important sources of information on
host–microbiota homeostasis. The pig can be used as a model
for human-related research, as the human and porcine

physiology, metabolism, and gastrointestinal tract (GIT) mi-
crobiota are similar (Heinritz et al. 2013). It has already been
used as an animal model for microbiota-associated diseases
such as Helicobacter pylori infections, necrotizing enterocoli-
tis disease, obesity, and diabetes, and to formulate dietary
strategies for overcoming obesity and other metabolic syn-
dromes (Heinritz et al. 2013). Moreover, pigs are not only
suitable model organisms for human-related research but
also some of the most important livestock species used for
meat production worldwide. Breeding is frequently carried
out using genome-wide SNP data for the prediction of selec-
tion candidate breeding values (Knol et al. 2016)—a tech-
nique that is recognized as a form of genomic selection
(Meuwissen et al. 2001). The underlying assumption is that
each SNP affects complex traits of interest only marginally,
but modeling all SNPs jointly in a prediction equation is at-
tributed with remarkably high levels of prediction accu-
racy. Genomic prediction is also utilized in plant breeding
(Jannink et al. 2010), and has been proposed as a tool
for predicting complex genetic predispositions in humans
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(de los Campos et al. 2010). Inspired by the success of geno-
mic prediction methods, Ross et al. (2013) developed ameta-
genomic prediction approach. These authors used human
and cattle datasets with massive parallel sequencing data to
form metagenomic relationship matrices, which in turn were
used to predict complex traits with considerable accuracy.
This study clearly highlights the potential to consider alter-
native high-dimensional host-related explanatory variables
beyond SNP markers for prediction purposes, and, more gen-
erally, opportunities to apply quantitative-genetic methods in
holistic analyses of data on microbiota, host genetics, and
complex traits.

Currently, there is a lack of research in pigs regarding the
genetic influences on gutmicrobial community, and the effect
of this community on complex host traits. Besides studies on
the influence of nutrition and medication on the microbiota,
one study has approached the question of how the early-life
pig gut microbiota impacts host phenotypes (Mach et al.
2015).

In this study, standard quantitative-genetic methods were
extended and applied to analyze the interrelationship be-
tween pig GIT microbiota compositions, complex traits, and
pig genomes. The specific aims were (i) to characterize GIT
microbiota forpigsofamatureage, (ii) toanalyze theeffects of
host genetics onGITmicrobial composition, (iii) to investigate
the role of GIT microbial composition on key host complex
traits, and (iv) to evaluate genomic as well as microbial
predictions of complex host traits.

Materials and Methods

Sample collection

The animal experiments were performed in accordance with
German AnimalWelfare legislation. All procedures regarding
animal handling and treatment were approved by the Uni-
versity of Hohenheim Committee of Animal Welfare under
authorization number S411/14TZ. The pigs belonged to the
Piétrain breed. This is an important sire line breed (Stratz et al.
2014) for which genomic selection is practiced (Wellmann
et al. 2013). Housing, slaughtering, and the recording of phe-
notypes of the pigs was performed under standardized condi-
tions at one experimental farm. Performance testing started
with a weight of 30 kg and ended with a weight of 105 kg.
Animal feed intake (FI) and daily gain (DG) values were
recorded during performance testing. The feed conversion
(FC) value was calculated as a ratio of the consumed feed
and weight gain occurring during performance testing. See
Supplemental Material, Table S1 for descriptive statistics of
these traits. By reaching 105 kg, the pigs were slaughtered
with an average slaughter age of 188 (614) days, and an
average performance testing duration of 100 (611) days.
In total, colon and blood samples from 207 Piétrain sows
were collected on 14 slaughter days. Blood samples were
taken directly during the slaughtering and stored on ice. After
opening of the abdomen, colon samples were collected from

the mid-colon and also stored on ice. For long-term storage,
blood samples were kept at220� and colon samples at280�.

Illumina amplicon sequencing

Colon digesta samples were thawed on ice and homogenized,
and 250 mg of each sample was used to extract DNA using
the FastDNA SPIN Kit for Soil (MP Biomedicals, Solon, OH)
according to the manufacturer’s instructions. PCR targeting
of the V1-2 region of the 16S rRNA gene was carried out as
described in Camarinha-Silva et al. (2014). Based on a pre-
viouswork of our group (Burbach et al. 2016), this 16S region
and DNA extraction method was giving the best coverage of
the microbial community. Amplicons were purified and nor-
malized using a SequalPrep Normalization Kit (Invitrogen,
Carlsbad, CA), and were pooled and sequenced with 250 bp
paired-end sequencing chemistry applied on an Illumina
MiSeq platform.

Bioinformatic processing of sequences was done according
to Camarinha-Silva et al. (2014) with some modifications.
Raw reads were assembled (Cole et al. 2014) and subse-
quently aligned using MOTHUR (gotoh algorithm with the
SILVA reference database) prior to preclustering of the se-
quences with two mismatches (diffs = 2). Low abundance
operational taxonomic units (OTUs), if present in ,5 sam-
ples in relative abundances ,0.01%, were removed. Finally,
40,379 6 1149 sequences were obtained per sample, com-
prising a total of 2714 OTUs that were taxonomically
assigned using the naïve Bayesian RDP classifier (Wang
et al. 2007). The OTUs were then evaluated against the
RDP database using Seqmatch function, which belongs to
the RDP database. Note that no differences were observed
in the microbiota regarding the day of DNA extraction, which
was performed on 5 consecutive days by the same person.

Genotyping

In total, 207 German Piétrain sows were genotyped using
an Illumina PorcineSNP60 BeadChip (Ramos et al. 2009).
Genotypes from individuals were filtered with respect to call
rates (removal of SNPswith a call rate of,95%),minor allele
frequencies (exclusion of SNP with a minor allele frequency
of ,5%), significant deviations from Hardy-Weinberg equi-
librium (P , 0.0001), and SNPs on the Y-chromosome were
removed. The call rate across all animals was $0.994. After
quality control measures were performed, 51,970 SNPs
remained for further analysis.

Statistical analysis

Microbial community: Amultivariate dataset comprising the
relative abundance of each phylotype across each sample was
analyzedusingv.6.1.6,PRIMER-E(PlymouthMarineLaboratory,
UK; Clarke and Warwick 2001). The Bray-Curtis coefficient
(Bray and Curtis 1957) was used to create a sample-similarity
matrix, and microbial community structures were explored
via nonmetric multidimensional scaling (MDS) (Clarke and
Warwick 2001). Statistical comparisons between a priori
defined groups (e.g., weight, age, DG, and FC) were drawn
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using analysis of similarity (ANOSIM) based on 999 permu-
tations, and were considered significantly different at a
P-value of , 0.05. Species responsible for observed dif-
ferences were identified based on similarity percentages
(SIMPER) (Clarke and Warwick 2001). Tax4fun (Aßhauer
et al. 2015) was used to predict the functional capabilities of
microbial communities detected in colons based on the 16S
rRNA sequencing data.

Genetic parameters of bacterial genera:Genetic parameters
were estimated for bacterial genera rather than for OTUs,
because the latter would result in numerous statistical anal-
ysis, and, thus, in a strong multiple testing problem. An
analysis of variance was performed by fitting a univariate
genomicmixed linearmodel to test for significant effects. The
age andweight measured at the test station and the slaughter
weight were included as fixed covariables in the model, and
the slaughter day (SD) was considered as a random effect in
themodel. The observation vector included the relative abun-
dance of one genus. Only genera with abundance values
exceeding 0.1% were considered. By backward elimination,
nonsignificant effects (significance level for the elimination of
a = 0.05) were removed from the model. An univariate
analysis was performed to estimate the heritability of each
genus. Statistical analyses were performed using the ASReml
package available through R (Butler et al. 2009). The mixed
linear model is written as follows:

y ¼ Xbbþ ZSDSDþ aþ e; (1)

where y is the observation vector, which includes the abun-
dance of one genus, b is the vector of fixed effects (described
above), SD is the vector with random slaughter day effects
with variance s2

SD; a is a vector with random animal genetic
effects, Xb and ZSD are the corresponding design matrices,
and e is the residual termwith residual variance s2

e :Note that
a random pen effect as well as a random maternal effect
were not significant, and thus were not included in this
model. The distribution of the random animal effect is
a � Nð0;Gs2

AÞ, with G being the genomic relationship ma-
trix, and s2

A being the additive genetic variance. The G
matrix was estimated using SNP genotypes following
VanRaden (2008) as

G ¼ ðZ2 2QÞðZ22QÞTP
m2pmð12 pmÞ ;

where Z is the gene content matrix with entries 0, 1, or 2 for
each SNP and each animal, and matrix Q contains the fre-
quency pm of each SNP m: Narrow-sense heritability was
estimated as h2 ¼ s2

A=s
2
P; with s2

P ¼ s2
SD þ s2

A þ s2
e : The

p-values of the heritability estimates were calculated by con-
ducting a likelihood-ratio test on random animal effects. The
null-hypothesis, that the variance of the random effect is 0,
was rejected if twice the difference in the log-likelihoods of
the full model, and the reduced model without the random

effect was larger than the 0.95-quantile of a x2–distribution
with 1 d.f. We chose a significance level of P-value= 0.05. A
total of 49 genera was analyzed, which resulted in a multiple
testing problem. In order to judge how many false positives
were among the significant results, we applied the false dis-
covery rate (FDR) technique. We calculated for each test an
FDR q-value using the software QVALUE (Storey and Tibshirani
2003). The FDR q-value of the significant genera with the
lowest test statistic (P-value � 0.05) provided an estimate
of the proportion of false positives among the significant out-
comes. Note that model (1) is a mixed linear model, which
assumes normality of the data. The relative abundance of the
genera were, in general, not normally distributed, and some-
times peaked at zero. However, due to the small data set we
did not apply generalized linear mixed models.

Genetic and microbial parameters of host traits: First,
explanatory variables for host traits FC, DG and FI were
estimated via backward elimination, using ages and weights
measured upon test station arrival and slaughter weights as
fixed covariables, and SD and pen as random effects. Non-
significant effects of a = 0.05 were excluded. To estimate
genetic variance components and narrow sense heritabilities
of the host traits, the following model was applied

y ¼ Xbbþ ZSDSDþ Zpenpenþ aþ e; (2)

where y is a vector of observations (FC, DG, or FI), b is a
vector of fixed effects (i.e., for FC and FI weights measured
upon test station arrival, and for DG slaughter weights), and
SD and pen are vectors of random slaughter day, and pen
effects, respectively, with variance components s2

SD and s2
pen:

Xb; ZSD; Zpen are corresponding design matrices, and e de-
notes the residual term. The distribution of the random ani-
mal effect a is the same as described in model (1). The
heritability was estimated in the same manner as shown in
model (1) for the bacteria genera. The P-value of the additive
genetic variance was calculated by performing a likelihood
ratio test of the animals’ random effects, as described for the
random effect in model (1).

The microbial variance component was estimated by ap-
plying the following univariate microbial mixed linear model
(fitted in ASReml R):

y ¼ Xbbþ ZSDSDþ Zpenpenþmþ e; (3)

where the model parameters are as described in model (2)
except vector m; which contains the random effect of the
animal microbiota for each individual with m � Nð0;Ms2

mÞ;
where s2

m is the microbial variance. The microbial rela-
tionship matrix M was calculated as follows: we have
M ¼ 1=NXXT; with matrix X (dimension n 3 N where n is
the number of animals and N is the number of OTUs), con-
structed from matrix P (dimension n x N). The elements Pik
are the relative abundance of OTU k in animal i (plus 0.01).
Following this, the elements in X are
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Xik ¼
logPik 2 logP∘k
sdðlogP∘kÞ

Thus, the off-diagonals in M are calculated as
Mij ¼ 1=N

PN
k¼1XikXjk; and the diagonals as

Mii ¼ 1
N

XN

k¼1

X2
ik ¼

1
N

XN

k¼1

ðlogPik2logP∘kÞ2
varðlogP∘kÞ

:

Note, that it might happen that the diagonals are.1. This is
the case if

���logPik2 logP∘k
���. sdðlogP∘kÞ;

i.e., logPik , logP∘k 2 sdðlogP∘kÞ  or  logPik . logP∘k þ sdðlogP∘kÞ;
which means that the abundances of the OTUs in animal i

deviate strongly from the average values, e.g., if OTUs are
missing in the animal that are present in most other animals,
and if OTUs are present that are rare in other animals. Note
also that the microbial relationships are affected by some
errors remaining in the OTU data. More research is needed
regarding the effect of data screening on the precision of the
microbial relationship estimation.

The fraction of the phenotypic variance explained by the
microbial variance was calculated as m2 ¼ s2

m=s
2
P; where

s2
P ¼ s2

m þ s2
SD þ s2

pen þ s2
e is the phenotypic variance. This

fraction was termed microbiability by Difford et al. (2016).
The P-value of the microbial variance was calculated by per-
forming a likelihood ratio test of the animals’ random micro-
biota effects, as described for the random animal effect in
model (1).

Genomic andmicrobial prediction: Topredict host traits FC,
DG, and FI using genomic and microbiota data, G-BLUP and

M-BLUP models were applied, respectively. For the G-BLUP
predictions (VanRaden 2008), model (2) was applied with
previously estimated variance components. In a similar vein,
for the M-BLUP predictions, model (3) was applied. For both
types of predictions, a repeated cross validation was per-
formed with 10,000 iterations, where 80% of the individuals
were sampled randomly without replacement to train the
prediction model (reference population). The pig trait phe-
notypes (FC, DG, and FI) were predicted from the remaining
20% of the pigs based on the results of the reference popu-
lation analysis (validation population). The accuracy of a pre-
diction was defined as the correlation between predicted and
observed trait phenotypes in the validation population. The
mean correlation was calculated as the mean of 10,000 cor-
relation estimates. Confidence intervals of correlations were
estimated as 2.5 and 97.5% quantiles of the 10,000 ordered
correlation estimates.

Effects of single OTUs on complex host traits: To identify
the drivers of prediction accuracy levels, the marginal effects
of OTUs on phenotypic traits (i.e., single OTU effects not
captured by the remaining OTUs) were estimated from the
solutions of the M-BLUP model. To do this, an adapted ver-
sion of the back solving method proposed by Strandén and
Garrick (2009) was used, which is described in the supple-
mentary information (File S1).

Figure 1 Nonmetric multidimensional scaling (nMDS) plot illustrating
similarities in the global bacterial community structure of pig colon digesta.
The pigs are colonized with higher abundances of Firmicutes ( ) and Bac-
teroidetes ( ). While a two-dimensional (2D) stress value of 0.2 denotes
some stress on the plot, this is considered acceptable since 207 samples are
ordinated together.

Figure 2 Relative abundance of the most abundant genera of the Bac-
teroidetes (first heatmap row) and Firmicutes groups (second heatmap
row). Groups with an asterisk (*) are significantly different (P , 0.05).
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Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are fully represented
within the tables and figures. Sequences are available at
the European Nucleotide Archive (ENA) under accession
number PRJEB18070 (http://www.ebi.ac.uk/ena/data/view/
PRJEB18070). File S2 and File S3 contain genotypes and phe-
notypes for each individual, respectively. File S4 contains rela-
tive abundances at OTU level.

Results

Microbial community characterization and heritability
of gut microbiota compositions

The main phyla that account for higher abundances were
found to be Firmicutes (54%), Bacteroidetes (42%), Proteo-
bacteria (2%), and Spirochaetes (1%). The most abundant
families found in colons were Ruminococcaceae (24%), Pre-
votellaceae (21%), Porphyromonadaceae (8%), Clostridia-
ceae 1 (6%), Rikenellaceae (6%), and Lachnospiraceae (5%),
with all other families found to be present at average levels
of ,5%. The microbial community harboring the different
pigs showed a similarity of 35% between animals. Overall,
the predicted KEGG pathways of higher abundance were
found to be related to pathways associatedwith carbohydrate
metabolism, such as starch and sucrose pyruvate, fructose
and mannose metabolism; amino acid metabolism; environ-
mental information processing such as membrane transport
and signal transduction; genetic information processing such
as replication and repair; and translation (Figure S1).

In Figure 1, a nonmetric multidimensional scaling plot is
provided to illustrate similarities in the global bacterial com-
munity structure of pig colon digesta. The stress value asso-
ciated with this plot measures the difficulty involved in
compressing the samples relationship into two dimensions.
It was 0.22, indicating some stress, but we consider this as
acceptable, because larger data sets (as in our case) general
result in larger stress values. A significant difference was
observed between two groups of animals in this plot: one
colonized at higher levels with Firmicutes (F), and another col-
onized with Bacteroidetes (B) (R = 0.339, P-value = 0.001).
The groups showed an average dissimilarity value of 68%,

where the average similarity level between all samples in
group B was found to be 33%, and that for group F was 38%.
Microorganisms contributing to this separation belonged to the
genera Clostridium sensu stricto (B = 20.7%, F = 12.8%),
Lactobacillus (B = 1.3%, F = 5.2%), Prevotella (B = 5.3%,
F = 2.7%), and Clostridium XI (B = 1.9%, F = 5.8%) (Fig-
ure 2). Additional groups of microorganisms presenting signif-
icant differences between both groups are shown in Figure 2.
The reasons for the separation into these two groups could not
be identified and might also be due to different conditions at
birth and weaning period, which were unknown to us. Despite
the different colon colonization patterns found, no effect of the
Firmicutes/Bacteroidetes ratio was observed for DG, FC, or FI
(Figure S2). Eight genera generated significant heritability esti-
mates (P-value , 0.05), which are shown in Table 1. The FDR
of these significant results was ,0.11. Heritability estimates of
all 49 bacterial genera are shown in Table S2.

Heritability and microbiability of host traits and
prediction results

The heritability andmicrobiability of the DG, FC, and FI traits
are shown in Table 2. The heritability estimates are likely
slightly underestimated, due to the use of SNP chip data in-
stead of pedigree data. However, they are within a typical
range for complex pig traits measured under standardized
conditions. The heritability andmicrobiability estimates were
significant with the exception of the heritabilities of FC and
FI. For these traits, the microbiability estimates were higher
than the heritability estimates. The microbial relationship
matrix M, and genomic relationship matrix G, underlying
these calculations are shown as heatmaps in Figure S3 and
Figure S4, respectively. The mean of the diagonal values of G
was 0.99, and the values ranged from 0.85 to 1.19. The mean
of the diagonal values of Mwas 0.995, and the values ranged
from 0.66 to 1.97.

The results of the genomic and microbial predictions are
shown in Table 3. The microbial prediction generated an
accuracy of 0.41 for DG, and 0.33 for FC and FI. These pre-
diction accuracies were higher than those obtained from ge-
nomic predictions. In addition, confidence intervals showed
that the accuracies were significantly .0 (as was twice the
case for genomic predictions).

A plot of marginal OTU effects is shown in Figure 3. Some
outlier effects were detected (Table 4), but none of the mar-
ginal OTU effects showed substantial effects. For DG, the
outliers were assigned to uncultured Veillonellaceae, uncul-
tured Prevotellaceae and uncultured Proteobacteria. For FC
two OTUs with outlier effects were detected, which were

Table 1 Estimated heritability ðh2Þ and P-value for the relative
abundances of bacterial genera

Bacteria h2 SE P-valuea

Alloprevotella 0.34 0.16 0.01
Blautia 0.33 0.14 ,0.01
Catenibacterium 0.39 0.16 0.01
Lactobacillus 0.34 0.16 0.02
Uncultured Spirochaetales 0.52 0.15 ,0.01
Uncultured Spirochaetes 0.32 0.17 0.01
Uncultured Succinivibrionaceae 0.57 0.14 ,0.01
Uncultured Veillonellaceae 0.33 0.15 0.01
a All p-values showed a FDR , 0.12.

Table 2 Estimated microbiability ðm2Þ and heritability ðh2Þ with SE
and P-values for DG, FC, and feed intake

Trait m2 SE P-value h2 SE P-value

DG 0.28 0.13 0.01 0.42 0.14 ,0.01
FC 0.21 0.14 0.01 0.19 0.13 0.08
FI 0.16 0.10 0.03 0.11 0.11 0.22

m2 ¼ s2
m=s

2
P ; as defined by Difford et al. (2016).
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assigned to uncultured Bacteroidales and uncultured Clostri-
diales. One outlier of OTU effects was found for FI, and was
assigned to uncultured Clostridiales.

Discussion

In this study, we analyzed the microbial composition of pig
colon samples. The general pattern ofmicrobiota composition
is in agreement with reports on colon (Looft et al. 2014; Kim
and Isaacson 2015). No interrelationships were found be-
tween the Firmicutes-Bacteroidetes ratio and DG, FC, or FI,
as previously shown by Mach et al. (2015). In former studies
conducted in mice and humans, this ratio was considered as
an important marker for obesity (Ley et al. 2005, 2006;
Turnbaugh et al. 2006). However, other studies showed con-
tradictory results, or even no evidence of a possible effect in
human obesity (Duncan et al. 2008; Schwiertz et al. 2010;
Jumpertz et al. 2011).

The host genetic variance on the GIT microbiota compo-
sitionwas substantial for some bacterial genera as denoted by
the heritability estimates (Table 1). This result is in agree-
ment with earlier findings of Estellè et al. (2014) and
O’Connor et al. (2014), who reported similar heritabilities
for Blautia and Lactobacillus in a French Large White pig
population, and in a segregated mouse population, respec-
tively. The underlying mechanism of this host genetic deter-
mination remains largely unknown thus far. In general, host
genetics can influence microbiota compositions through dif-
ferences in immunoglobulin and antibacterial molecules se-
creted into gut lumen (Wen et al. 2008; Vijay-Kumar et al.
2010; Shulzhenko et al. 2011), owing to differences in mu-
cosal gut structures (Sommer et al. 2014; Wlodarska et al.
2014) and bile acid metabolism (Ryan et al. 2014). Genome-
wide association studies (GWAS) may help identify host
genes affecting microbiota compositions, and, thus, derive
and substantiate novel hypotheses on the genetic mechanism
underlying the heritability of microbiota compositions. How-
ever, this involves the use of large datasets, andwas therefore
not possible in this study.

Microbiability as first defined by Difford et al. (2016) al-
lows for a holistic view of the influence of microbiota on host
traits. For all three investigated traits, microbiability levels
were found to be significant, and, for FC and FI, microbiability
estimates were higher than the heritability estimates (Table
3). This points to a strong effect of GIT microbiota composi-
tions on these traits. As microbiota are partly under the control
of host genes, froman animal breeder’s perspective they can be

viewed as host traits. This highlights the possibility of breeding
for optimized microbiota to indirectly improve complex host
traits. Indeed, from the heritabilities shown in Table 1, selec-
tion responses can be expected for at least eight (from a total of
49) bacterial genera. This targeted breeding strategy might
be especially beneficial for important and so-called hard-to-
measure traits, for which precise data collection is restricted
to few individuals. Examples include the utilization of certain
nutrients in monogastric animals (Beck et al. 2016), and
greenhouse gas emissions in ruminants (Hayes et al. 2013;
Roehe et al. 2016).

Themicrobial predictionmethodM-BLUP is closely related
to the well-known G-BLUP model, which is widely used in
animal breeding. The key difference is that relationships be-
tween individuals are modeled based on relative microbiota
abundances at the OTU level, for which calculations are
straightforward. The M-BLUP predictions outperformed the
G-BLUP predictions in terms of prediction accuracy levels
(Table 3). This further underscored the importance of micro-
biota compositions for trait variability. Thus, it seems that, in
addition to SNP data, microbiota abundances are an informa-
tive source of complex trait prediction data for pigs, which
againmay be of special interest for hard-to-measure traits. To
identify drivers of prediction accuracy levels, we estimate the
marginal effects of a single OTU. Since only few outliers were
detected (Table 4), it can be tentatively concluded that many
of the OTUs explain a small fraction of the trait variability and
that such traits, like DG, FC, and FI, are not only polygenic in
nature (Wellmann et al. 2013), but also highly polymicrobial
determined in this pig population. However, this must be in-
vestigated further because this putative polymicrobial trait
determination might, at least in part, also be attributable to
M-BLUP model assumptions.

Table 3 Accuracy of microbial ðrmÞ and genomic predictions ðrgÞ of
DG, FC, and FI, with C.I.

Trait

Microbial Prediction Genomic Prediction

rm 97.5% CI rg 97.5% CI

DG 0.41 0.18:0.62 0.35 0.08:0.58
FC 0.33 0.07:0.54 0.23 20.04:0.48
FI 0.33 0.15:0.51 0.20 20.08:0.46

Figure 3 OTU marginal effects (absolute values) of each OTU for each
trait. Outliers are marked in red.
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One limit of the microbial prediction model pertains to the
fact that the GIT microbial composition for pigs is itself not
constant, but changes from birth to adulthood (Kim et al.
2011; Pajarillo et al. 2014; Mach et al. 2015), and is, of
course, affected by environmental conditions. In the current
study, these effects were minimized by housing pigs under
standardized conditions, and by collecting microbiota data
on pigs of the same age, which may have additionally con-
tributed to the high level of microbial prediction accuracy
achieved. However, it remains to be determined whether
GIT microbial compositions at a juvenile stage can be used
as predictors of complex host traits measured at a mature
age. Further, it is likely that microbial compositions collected
from different locations of the GIT, or from feces, will show
various complex trait predictive capacities.

The two microbiota pig breeding strategies described
above (i.e., breeding for an optimized microbiome and apply-
ing microbial prediction) define the microbiota composition
differently. For the former, it is treated as a quantitative host
trait, whereas, for the latter, it is used as an explanatory vari-
able for prediction purposes. Detailed investigations show that
not all microbiota genera are heritable host traits, and not all
microbiota OTUs are equally important for predictions (Figure
3). Hence, a comparatively detailed analysis of these two com-
ponents is desirable, but larger datasets must be used. In ad-
dition to GWAS of microbiota compositions and complex host
traits, this interplay may be analyzed through structural equa-
tion models as introduced to the field of livestock genetics by
Gianola and Sorensen (2004). In a quantitative genetic set-
ting, structural equation models allow for the separation of
direct and indirect genetic effects shaping genetic relation-
ships among traits. Direct genetic effects result from linkage
disequilibrium between genes affecting traits or from pleiotro-
pic effects. However, when a causal relationship between two
traits exists, genes directly affecting only one trait may also
affect the second trait indirectly via the causal relationship
between the traits. Methods for identifying causal structures
(Valente et al. 2010) would help simultaneously identify
which microbiota bacteria present host genetic variance and
the impact of these bacteria on complex host trait variations.

This study was conducted using pig samples. Since the pig
is an animal well-suited for modeling the human digestive
tract, our results may have implications for predicting human
predisposition to disease, and consequently for preventative

and personalized medicine. For genetically determined traits
such as type-2 diabetes, G-BLUPhas already beenproven to be
useful (de los Campos et al. 2013). This study extends the
scope of predictions toward using microbiota data, which
might be of special interest for traits where it is known that
the microbiome plays an important role, e.g., metabolic dis-
eases and obesity (Karlsson et al. 2013; Le Chatelier et al.
2013). Applications of M-BLUP with appropriate microbiota
data may help quantify the risks of suffering from such dis-
eases, and may further the development of personalized pre-
ventative strategies.

Methods that combine highly dimensional and correlated
predictors (G-BLUP andM-BLUP) with cumulative prediction
power will have to be developed in future studies. For this
purpose, the present data set is too small.
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