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Abstract

Human papillomaviruses are small DNA viruses with a tropism for squamous epithelia. A unique 

aspect of human papillomavirus molecular biology involves dependence on the differentiation 

status of the host epithelial cell to complete the viral lifecycle. A small group of these viruses are 

the etiologic agents of several types of human cancers, including oral and anogenital tract 

carcinomas. This review focuses on the basic molecular biology of human papillomaviruses.
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1.1 Introduction

With a prevalence of 70 million cases and an incidence of 14 million new transmissions each 

year, human papillomavirus (HPV) infections of the anogenital tract are the most common 

sexually transmitted diseases in the US [1]. High-risk (HR) HPVs are the causative agents of 

cervical cancer and, worldwide, it is estimated that 500,000 cases of cervical cancer occur 

each year, which result in over 250,000 deaths [2]. Cervical cancer is the 4th most common 

cancer in women and the 7th most common cancer overall [3]. The burden of cervical cancer 

is disproportionately high in low-income countries due to a scarcity in resources to 

implement widespread screening, vaccination and treatment programs [4]. While safe and 

efficacious vaccines for the prevention of HPV infection are available, they do not protect 

those already infected with HPV and they do not protect against all HPV types. Therefore, 

continued studies of the molecular biology of HPV are necessary to develop improved 

screening techniques and prophylactic vaccines for the prevention of HPV infection, as well 

as better therapeutic options, including vaccines, for the treatment of HPV infection.
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1.2 HPV Classification

HPVs are members of the distinct virus family, the Papillomaviridae. The Papillomaviridae 
family is divided into 39 genera [5, 6], based on L1 sequence identity of 60% or greater, 

with each genus designated by a letter of the Greek alphabet. PVs within a genus that share 

60–70% L1 sequence identity are termed a species [5, 6]. Additionally, within a species, 

PVs with 71–89% L1 sequence identity are considered a type [5, 6]. As of 2016, 205 

different HPV types have been identified, which have been categorized into five genera 

including the following: 65 Alphapapillomaviruses, 51 Betapapillomaviruses, 84 

Gammapapillomaviruses, 4 Mupapillomaviruses and a single Nupapillomavirus [7]. At least 

19 more additional types have been identified however, these viruses are currently pending 

classification. HPVs with 90–98% L1 sequence identity are termed subtypes and those with 

>98% L1 sequence identity are considered variants [5]. Arguably, HPVs in the alpha genus 

are of the greatest medical importance given they are associated with oral and mucosal 

cancers, as well as cancers of the anogenital tract. Table 1 includes a summary of main HPV 

genotypes and their associated diseases.

1.3 Virion and Genome Structure and Organization

HPVs are non-enveloped DNA viruses with a tropism for the squamous epithelium. Each 

virus particle consists of an icosahedral capsid of about 60 nm in diameter, containing a 

single molecule of double stranded circular DNA of approximately 8,000 base pairs [8]. 

Only one strand of the double stranded DNA genome is used as a template for transcription 

and this coding strand contains three genomic regions, including approximately ten open 

reading frames (ORFs) shown in Figure 1. Many viral proteins are expressed from 

polycistronic mRNAs [9, 10]. The early region (E) contains up to seven ORFs encoding viral 

regulatory proteins and the late (L) region encodes the two viral capsid proteins. Each ORF 

in the early region is designated “E” followed by a numeral, indicative of the length of the 

ORF. The third region of the genome has been referred to as the long control region (LCR), 

the upstream regulatory region (URR) or the noncoding region (NCR). This genomic region 

contains the origin of DNA replication, as well as transcription control sequences [8].

1.3.1 Viral Proteins

The early HPV ORFs include E1, E2, E4, E5, E6, E7 and E8 [10, 11] (see Figure 1). E1 

codes for an ATP dependent viral DNA helicase [12] that can bind to the AT-rich origin of 

replication and E2 proteins function in viral transcription, replication and genome 

partitioning. The full length E2 protein encodes a transcriptional activator. In contrast, a 

truncated form of E2 transcribed from an internal ATG and the E8^E2 fusion protein repress 

transcription [13]. E4 is embedded within the E2 gene and is primarily expressed as an 

E1^E4 fusion protein during the late stages of the viral life cycle. E4 binds to cytokeratin 

filaments, disrupting their structure, and is thought to play a role in viral escape from 

cornified epithelial layers [14]. E5 is a small transmembrane protein, which has been best 

studied with bovine papillomavirus type 1 (BPV1). BPV1 E5 is an oncogenic small, 

hydrophobic, single pass transmembrane protein that forms dimers and interacts with and 

activates receptor tyrosine kinase receptors, including the EGF and PDGF receptors. Similar 
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activities have also been ascribed to HPV E5, which encodes multi pass transmembrane 

proteins that share only limited sequence similarity with BPV1 E5 [15]. HPV E5 proteins 

have also been reported to play a role in apoptosis and in evasion of the immune response 

[15]. HPV E6 and E7 both drive cell cycle entry to allow genome amplification in upper 

epithelial layers. HR HPV E6 proteins have oncogenic activities. They bind and degrade 

p53, as well as cellular PDZ proteins, and they activate telomerase [16]. HR HPV E7 

proteins bind and degrade the retinoblastoma tumor suppressor, pRB, and contribute to 

malignant progression by inducing genomic instability [17, 18]. The late region encodes the 

major (L1) and minor (L2) capsid proteins (see Figure 1). Given the L1 ORF is the most 

conserved among PVs, it is used for phylogenetic organization and HPV classification. 

Notably, L1 will spontaneously assemble into virus like particles, which is the basis for the 

currently available prophylactic vaccine formulations discussed in greater detail in section 

1.8 [19].

1.4 HPVs and Cancer

The first HPVs that were associated with cancer were beta HPV5 and 8. They were detected 

in warts and cancers arising in patients with a rare genetic disorder, Epidermodysplasia 

verruciformis (EV) [20, 21]. Most of these patients carry mutations in one of the two EVER 

genes, EVER1 and EVER2 (also referred to as TMC6 and TMC8, respectively), located on 

chromosome17q25.3 [22]. Although the molecular basis remains enigmatic, EV patients 

cannot efficiently clear beta HPV infections and develop warts all over their bodies. These 

warts can undergo malignant progression at sun-exposed areas of the body. Beta HPVs also 

contribute to non-melanoma skin cancers that arise as a frequent complication in long-term 

immunosuppressed organ transplant patients. It remains unclear whether beta HPVs 

contribute to non-melanoma skin cancer formation in patients that are not systemically 

immunosuppressed (reviewed in [23–25]). Of note, HPV sequences are not detected in every 

tumor cell, suggesting that these viruses may contribute to tumor induction but may not be 

necessary for maintenance of the transformed state. Studies with transgenic mice have 

shown that E6, E7 and quite uniquely E2, each have oncogenic activities.

The approximately 40 alpha HPVs that infect mucosal epithelia are classified as low-risk 

(LR) or HR based on their clinical association with generally benign warts or lesions that 

have a propensity for malignant progression. LR HPVs, for example HPV6 and HPV11, 

cause genital warts or oral focal epithelial hyperplasia (Heck’s disease) depending on the 

site of infection. HR HPVs, such as HPV16 and HPV18, cause intraepithelial neoplasia, 

which can progress to invasive carcinoma. HR HPVs are the causative agents of 

approximately 5.2% of all human cancers worldwide and HR HPV associated cervical 

carcinoma is the 4th most common cancer among women globally [26–28]. Almost all 

cervical cancers are caused by HR HPVs and two types, HPV16 and HPV18, are detected in 

up to 70% of all cervical cancers [29]. HR HPV infections also account for 95% of anal 

cancers, 70% of oropharyngeal cancers [30], 60% of vaginal cancers, 50% of vulvar cancers 

and 35% of penile cancers [31]. HPV16 is by far the most prevalent HPV type detected in 

these cancers. HPV associated cancers generally represent non-productive infections, as 

described in more detail in section 1.6.
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1.5 HPV Productive Infection and Lifecycle

A hallmark of the HPV lifecycle is its close association with the differentiation program of 

the infected host squamous epithelium (see Figure 2). HPVs firstly infect undifferentiated 

basal epithelial cells and then viral progeny are produced in differentiated daughter cells in 

the uppermost epithelial layers [32].

1.5.1 Methods for Studying the Viral Lifecycle

Historically, it has been difficult to study the PV life cycle in the laboratory. Organotypic raft 

cultures, in which epithelial cells are grown on a fibroblast-containing matrix at the air liquid 

interface where they form a stratified, skin-like structure, provided the necessary 

breakthrough to recapitulate the full viral life cycle and to produce infectious HPV in tissue 

culture [33, 34].

Virus like particles (VLPs) are produced by ectopic expression of L1 either alone or in 

combination with L2 in mammalian cells. Pseudoviruses are VPLs that contain either viral 

genomes or reporter plasmids and can be produced similarly. Given their relative ease of 

production, VLPs and pseudoviruses have been the main tools used to study HPV structure, 

assembly, entry and infectivity. Due to the exquisite species specificity of PVs, an animal 

model that closely recapitulates HPV infection and disease in humans has not been 

established. In 2010, a new papillomavirus (MmuPV) was identified in the common house 

mouse (Mus musculus), allowing studies of PVs in laboratory mice for the first time [35]. 

MmuPV infection of mice most closely resembles human infection by cutaneous PVs and 

information gleaned from studies of MmuPV infections of laboratory mice may be useful to 

better understand HPV associated human pathogenesis.

1.5.2 HPV infection

The only cells capable of undergoing cell division in the squamous epithelium are basal 

cells. Consequently, PVs must specifically infect these cells to allow establishment of a 

persistent infection. Cells in the basal epithelial layer consist of stem cells and transit 

amplifying cells. In order for an HPV infection to be persistently maintained, the epithelial 

stem cells in the basal layer must become infected [36, 37]. However, given basal epithelial 

cells are shielded by several layers of differentiated cells, they are not easily accessible and 

the virus must infect these protected cells through micro wounds that expose lower epithelial 

layers [8]. Additionally, cells located in the squamocolumnar transformation zone in the 

cervix and anus have been shown to be particularly accessible and vulnerable to HPV 

infection [38].

1.5.3 Viral Attachment and Entry

Virions bind initially to heparan sulfate proteoglycans (HSPGs), which serve as primary 

attachment receptors on basal cells or exposed basement membrane resulting from epithelial 

trauma or permeabilization [39]. Initial L1 attachment to HSPGs induces conformational 

changes in the virus capsid ultimately resulting in loss of affinity for the primary receptor 

and transfer of the virus to an as of yet poorly characterized entry receptor. Whether or not 

these conformational changes may be caused by cyclophilin B [40] remains a subject of 
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controversy. Ultimately, the L2 amino terminus is exposed, making it susceptible to cleavage 

by furin-related proteases, which is necessary for infection by some HPVs [41–43]. 

Internalization of capsids from the cell surface is asynchronous and can take from two to 

four hours, with some capsids remaining on the surface much longer than others. Capsids on 

the surface are propelled by directed motion (surfing) from filopodia to the cell body via 

actin retrograde flow [44, 45]. A delay of one to three days can occur between cell surface 

binding and viral genome transcription [46, 47]. However, if the infected cells are close to 

mitosis, nuclear entry and detection of viral gene expression can occur at much earlier time 

points post infection [48].

The virus is endocytosed through a potentially novel mechanism, similar to 

macropinocytosis, that is clathrin, caveolin and lipid raft independent [49]. Virions are then 

trafficked through the endosomal system where they undergo further structural changes that 

result in partial uncoating [50]. During viral uncoating in acidified endosomes, cyclophilin B 

aids in the dissociation of L1 from the L2/viral genome complex and L1 is targeted to 

lysosomes for degradation [51]. The minor capsid protein, L2, mediates delivery of the viral 

genome from the early endosome to the trans Golgi network through direct interactions with 

the retromer complex [52, 53]. Specifically, L2 associates with sorting nexin 17 to allow 

escape of the L2/viral genome complex from late endosomal compartments [54]. This 

interaction is conserved across multiple HPV types and is essential for viral infection [55]. 

L2 also directly interacts with sorting nexin 27, another member of the host retromer 

complex, to aid in viral trafficking [56]. Movement of the virus through the cytoplasm to the 

nucleus likely occurs along microtubules through the association of L2-associated vesicles 

with the motor protein dynein light chains [57, 58]. Entry of the viral genome into the 

nucleus requires mitosis [59] and this process is mediated by L2. Following nuclear entry, 

L2 and the viral genome colocalize at ND10 domains, which is a critical step in the 

establishment of infection and allows transcription of the viral genome [60].

1.5.4 Genome Replication and Gene Expression

After infection, initial genome amplification occurs prior to maintenance of the viral genome 

in the nuclei of infected basal epithelial cells. Viral DNA is maintained in basal epithelial 

cells as a stable multicopy plasmid or episome. E1 and E2 are among the first viral proteins 

to be expressed and, while initial amplification is thought to require E1 and E2, E1 may not 

be necessary once viral copy numbers have reached a threshold of 50–100 copies [61]. 

Based on studies of cell lines, episomal copy number is thought to be approximately 200 

copies per cell [62]. However, using laser capture methods, 50–100 copies per cell have been 

detected in the basal layer of productive warts [61]. Viral genomes replicate once per cell 

cycle, on average, during S phase, ensuring persistent infection of basal cells. In this “latent” 

phase of the viral lifecycle, HPV genomes are thought to persist in basal epithelial cells for 

years to decades. However, at some point, a switch from stable replication (genome 

maintenance) to vegetative viral DNA replication must occur to allow the production of 

genomes for packaging into virions. Little is known about the mechanism regulating this 

switch.
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Vegetative viral DNA replication occurs in differentiating cells of the squamous epithelium. 

Two HPV proteins, E1 and E2, are actively involved in viral genome replication. E1 is the 

only virally encoded enzyme and functions as an ATP dependent helicase [12]. E1 binds AT 

rich sequences at the origin of replication with weak affinity and is required for initiation 

and elongation of viral DNA synthesis. E2 stabilizes E1 binding to the origin of replication, 

by interacting with ACCN6GGT sequences adjacent to the origin, resulting in high affinity 

binding of the E1/E2 complex to the origin of replication [13]. HPVs do not encode any 

other replication enzymes and must hijack the host DNA synthesis machinery to accomplish 

replication of the viral genome. E1 and E2 recruit cellular DNA polymerases and other 

essential accessory enzymes to enable viral genome replication. Normally, differentiating 

cells would not be capable of supporting DNA synthesis given they have withdrawn from the 

cell cycle upon exiting the basal layer of the epithelium. However, HPVs are able to activate 

cellular DNA replication machinery to allow vegetative viral DNA synthesis through the 

actions of E6 and E7.

E6 and E7 contribute to the viral lifecycle by modifying the cellular environment to allow 

viral genome amplification in growth arrested, terminally differentiated cells, which would 

normally be incompetent for DNA replication. In particular, HR E6 and E7 drive cell 

proliferation in the basal and parabasal layers causing an increase in the size of the initial 

infected area. Many papillomavirus E7 proteins target the retinoblastoma tumor suppressor 

pRB and the related “pocket proteins” p107 and p130 [18, 63–66]. HR HPV E7 proteins 

target the pocket proteins for degradation through the ubiquitin/proteasome system. By 

binding and/or triggering degradation of pocket proteins, E7 causes release of E2F family 

members from pocket protein bound transcriptional repressor complexes. This results in 

constitutive activation of E2F modulated gene expression programs that control DNA 

synthesis and cell proliferation [67]. Additionally, some HPV E7 proteins avoid triggering 

G1 arrest during epithelial cell differentiation by inactivating the CDK2 inhibitors, 

CDKN1A and CDKN1B (reviewed in [68]).

High-risk HPV E6 proteins inactivate the p53 tumor suppressor by targeting it for 

proteasomal degradation through the associated E3 ubiquitin ligase, UBE3A (E6AP). This 

action blocks the anti proliferative and pro apoptotic activities of p53 in response to DNA 

damage and cellular stress caused by aberrant S-phase entry [69]. HR HPV E6 expression 

also upregulates telomerase activity, allowing the maintenance of telomere integrity despite 

repeated cell divisions [70–72]. Additionally, HR HPV E6 proteins target cellular PDZ 

domain containing proteins that regulate cell contact and signaling pathways [73, 74]. LR 

HPV E6 proteins, while able to interact with UBE3A, do not directly bind p53, but may 

target p53 transcriptional activity indirectly by binding to p300 and/or TIP60 [75] [76]. 

Moreover, LR HPV E6 proteins do not activate telomerase activity and lack the C-terminal 

PDZ binding domain. Beta HPV E6 proteins do not appear to target any of these pathways 

but have been reported to inhibit NOTCH and TGFβ signaling by associating with MAML 

and SMAD proteins, respectively [77–80]. The biochemical and biological activities of E6 

and E7 are reviewed in more detail in another article in this issue.

It is important to note that infection by HPVs induces a DNA damage response (DDR) and 

HPVs hijack both the ATR and ATM DDR signaling pathways for their differentiation-
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dependent life cycles (reviewed in [81]). The ATM pathway is particularly important for 

differentiation-dependent genome amplification. HPV E1 and E7 activate the ATM DDR 

and E2 can also modulate this pathway through binding to E1 [82, 83]. Additionally, the 

ATR pathway appears to play a role in HPV replication in undifferentiated cells by affecting 

episomal maintenance [84, 85].

1.5.5 Assembly, Maturation and Viral Release

Completion of the viral lifecycle involves cell cycle exit and expression of L1 and L2 to 

allow genome packaging. Virion assembly occurs in the nuclei of terminally differentiated 

keratinocytes, in which viral genome replication and expression of viral proteins has 

occurred [8]. Nuclear entry of L1 and L2 is mediated by cellular karyopherins [86, 87], 

which transport molecules between the nucleus and the cytoplasm. L1 can assemble into 

VLPs and L2 may increase the efficiency of this reaction [88, 89]. Packaging of the viral 

genome is not thought to be sequence specific [90] and may involve a size determination 

mechanism [8]. Maturation of viral particles occurs in the upper layers of terminally 

differentiated squamous epithelia, where particles are exposed to an oxidizing environment. 

This maturation process involves the accumulation of disulfide bonds between L1 proteins, 

resulting in condensation of the capsid, thereby increasing its stability and resistance to 

proteolytic digestion [91]. HPVs are non lytic and viral shedding occurs due to normal loss 

of nuclear and cytoplasmic integrity during terminal differentiation of the infected 

keratinocyte [8]. E4 may also contribute to virion release by binding to cytokeratin filaments 

and disrupting their structure [14].

1.6 Non-Productive HPV Infection and Transformation

HR HPV associated cancers frequently represent non-productive infections, in which viral 

proteins are expressed but no infectious virus is produced. Deregulation of viral gene 

expression can be caused by viral genome integration in high-grade premalignant lesions, 

often resulting in expression of just two viral proteins, E6 and E7. Such integration events 

frequently cause disruption or deletion of the E2 ORF, which encodes a transcriptional 

repressor of E6/E7 expression [92, 93]. Hence, E6/E7 mRNA expression may be higher 

from integrated HPV subgenomes. Additionally, E6/E7 mRNAs produced from integrated 

genomes have been reported to be more stable than mRNAs expressed from episomal 

genomes [94]. A genome wide analysis of HPV genomes in cervical lesions and cancers 

showed that HPV integration sites frequently directly flank chromosomal aberrations that 

include focal amplifications, rearrangements, deletions and/or translocations [95]. Based on 

a “looping” model, these host genomic alterations are triggered when HPV integrant 

mediated DNA replication and recombination form viral host DNA concatemers. This also 

results in amplification of E6 and E7 containing viral genome fragments [95]. It is 

interesting to note, however, that some cervical cancers retain viral genomes in episomal 

form [96–98]. In these cases, viral gene expression is likely deregulated by aberrant 

epigenetic modifications of the viral genome (reviewed in [99]).

Therefore, the expression of E6 and E7 is deregulated in cervical carcinomas on multiple 

levels and the expression of cellular genes flanking sites of viral genome integration may 

Harden and Munger Page 7

Mutat Res. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



also be compromised, at least in those cases where viral genome integration has occurred 

[100]. Furthermore, in cervical disease, it is thought that expression of E6 and E7 underlies 

the distinctive neoplastic phenotypes (reviewed in [62]). E6 and E7 expression is thought to 

increase during progression from cervical intraepithelial neoplasia 1 (CIN1) to CIN3 and, 

given the ability of HR, but not LR HPV E6 and E7 proteins, to trigger genomic instability, 

E6 and E7 expression importantly contribute to malignant progression [101, 102]. A recent 

study has shown that cervical carcinomas contain recurrent mutations in cellular genes 

including EP300, FBXW7, PIK3CA, HLA-B, TP53, MAPK1, PTEN, ERBB2, NFE2L2 and 

STK11 [100].

1.7 Prevention of HPV- Associated Diseases and Cancer

Routine screening is critical for the early detection of HPV and prevention of associated 

diseases and cancer. The Papanicolaou smear, or the Pap test, has been the method of choice 

for cervical cancer screening for over 60 years [103]. Since its widespread implementation, 

cervical cancer deaths have decreased dramatically. However, the Pap test has a relatively 

high rate of false positives, as well as false negatives. In 2014, the U.S. Food and Drug 

Administration (FDA) approved a PCR based HPV test (the cobas HPV test) that detects HR 

types and genotypes HPV16 and 18, as well as 12 other HR HPVs, for primary screening in 

cervical cancer [104]. Similar to many other countries, screening guidelines were updated in 

the US to recommend HPV primary screening as an alternative to cytology based screening 

strategies [105]. Routine screening options now include cytology alone, cytology in 

conjunction with HPV testing with or without genotyping or HPV primary screening with 

genotyping [106]. The incorporation of HPV genotyping into cervical cancer screening is 

thought to decrease the incidence of cervical cancer by improving the detection of CIN 

[107]. While condoms have been shown to reduce the risk of HPV infection [108, 109], as 

well as a lubricant, carrageenan [47] and a carrageenan-based microbicide, Carraguard 

[110], the best and most efficacious method of prevention is vaccination.

1.8 HPV Vaccination

Vaccination is the only effective measure to prevent HPV infection, and development of a 

prophylactic HPV vaccine was widely hailed as a historic achievement. Vaccination against 

HPVs has been in effect since 2006 and the three currently available prophylactic vaccines 

are composed of recombinant HPV L1 capsid proteins that self assemble into VLPs and 

induce the production of high level, neutralizing, type specific antibodies by eliciting a 

strong B cell mediated immune response [8]. All three vaccines are administered as three 

injections over a time period of six months and the immune response to vaccination is 

superior to the response to natural infection, thus providing long-term immunity [111, 112].

Gardasil® was the first approved HPV vaccine and includes VLPs of the most prevalent LR 

(HPV6, HPV11) and HR (HPV16, HPV18) HPVs. Another HPV vaccine, Cervarix®, was 

developed by GlaxoSmithKline (GSK) and is a bivalent vaccine targeting HPV16 and 

HPV18. In 2014, the FDA approved the newest HPV vaccine, Gardasil 9®, which protects 

against 9 HPVs, including HPV16, 18, 6, 11, 31, 33, 45, 52 and 58. The five additional HPV 

genotypes Gardasil 9® protects against account for an additional 15–20% of cervical cancer 
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cases [113]. As a result, vaccination has the potential to prevent ~90% of cervical cancer 

cases [114]. The Advisory Committee on Immunization Practices (ACIP) currently 

recommends one of the three HPV vaccines for routine vaccination at 11–12 years of age 

[115]. The ACIP also recommends vaccination for females age 13–26, males age 13–21 and 

men who have sex with men through age 26, as well as immunocompromised individuals 

not previously vaccinated [115].

Cervarix® and Gardasil® both have excellent safety profiles and have been shown to be 

highly efficacious against infections with their respective HPV types [116–120]. Both 

vaccines also show some limited cross protection against HPV types not targeted by the 

vaccines [118, 119, 121, 122]. In vaccination programs with high coverage rates, these 

vaccines have been shown to induce herd immunity [123–125].

Although the effects of the vaccines on the incidence of cervical and other HPV related 

cancers are not likely to be realized for several decades [126], a decrease in the incidence of 

HPV infections, precancerous lesions and genital warts has already been demonstrated in 

multiple studies (reviewed in [127]). However, given these vaccines are prophylactic, they 

are designed to prevent HPV infection from occurring and are no longer effective once HPV 

infection has already been established [128]. As a result, several therapeutic HPV vaccines, 

designed to treat patients with established HPV infection or even those with CIN, are 

currently in development (reviewed in [129]). The discovery of immunological checkpoint 

inhibitors has also greatly re-energized these efforts. However, no therapeutic HPV vaccines 

are currently available on the market.

1.9 Concluding Remarks

Historically, the field of PV research has experienced many exciting breakthroughs since the 

discovery of the first animal PV by Richard Shope in the 1930s [130]. Widespread 

implementation of the Pap smear in the 1960s greatly reduced the incidence and mortality of 

cervical cancer [103]. The incidence of cervical cancer declined by half from 1975 to 2012 

in the US and, similarly, the death rate from cervical cancer in the US in 2012 was less than 

half of what it was in 1975 [131]. These dramatic declines are due to early detection of 

cervical cancer with the Pap test and provide the most compelling validation of the concept 

that early detection can dramatically decrease cancer incidence and mortality. While a 

similar cytological test is used for early detection of anal cancer in high-risk populations 

[132], it is important to note that there are currently no similar procedures for the early 

detection of HPV-associated oropharyngeal cancers.

Before the introduction of HPV vaccines in 2006, it was estimated that one woman died 

every 10 minutes as a result of cervical cancer globally [133]. A decline in vaccine type 

HPV prevalence of 56% was observed over a four year period in the US following 

implementation of Cervarix® and Gardasil® [134]. These numbers are impressive given the 

vaccination rate was relatively low at the time of the study (~32%) [134]. While the 

complete benefit of vaccine protection again HPV-associated cancers and diseases will not 

be observed for several decades, the results thus far are extremely promising. With the 

advent of Gardasil 9® in 2014, and the promise of other prophylactic and therapeutic 
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vaccines currently in development, it is likely that the burden of HPV-associated diseases 

and cancer will decrease even more dramatically.
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Figure 1. HPV16 Genome Organization and Protein function
On the left, the HPV16 genomic map of 7906 base pairs is shown. Only the coding strand is 

included and transcription occurs in the clockwise direction. The early promoter (P97) is 

indicated by an arrow at the approximate position of the RNA initiation site in the long 

control region LCR. The late promoter (P670) is also indicated by an arrow at its initiation 

site in the E7 ORF. The early region is depicted in blue and contains proteins necessary for 

viral replication including E1, E2, E3, E4, E5, E6 and E7. The late region is shown in purple 

and contains the viral capsid proteins L1 and L2. The LCR is shown in green and contains 

sequences controlling viral replication & transcription. On the right, a table of the HPV16 

ORFs and a brief description of their corresponding viral functions is shown. More details 

can be found in section 1.3 of the text.
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Figure 2. The HPV Lifecycle in Differentiating Squamous Epithelium
An illustration of normal differentiating squamous epithelium is shown on the left with the 

layers of the differentiating epithelium noted. On the right, a brief description of the HPV 

life cycle stage occurring in the corresponding epithelial layer is shown. Greater detail on 

HPV productive infection and the viral life cycle is included in section 1.5. This figure was 

illustrated by M. E. Harden and adapted from a figure by C. L. Nguyen.
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Table 1

Main HPV genotypes and their associated diseases.

Genus Species Representative HPV types Tropism Associated Diseases

Alpha-PV

α1 32 mucosal Heck’s disease

α2 3, 10, 28 cutaneous flat warts

α4 2, 27, 57 cutaneous common warts

α7 18, 39, 45, 59, 68 mucosal intraepithelial neoplasia, invasive carcinoma

α9 16, 31, 33, 35, 52, 58 mucosal intraepithelial neoplasia, invasive carcinoma

α10 6, 11 mucosal condylomata acuminate

13 Heck’s disease

Beta-PV

β1c 5, 8, 12, 14, 19, 20, 21, 24,
25, 36, 47

cutaneous Epidermodysplasia
verruciformis

β2 9, 15, 17, 22, 23, 37, 38 cutaneous Epidermodysplasia
verruciformis

β3 49 cutaneous Epidermodysplasia
verruciformis

Gamma-PV
γ1 4, 65 cutaneous Warts

γ4 60 cutaneous Warts

Mu-PV
µ1 1 cutaneous plantar warts

µ2 63 cutaneous Warts

Nu-PV v 41 cutaneous Warts

This table summarizes information on the main HPV genotypes, their tropism and associated diseases. Information in this table was gathered from 
several sources including pave.niaid.nih.gov [6, 7, 135]. Heck’s disease, also known as focal epithelial hyperplasia (FEH), is a rare, benign mucosal 
proliferation that is strongly associated with HPV infection [136]. Other details on HPV classification can be found in the text in section 1.2.
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