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ABSTRACT Genomic selection (GS) identifies individuals for inclusion in breeding programs based on the sum of their estimated
marker effects or genomic estimated breeding values (GEBVs). Due to significant correlation between GEBVs and true breeding values,
this has resulted in enhanced rates of genetic gain as compared to traditional methods of selection. Three extensions to GS, weighted
genomic selection (WGS), optimal haploid value (OHV) selection, and genotype building (GB) selection have been proposed to improve
long-term response, and to facilitate the efficient development of doubled haploids. In separate simulation studies, these methods
were shown to outperform GS under various assumptions. However, further potential for improvement exists. In this paper, optimal
population value (OPV) selection is introduced as selection based on the maximum possible haploid value in a subset of the population.
Instead of evaluating the breeding merit of individuals as in GS, WGS, and OHV selection, the proposed method evaluates the breeding
merit of a set of individuals as in GB. After testing these selection methods extensively, OPV and GB selection were found to achieve
greater responses than GS, WGS, and OHV, with OPV outperforming GB across most percentiles. These results suggest a new
paradigm for selection methods in which an individual’s value is dependent upon its complementarity with others.
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IN genomic selection (GS), genome-wide genetic markers
and phenotypic observations are used to estimate marker

effects that can subsequently be used to accurately predict
breeding values of individuals that have only been genotyped
(Meuwissen et al. 2001). GS improves upon marker-assisted
selection by more effectively capturing the effects of all quan-
titative trait loci (QTL). Because GS typically more accurately
identifies superior parents than traditional selection meth-
ods, and decreases the amount of necessary phenotyping, it
has been recognized as a way to increase the rate of genetic
gain in cultivar improvement programs (Bernardo and Yu
2007), and to allow for more breeding cycles per unit time
(Heffner et al. 2010).

Three extensions have been proposed to improve GS. The
first extension, weighted genomic selection (WGS), was pro-

posed to increase the frequency of rare favorable alleles in the
population tomaximize long-term response (Goddard 2009).
In a simulation study, WGS was shown to increase response
relative to GS (Jannink 2010). The second extension, optimal
haploid value (OHV) selection, calculates the best possible
future breeding value of an individual when doubled hap-
loids (DHs) are produced from it. This method was shown
to improve response in a simulated wheat program using DHs
(Daetwyler et al. 2015). By taking the maximum haplotype
GEBV at each segment, Daetwyler et al. (2015) demonstrated
the utility of maintaining seemingly unfavorable genome seg-
ments, because subsequent recombination can release favor-
able alleles. Selecting only those individuals with the highest
overall genomic estimated breeding values (GEBVs) can lead
to the loss of rare favorable alleles in the population, but an
individual whose GEBV falls below the truncation point may
be more favorable in the long-term because it harbors rare
favorable alleles.

GS, WGS, and OHV selection perform truncation selection
on individual breeding values (of varying definitions). How-
ever, the genetic merit of a single individual also depends on

Copyright © 2017 by the Genetics Society of America
doi: https://doi.org/10.1534/genetics.116.197103
Manuscript received October 22, 2016; accepted for publication May 15, 2017;
published Early Online May 19, 2017.
1Corresponding author: Department of Industrial and Manufacturing Systems
Engineering, Iowa State University, Ames, IA 50011. E-mail: lzwang@iastate.edu

Genetics, Vol. 206, 1675–1682 July 2017 1675

https://doi.org/10.1534/genetics.116.197103
mailto:lzwang@iastate.edu


the genetic merit of the individuals with which it may be
mated. After several generations of crossing and recombina-
tion, individuals will contain genetic material from multiple
founder lines. Thus, the third extension, genotype building
(GB) selection, uses the best two haplotype blocks of a subset
of the founder population to derive a combined fitness value
for that subset (Kemper et al. 2012). As such, it represents a
shift from selecting superior individuals to selecting the set of
individuals that are more likely to produce superior progeny
when crossed with each other. Since plant breeders often
seek to develop high performing inbred lines, a genotype
building strategy can be applied without the constraints on
coancestry used by Kemper et al. (2012).

In this article, we propose optimal population value (OPV)
selection as a combination ofGBandOHVselection. LikeOHV
selection, OPV considers the haploid values of individual
selection candidatesbutevaluates themeritofpotentialprogeny
of a subset of selection candidates like GB selection. First,
we mathematically defined the OPV, GS, WGS, OHV, and GB
selection approaches. Then, a simulation study based on empir-
icaldataobtainedfromasetofmaize inbredswasusedtoanalyze
OPV’s relative ability to improve response. The objectives of this
paper were to (i) improve genetic gain, and (ii) investigate the
efficacy of population-based selection methods.

Materials and Methods

In this section, we first present OPV selection. Then, four
existing selectionmethods (GS,WGS,OHV, andGB selection)
are mathematically defined. The following definitions will be
used in subsequent sections to describe the five selection
methods compared in this paper:

L: the number of marker loci.
M: the ploidy of the plants.
N: the number of individuals in the population.
A 2 f0; 1gL3M3N : a binary matrix indicating whether the

allele at locus l on the mth copy of a chromosome of
individual n is the major (Al;m;n ¼ 1) or minor
(Al;m;n ¼ 0) allele.

el : the effect of having the major allele at locus l.
q: the number of individuals to be selected for reproduction

in each generation.

Additionally, for OHV, GB, and OPV selection, adjacent
markers are likely to segregate together, and may be grouped
into representative haplotype blocks. For these three meth-
ods, the following definitions will also be used:

B: the number of haplotype blocks per chromosome.
HðbÞ;"b 2 f1; . . . ;Bg : the set of marker loci that belong to

haplotype block b.

Optimal population value selection

OPV is defined as the GEBV of the best possible progeny
produced by a breeding population after anunlimited number
of generations, assuming markers segregate in the haplotype

blocks considered. This can be interpreted as a generalization
of the upper selection limit (Cole and VanRaden 2011) to
varying haplotype lengths, rather than just haplotypes with
a length of one marker. For a given breeding population
S4f1; . . . ;Ng selected from the entire population, the OPV
is defined as

OPVðSÞ ¼ M �max
n2S

max
m2f1;...Mg

XB
b¼1

X
l2HðbÞ

Al;m;nel: (1)

The challenge is to select the optimal breeding populationS so
that OPVðSÞ is maximized.

Genomic selection

This method selects the q individuals with the largest GEBVs
(Meuwissen et al. 2001). The GEBV of individual n is defined
as:

GSðnÞ ¼
XL
l¼1

XM
m¼1

Al;m;nel: (2)

Weighted genomic selection

WGS has been proposed as a variation of GS (Goddard 2009;
Jannink 2010):

WGSðnÞ ¼
XL
l¼1

XM
m¼1

Al;m;n
elffiffiffiffiffi
wl

p : (3)

Here, the estimated marker effect was weighted using the
frequencyof themost beneficial allele in thepopulationat that
locus, denoted by wl: This procedure is outlined in detail in
Jannink (2010). Since ð1= ffiffiffiffiffi

wl
p Þ is undefined when wl ¼ 0; a

rule was set to assume wl ¼ 1 for these cases. It is important
to note that, when wl ¼ 0; every member in the population
has the same allele. Thus, assuming wl ¼ 1 has an equal
effect on all lines.

Optimal haploid value selection

The OHV of individual n is the GEBV of the best possible DH
individual derived from it (Daetwyler et al. 2015):

OHVðnÞ ¼ M max
m2f1;...Mg

XB
b¼1

X
l2HðbÞ

Al;m;nel: (4)

Qualitatively, OHV is the sum of the maximum GEBVs of
predefined blocks along a chromosome. This method selects
the q individuals with the highest OHV.

Genotype building selection

This strategy was initially designed to select founder individ-
uals of the next generation such that the founders possessed
the best possible combinations of blocks for each block across
the genome. In the general context of genomic selection, and
using thedefinitionsmade in this paper, the genotypebuilding
selection approach is trying to select a subset S4f1; . . . ;Ng to
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maximize the sum of estimated allelic effects across M chro-
mosomes at each block, which can be formulated as

maxy GBðSÞ ¼
X
n2S

max
m2f1;...;Mg

XB
b¼1

X
l2HðbÞ

yb;nAl;m;nel; (5)

such that

X
n2S

yb;n ¼ M;"b 2 f1; . . . ;Bg; (6)

and

yb;n 2 f0; 1g;"b 2 f1; . . . ;Bg; n 2 S: (7)

Optimization of OPV and GB selection metrics

Here, an integer programmingmodel is formulated to select a
breeding population of q individuals withmaximal OPV or GB
values. The decision variables are xn and yb;n for all blocks
b 2 f1; . . . ;Bg and individuals n 2 f1; . . . ;Ng; which are all
binary. Variable xn indicates whether individual n is selected
(xn ¼ 1) or not (xn ¼ 0), and variable yb;n indicates whether
(yb;n ¼ 1) or not (yb;n ¼ 0) individual n makes the largest
contributions to block b among all selected individuals. The
integer programming model can be formulated as follows.

maxy
M
K

XN
n¼1

max
m2f1;...;Mg

XB
b¼1

X
l2HðbÞ

yb;nAl;m;nel; (8)

such that

XN
n¼1

xn ¼ q; (9)

XN
n¼1

yb;n ¼ K;"b 2 f1; . . . ;Bg; (10)

yb;n # xn;"b 2 f1; . . . ;Bg; n 2 f1; . . . ;Ng; (11)

and

xn; yb;n 2 f0; 1g;"b 2 f1; . . . ;Bg; n 2 f1; . . . ;Ng (12)

Here, the parameter K determines the type of metric to be
optimized. If K ¼ 1; Equation (8) represents the OPV metric;
if K ¼ M; it represents the GB metric. Constraint (11) defines
the number of individuals to be selected. Constraint (11)
limits the number of best chromosomes for each block to be
used in the metric. Constraint (11) means that only selected
individuals can be used for the calculation of themetrics. This
model can be solved using standard integer programming
solvers. However, the computation time could increase expo-
nentially as the dimensions of the model grow (e.g., the num-
bers of blocks, B, and individuals, N).

Alternatively, we propose a two-step heuristic algorithm to
solve this model:

Step 1: Randomly select a breeding population with q indi-
viduals, and calculate the desired metric.

Step 2: Propose pairwise swaps between a selected individ-
ual and an unselected one, and calculate the resulting
metric. Accept the proposed swap if the metric is im-
proved. Repeat this step until no more swaps improve
the metric.

The essence of this heuristic algorithm is to treat the
breeding population selection problem as a complex multidi-
mensional nonlinear optimizationproblem.The solution from
this heuristic algorithm is guaranteed to be at least locally
optimal.

Performance enhancement strategies for OHV, OPV,
and GB

The performances of OHV, OPV, and GB are sensitive to two
parameters, which can be optimized to enhance their effec-
tiveness. The first parameter,B, represents a tradeoff between
short-term and long-term gains by changing the number of
haplotype blocks considered on each chromosome. If B ¼ 1;
then OHV, OPV, and GB consider one haplotype block per
chromosome, and, therefore, focus on short-term gain similar
to GS. If B is a large number, then the algorithms focus on
long-term gain by evaluating progeny with up to B recombi-
nation events. The second parameter, F, specifies the removal
of the F3 100% of individuals with the lowest GEBVs before
optimizing the selected population. If F ¼ n2 q=n; then
OHV, OPV, and GB selection are equivalent to GS, whereas
a smaller value of F would put more emphasis on long-term
gain through the potential selection of individuals with lower
overall GEBVs that harbor rare favorable alleles.

Simulation

Data: SNPs from the 369 maize inbred lines used by Leiboff
et al. (2015) were merged with additional SNPs genotyped
using tGBS (Schnable et al. 2013), and phased using Beagle
(Browning and Browning 2008). This produced �1.4 mil-
lion SNPs distributed across the 10 maize chromosomes.
The 369 SAM volume phenotypes from Leiboff et al. (2015)
were used to estimate marker effects, el; using the BayesB
model (Meuwissen et al. 2001) implemented in GenSel
(Fernando and Garrick 2009). We assumed that marker ef-
fects were known without error, and that inaccuracies in
marker effect estimation affected all selection methods
equally.

Recombination rates in this population were estimated
using the genetic map developed from the maize nested
association mapping (NAM) (Yu et al. 2008) population. Of
the 1144 genetic markers in the NAM population, 133 were
removed because the orderings between physical and genetic
positions were inconsistent. The remaining 1011 markers
were used to estimate the genetic positions of the SNPs by
linear interpolation between the NAMmarkers flanking each
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SNP. Once the genetic positions of the SNPs were estimated,
recombination rates were calculated between adjacent SNPs
using Haldane’s mapping function. This produced a genetic
map of 1544 cM.

In silico breeding process model: The generic plant breeding
program considered in this paper is illustrated in Figure 1.
Starting with an initial population, the program iterates over
the selection, and reproduction steps ten times (T ¼ 10) to
simulate ten generations of breeding. In each simulation,
200 individuals were randomly selected from the 369 lines
to form the initial population, and a breeding population
of q ¼ 20 individuals was selected in each generation.
Each initial population was used once for all five selection
approaches.

Five selection approaches were used in the selection
step: GS, WGS, OHV, OPV, and GB. To determine appropri-
ate parameter setting for the latter three approaches,
100 replicates of the generic plant breeding process
were performed using 60 different combinations of
the parameters: B 2 f1; 2; 3; 6; 12; 20; 30; 40; 50; 60g and
F 2 f40%; 50%; 60%; 70%; 80%; 90%g For these three ap-
proaches, the best combinations (B ¼ 12; F ¼ 70% for
OHV; B ¼ 60; F ¼ 80% for GB; and B ¼ 1; F ¼ 40% for
OPV) were used in 2000 additional simulation replicates of
all five approaches. Due to the large dimension of the data,
the heuristic algorithm was used for OPV and GB in all
simulations.

In the reproduction step,weuse the following two substeps
to simulate the next generation.

Substep 1: Pair the 20 selected individuals to make
10 crosses in descending order of their GEBVs, i.e., the
individual with the highest GEBV is crossed with the sec-
ond, the third highest with the fourth, etc.

Substep 2: Produce 20 progeny from each of the 10 crosses
to maintain a population size of 200. Let r denote the
vector of recombination frequencies and P 2 f0; 1gL3 2

the genotype matrix of a random offspring from crossing
individuals n1 and n2: Then P is determined as

Pi;j ¼ Ai;Jjiþ1;nj
;"i 2 f1; . . . ; Lg; j 2 f1; 2g:

Here, J1; J2 2 f0; 1gL3 2 are two identical and independent
random vectors following the inheritance distribution
with recombination frequency vector r. The inheritance
distribution was defined in Han et al. (2017) as follows.

Definition 0.1: Han et al. (2017) We say that a random bi-
nary vector J 2 f0; 1gL follows an inheritance distribution
with parameter vector r 2 ½0; 0:5�L21 if

J1 ¼
�
0; w:p:   0:5
1; w:p:   0:5

; (13)

Ji ¼
�
Ji21 w:p:  12 ri21
12 Ji21 w:p:  ri21

;"i 2 f2; . . . ; Lg: (14)

Here, “w.p.” stands for “with probability.”

This process was implemented in silico in Octave (Eaton et al.
2015).

Results

Each selection approach was used in 2000 independent sim-
ulation runs. Since each random initial population was used
on all five selection methods, the rankings of their population
maximums in the 10th generations reveal their comparative
effectiveness. Table 1 summarizes the frequencies of these
rankings across the 2000 replications. These results suggest
that OPV outperformed the other four approaches in achiev-
ing genetic gains in the first 10 generations.

To provide a more insightful assessment of different selec-
tion approaches, we also compared the cumulative distribu-
tion functions (CDFs)of thepopulationmaximums in the10th
generation from each replicate (Figure 2). Since the vertical
value of a point on a CDF curve indicates the percentage of
random outcomes that have a lower GEBV than its horizontal
value, the best performing selection approach at a given ver-
tical point will be the farthest right. GS and WGS perform

Figure 1 Diagram of the simulation process.

Table 1 Frequencies of relative rankings of the five selection
approaches on the population maximum in the 10th generation
across 2000 replications

GS (%) WGS (%) OHV (%) GB (%) OPV (%)

First 1.5 6.3 4.6 22.1 65.7
Second 11.6 6.4 27.6 46.8 7.7
Third 31.5 13.5 39.9 7.7 7.5
Fourth 33.9 19.5 25.5 14.1 7.2
Fifth 21.6 54.4 2.5 9.5 12.1
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similarly, although GS outperforms WGS below the 30th per-
centile. Above the 40th percentile, OHV performs similarly
to GS and WGS. Below this percentile, however, OHV out-
performs both of these methods, matching the performance
of GB. OPV outperforms GB below the 30th percentile and
above the 50th percentile.

Figure 3 displays the means of population minimum,
mean, and maximum of GEBV over 10 generations for all
selection approaches. As expected, GS and WGS show quick
and substantial improvement in GEBV before reaching a
plateau at generation 4. OHV sacrifices short-term gain
for long-term gain, exceeding the performance of GS and
WGS by generation 9, 8, and 6 with respect to mean
population minimum, mean, and maximum, respectively.
GB demonstrates a similar growth pattern as OHV, with en-
hanced performance across all three criteria. OPV has the
slowest increases in mean population minimum; its mean
population mean grows slowly in the first five generations
but finishes second to GB in generation 10; its mean popula-
tion maximum initially improves more slowly than GS and
WGS but eventually surpasses all other four approaches in
generation 10.

Figure 4 displays the SE of population mean over 10 gen-
erations for all selection approaches. As expected, OHV, GB,

and OPV maintain genetic variance in the breeding popula-
tion longer than either GS or WGS. However, OPV maintains
substantially more genetic variance than either GB or OHV,
indicating that there is greater room for population improve-
ment after 10 generations.

Discussion

In this study, we have introduced a new selection approach,
optimal population value selection (OPV), which evaluates
the genetic merit of a set of selection candidates instead of
performing truncation selection on an individual metric. OPV
is similar to optimal haploid value (OHV) and genotype
building (GB) in that all three methods consider the effects
of recombination on the geneticmerit of future individuals. By
focusing on the GEBV of segments of the genome instead of
total GEBV, these three methods can identify and select for
segments that contain rare favorable alleles but whose favor-
able effectswould bediscardedby truncationmethods such as
GS and WGS.

In our simulations, the primary advantage of OHV over GS
and WGS is the decreased incidence of individuals with low
GEBVs. The mean best individual over 10 generations is
significantly better than the same individual from GS and

Figure 2 Cumulative distribution functions of popula-
tion maximums after 10 generations of selection over
2000 replications for each selection approach.

Figure 3 Mean population minimum, mean, and
maximum over 10 generations.
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WGS on average, although Figure 2 shows that there are rare
cases where GS and WGS can match the performance of
OHV. Daetwyler et al. (2015) reported that OHV maintained
genetic variance longer than GS and hypothesized that this
was due to the ability of OHV to maintain rare alleles in the
population. OPV is similar to OHV with one important differ-
ence. After calculation of optimal haploid values, OHV selection
selects a fraction of individuals with the highest OHVs—a form
of truncation selection. OPV selects a subset of individuals based
on the maximum haploid value at individual segments across
the selected individuals. Thus, there is still the possibility that
OHVwill discard individuals with rare favorable alleles that are
masked by a large number of unfavorable alleles. OPV allows
for the inclusion of individuals that have low genetic merit but
contain favorable alleles that are rare in the rest of the selected
individuals.

There are three principal differences between our imple-
mentation of OHV and that of Daetwyler et al. (2015). First,
the population sizes used in our study (200) are much
smaller than those of Daetwyler et al. (2015) (55,000).
One of the benefits of both OPV and OHV is their ability to
maintain rare favorable alleles in breeding populations. Their
ability to identify alleles is independent of population
size, which increases the probability of obtaining favorable
recombinants. Changes in population size are expected to
affect both methods equally. Second, we have not imple-
mented the use of DHs in our simulated breeding program
as in Daetwyler et al. (2015). Despite this omission, we ob-
serve that OHV outperforms GS. While a comparison of OPV
and OHV when using DHs would be valuable, our results
suggest that the advantage of OHV over GS is maintained
without the use of DHs. Third, we remove F3 100% of indi-
viduals with the lowest GEBVs prior to selection, which is a
strategy that has been shown to enhance the efficiency of
OHV, OPV, and GB.

OPV is similar to GB, but itmakes two improvements. First,
the OPV metric exclusively measures the long-term potential
of the most outstanding progeny in the population, whereas
theGBmetricalsovalues theGEBVof thebreedingparents like

GS does. Second, we presented an integer programming
model and a heuristic algorithm for selecting an optimal
subset of individuals tomaximize theOPVorGBmetric,which
is an improvement over the algorithm presented in Kemper
et al. (2012). As Figure 3 shows, OPV and GB produce similar
response curves for the average of the best individuals. How-
ever, when we consider the distributions of these best indi-
viduals, we see that the worst of the best individuals
produced by OPV are better than those of GB, and the best
of the best individuals produced by OPV are better than those
of GB. GB only outperforms OPV between the 30th and 50th
percentiles. This indicates that while there is a chance that GB
produces better individuals than OPV, in the best and worst
cases, OPV is expected to be the superior method. One pos-
sible explanation for this phenomenon is that OPV maintains
genetic variance longer than all other methods (Figure 4).

Conclusions

In this paper, a new selection method, optimal population
value (OPV) selection, was presented. Instead of using eval-
uations of individual lines to select the breeding population, a
candidate breeding population was selected as a unit. While
this presents some computational challenges, such as solving
a combinatorial optimization problem, it was shown to out-
perform existing methods in a series of simulation experi-
ments that spanned 10 generations, and used empirical data
from an inbred maize population. Future research into geno-
mic selection approaches should focus on selecting sets of
individuals as a unit, rather than how to better evaluate
individual breeding values prior to performing truncation
selection.
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Appendix

Mean of maximal GEBV in the 10th generation for 100 random simulations using OHV (Table A1), GB (Table A2), and OPV
(Table A3) selection. Optimal parameters are highlighted.

Table A1 Mean of maximal GEBV in the 10th generation for 100 random simulations using OHV selection

F

B 40% 50% 60% 70% 80% 90%

1 7.30 7.20 7.21 7.24 7.19 7.28
2 7.23 7.15 7.14 7.22 7.22 7.28
3 7.24 7.34 7.43 7.43 7.45 7.26
6 7.23 7.26 7.46 7.46 7.42 7.37

12 7.34 7.36 7.38 7.50 7.40 7.35
20 7.33 7.33 7.41 7.39 7.47 7.31
30 7.27 7.32 7.36 7.44 7.45 7.25
40 7.27 7.39 7.39 7.40 7.43 7.28
50 7.28 7.29 7.39 7.41 7.41 7.31
60 7.31 7.30 7.39 7.41 7.49 7.26

Table A2 Mean of maximal GEBV in the 10th generation for 100 random simulations using GB selection

F

B 40% 50% 60% 70% 80% 90%

1 7.71 7.69 7.69 7.70 7.57 7.27
2 7.26 7.50 7.53 7.46 7.47 7.30
3 7.33 7.45 7.50 7.67 7.64 7.28
6 7.25 7.37 7.52 7.65 7.76 7.42

12 7.18 7.39 7.56 7.71 7.71 7.34
20 7.15 7.35 7.54 7.70 7.73 7.30
30 7.19 7.29 7.61 7.73 7.72 7.20
40 7.12 7.34 7.59 7.68 7.70 7.31
50 7.10 7.29 7.55 7.67 7.64 7.27
60 7.17 7.22 7.64 7.74 7.77 7.26

Table A3 Mean of maximal GEBV in the 10th generation for 100 random simulations using OPV selection

F

B 40% 50% 60% 70% 80% 90%

1 7.86 7.73 7.83 7.67 7.52 7.28
2 7.65 7.68 7.71 7.73 7.55 7.27
3 7.36 7.48 7.62 7.70 7.67 7.26
6 7.14 7.28 7.53 7.70 7.67 7.40

12 7.14 7.34 7.46 7.69 7.61 7.36
20 7.17 7.33 7.46 7.73 7.76 7.28
30 7.12 7.29 7.53 7.68 7.72 7.22
40 7.08 7.38 7.60 7.72 7.62 7.27
50 7.08 7.25 7.64 7.74 7.66 7.30
60 7.08 7.27 7.50 7.68 7.71 7.27
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