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Abstract

Heart rate variability (HRV) is a particularly valuable quantitative marker of the flexibility and 

balance of the autonomic nervous system. Significant advances in software programs to 

automatically derive HRV have led to its extensive use in psychophysiological research. However, 

there is a lack of systematic comparisons across software programs used to derive HRV indices. 

Further, researchers report meager details on important signal processing decisions making 

synthesis across studies challenging. The aim of the present study was to evaluate the 

measurement fidelity of time- and frequency-domain HRV indices derived from three predominant 

signal processing software programs commonly used in clinical and research settings. Triplicate 

ECG recordings were derived from 20 participants using identical data acquisition hardware. 

Among the time-domain indices, there was strong to excellent correspondence (ICCavg =0.93) for 

SDNN, SDANN, SDNNi, rMSSD, and pNN50. The frequency-domain indices yielded excellent 

correspondence (ICCavg =0.91) for LF, HF, and LF/HF ratio, except for VLF which exhibited poor 

correspondence (ICCavg =0.19). Stringent user-decisions and technical specifications for nuanced 

HRV processing details are essential to ensure measurement fidelity across signal processing 

software programs.
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1. Introduction

Heart rate variability (HRV) is an indicator of the total amount of oscillations of heart 

periods between consecutive QRS complexes of normal sinus depolarizations (RR intervals). 

Reduced HRV, suggested to reflect hyperactive sympathetic and/or hypoactive 

parasympathetic nervous system activity, has been implicated in the pathophysiology of a 

number of health outcomes including cardiac conditions such as myocardial infarction, 

coronary heart disease, and hypertension (Task Force of the European Society of Cardiology 

the North American Society of Pacing Electrophysiology, 1996; Liao et al., 2002), and non-

cardiac conditions such as obesity, diabetes (Masi et al., 2007), insulin resistance (Lindmark 

et al., 2003), metabolic syndrome (Hemingway et al., 2005), dyspepsia (Lorena et al., 2002), 

irritable bowel syndrome, anorexia nervosa (Mazurak et al., 2011), epilepsy (Ferri et al., 

2002), anxiety (Friedman, 2007; Friedman and Thayer, 1998), and major depressive disorder 

(Nugent et al., 2011), as well as mortality (Camm et al., 2001; Gerritsen et al., 2001; Thayer 

and Lane, 2007). Significant developments in statistical, spectral, and geometric signal 

processing to automatically derive HRV parameters have led to their increased use in 

multidisciplinary settings. As such, many signal processing software programs have been 

created to analyze HRV data. These programs offer rapid, automatic analysis of output based 

on sophisticated signal processing techniques and algorithms that identify and measure 

various electrocardiograph (ECG)-derived variables from each cardiac cycle. While there are 

previous recommendations from the Task Force (1996) for comparative data across studies, 

there is a lack of systematic comparisons across computer software programs used to derive 

common time-and frequency-domain HRV indices.

1.1. Heart rate variability

Traditionally, the autonomic nervous system (ANS) has been thought to be reciprocally 

balanced (i.e., as one branch of the ANS increases activity the other branch decreases 

activity); however, evidence suggests that parasympathetic and sympathetic outflows are 

distributed multidimensionally (Berntson et al., 1991). As such, HRV and each of its 

components are particularly valuable quantitative markers that provide information on the 

flexibility and balance of the branches of the ANS based on heart period series (Berntson et 

al., 1997; Task Force, 1996).

Although heart period series can be construed from several physiological signals including 

photoplethysmography (Lu et al., 2009), continuous blood pressure recordings (Parati et al., 

1995), doppler ultrasound techniques (Jezewski et al., 2008), and microwave reflectometry 

(Mase et al., 2010), it is most typically derived from continuously recorded ECG signals. 

Many of these alternative physiological signals yield only approximate indicators of heart 

period series (Berntson et al., 1997). For example, ambiguous waveform morphology from 

distal photoplethysmographic records or continuous blood pressure recordings contribute to 

difficulty identifying accurate reference points (Berntson, et al, 1997). ECG recordings are 

preferred and considered a simple, noninvasive technique with clear waveform morphology, 

as the instantaneous ventricular depolarization yields the highest signal-to-noise ratio 

rendering a clearly delineated R-wave (Berntson et al., 1997; Lu et al., 2009; Task Force, 
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1996). Further, ECG recordings provide proximal and reliable information on heart period 

series to quantify HRV and ultimately, evaluate autonomic function and balance.

Following data acquisition and audio-to-digital (A/D) conversion of raw ECG signals, HRV 

analysis is comprised of two major phases: signal preprocessing and automated analyses to 

derive HRV parameters (Berntson et al., 1997; Kligfield et al., 2007). Signal preprocessing 

incorporates accurately identifying QRS complexes and removing artifacts, while still 

preserving the integrity of the respiratory sinus rhythm. Artifacts may be attributable to 

movement (i.e., muscle activity), external electromagnetic signals (e.g., 50/60 Hz power 

lines), or technical problems (e.g., poorly fastened electrodes; Berntson et al., 1997; 

Berntson and Stowell, 1998). Failure to identify artifacts can lead to missing or additional 

QRS complex detections and minor contamination can increase error in HRV results by up 

to 30% (Berntson et al., 1997; Berntson and Stowell, 1998; Xia et al., 1993). Signal 

preprocessing is influenced by both technical specifications (e.g., sampling rate, digital 

filters; Bailey et al., 1990; Mortara, 1977; van Bemmel et al., 1990) and algorithms used for 

ECG pattern recognition and interpolation (e.g., feature extraction, beat selection; Bailey et 

al., 1974; Bonner and Schwetman, 1968; Pipberger et al., 1962). Detector algorithms can be 

based on heuristic derivative equations that identify discrete measurements or adaptive 

thresholds, for example, the increasing edge of the R-peak (Bonner et al., 1972; Pryor et al., 

1969). Alternatively, they can be based on complex statistical algorithms that use linear or 

nonlinear filters, different transformations, or discriminant function analysis (Köhler et al., 

2003; Pan and Tompkins, 1985; Romhilt and Estes, 1968). Interpolation algorithms, to 

replace missing or abnormal heart period series, include proximal, piecewise cubic Hermite, 

non-linear predictive interpolation, linear, and cubic spline interpolations (Kim et al., 2009; 

Lippman et al., 1994; Malik and Camm, 1995).

Automated analyses predominantly use linear analyses such as time- and frequency-domain 

methods to quantify HRV indices (Task Force, 1996). Other nonlinear analyses including 

fractal (e.g., detrended fluctuation analysis, power-law correlation; Pincus, 1995; Richman 

and Moorman, 2000), symbolic dynamics (Porta et al., 2001; Voss et al., 2009), and 

complexity/entropy measures (e.g., approximate entropy, sample entropy, Shannon entropy, 

corrected conditional entropy, multiscale entropy), also exist (Montano et al., 2012; Porta et 

al., 2001; Voss et al., 2009). Although nonlinear analyses provide quantitative information 

on the regularity and complexity of autonomic cardiovascular control, linear analyses are 

most commonly reported in the literature. Time-domain approaches are based on statistical 

calculations derived from the direct measurement of RR intervals (e.g., SDNN, SDANN, 

SDNNi) or from the differences between successive RR intervals (e.g., rMSSD, pNN50; 

Task Force, 1996). Methodological study designs partly guide how data are partitioned for 

cleaning and aggregating. Partitioning data into meaningful conditions (e.g., baseline vs. 

task), categories (e.g., day vs. night), or smaller segments due to signal quality (e.g., 2 h 

segment vs. ten 20 min segments) interrupts the contiguous nature of the ECG signal. 

Further, data reduction decisions on the duration of analytical epochs (e.g., 1 vs. 5 min) to 

compute aggregated HRV indices across the epochs may yield different values. These 

decisions have important implications and must be carefully considered, especially for time-

domain variables.
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Frequency-domain variables are based on spectral analysis of RR intervals (Lahiri et al., 

2008). Power spectral density decomposes RR intervals into their fundamental frequency 

components and provides information on the distribution of power as a function of 

frequency. Spectral analyses can include parametric (autoregressive; Yule–Walker, Burg) or 

nonpara-metric methods (Fast Fourier Transform, FFT; Kim et al., 2009). FFT is most 

commonly used to calculate the maximum variability in heart period series, based on ranges 

of frequency-specific oscillations of the RR intervals that reflect different branches of the 

cardiac system (Lahiri et al., 2008; Spiers et al., 1993).

Low frequency (LF) ranges from 0.04 to 0.15 Hz and reflects the aggregate influences of 

both sympathetic and parasympathetic branches of the ANS (Akselrod et al., 1981; Berntson 

et al., 1997); although, some researchers have suggested LF to be mainly of sympathetic 

origin (Malliani et al., 1991). High frequency (HF) ranges from 0.15 to 0.40 Hz and 

represents parasympathetic activity (Berntson et al., 1997; Pomeranz et al., 1985). Less 

studied frequencies include very low frequency (0.0033 to 0.04 Hz) and ultra low frequency 

(<0.003 Hz) ranges; these are thought to be influenced by the renin–angiotensin system as 

well as thermoregulatory processes and circadian rhythms (Kitney, 1980; Taylor et al., 

1998). Importantly, default frequency bandwidths may differ across software programs 

leading to misinterpretation of the calculated HRV indices. For example, if HF was set 

incorrectly to 0.12 to 0.40 Hz, results would actually include LF as well, and therefore, not 

solely represent the parasympathetic nervous system.

Another important decision for spectral analyses includes windowing. Spectral windowing 

involves the application of a window function, of a specified width, to shape the time portion 

of ECG data by overlapping waveform endpoints in a smooth, continuous way without sharp 

transitions to minimize edge effects that result in spectral leakage for better overall spectral 

resolution. Hamming or Hanning windows are commonly used due to their high quality 

frequency resolution and reduced spectral leakage (Bloomfield, 1976; Harris, 1978).

In the extant literature, research studies that use HRV report meager details on the 

methodological decisions related to signal preprocessing specifications, algorithms, and 

interpolation methods used. Time- and frequency-domain HRV indices are vulnerable to 

artifacts, missing data, temporal factors, and trends in RR intervals (Kim et al., 2009, 2007; 

Spiers, et al., 1993; Task Force, 1996), and are thus highly influenced by decisions for data 

reduction, artifact detection and removal, and technical specifications (e.g., digital filtering, 

sampling frequency, detector or interpolation algorithms, windowing; Kim et al., 2009; Task 

Force, 1996; Welch, 1967).

Despite its extensive use, the comparability between standard computer HRV software 

programs has not been systematically evaluated. There is scant evidence of comprehensive 

comparisons to assess the fidelity of signal processing across multiple software programs. 

Of the only study to compare HRV signal processing programs, Jung et al. (1996) found 

time- and frequency-domain variables were not comparable across four programs in 

widespread use at the time almost two decades ago. Jung attributed the large variability 

across programs to different technical specifications, including beat selection methods (e.g., 
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best complex, time-coherent averaging, extraction), sampling frequency, interpolation, and 

algorithms.

1.2. Present study

A significant challenge exists for researchers who want to compare or synthesize HRV 

results across studies. In a systematic review on short-term HRV measures, Nunan et al. 

(2010) found considerably large variations across studies, especially for frequency-domain 

variables. These discrepancies were attributed to differences in study design and 

methodology, as well as failure from authors to provide pertinent information on signal 

processing and data cleaning procedures. The importance of standardization across studies 

was reinforced by the Task Force (1996) guidelines in hopes to facilitate the exchange of 

knowledge, allow for comparative results across studies, and avoid conflicting data due to 

different technical and methodological approaches. Following these recommendations for 

standardization and interpretation of HRV measures, the purpose of the present study was to 

evaluate the measurement fidelity of HRV indices derived from three predominant signal 

processing software programs most commonly used in clinical and research settings among 

cardiologists, psychophysiologists, and other researchers across diverse disciplines (MARS, 

MindWare, Kubios). Using triplicate ECG data derived from identical data acquisition 

hardware, the comparability of HRV indices for time-domain (i.e., SDNN, SDANN, SDNNi, 

rMSSD, pNN50) and frequency-domain variables (LF, HF, LF/HF ratio) was tested.

2. Material and methods

2.1. Measures

2.1.1. ECG data acquisition—Twenty Holter tapes with raw ECG data were randomly 

chosen from an ongoing study of healthy youth participants between the ages of 8 and 11 

(Mage =9.93 years, SD =1.02; 55% male). The complete research protocol is described 

elsewhere (Lambert et al., 2011). All ECG recordings were reviewed by a board-certified 

cardiologist; no cardiovascular pathology was identified (i.e., bradycardia, fibrillation, 

premature contraction). During the standardized protocol conducted in a hospital setting, 

continuous raw ECG data were acquired using the 8500 Marquette MARS Holter monitor 

(GE Marquette Medical Systems, Milwaukee, Wisconsin, USA), digitized (128 Hz), and 

recorded on a frequency modulated cassette recorder. The Holter monitor incorporated a 

quartz-derived, binary time channel that was automatically zeroed at the start of the 

recording. ECG acquisition began in the morning between 8 and 9 am and lasted 

approximately 2.5 h.

ECG data was derived from a modified Lead II configuration using disposable, pre-gelled 

snap silver chloride electrodes. Electrode resistance was minimized (<10 kO) by precleaning 

the skin with rubbing alcohol swabs. The active electrode (and its derivative/dZ) was placed 

on the right clavicle next to the sternum over the first rib between the two collarbones. The 

second electrode was placed on the left mid-clavicular line at the apex of the heart over the 

ninth rib. The ground electrode was placed near the lowest possible right rib cage on the 

abdomen. Additional dZ electrodes were placed over the right fourth intercostal space at the 

sternal edge, the fifth intercostal space at the left axillary line, and on the sixth rib in the 
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mid-clavicular line. To reduce possible violations of stationarity, the ECG acquisition 

procedure was standardized and kept consistent for all recordings (Berntson et al., 1997). 

The study was reviewed and approved by the St. Justine Hospital Institutional Review Board 

(#2040).

2.2. Procedure

2.2.1. Data processing procedure—ECG Holter tapes underwent identical processing 

procedures for each software program. Triplicate ECG data signals were derived from each 

of the 20 recordings. Each triplicate ECG recording was cleaned by a qualified investigator 

and independently auto scored with all three signal processing software programs strictly 

adhering to both Task Force (1996) guidelines and manufacturer specifications (described in 

detail below; see Table 1).

2.2.2. A/D data conversion

2.2.2.1. MARS: From the Holter tapes, ECG data files were downloaded and formatted into 

the MARS® Holter Analysis Workstation v.7.0 (Milwaukee, Wisconsin, USA).

2.2.2.2. MindWare and Kubios: ECG Holter tapes were converted and digitized into 

Waveform Audio (WAV) version using a high-grade contemporary dual capstan deck unit. 

WAV files were imported into shareware software for recording and editing audio files 

(Audacity® v.1.2; http://audacity.sourceforge.net). The speed of the audio signal was 

resampled and the length, pitch, and frequency were optimized to yield clear high-quality 

ECG signals. Then, using a 4-channel high-level interface module in the BioNex 2SLT 

Chassis Assembly (MindWare Technologies Ltd., Columbus, Ohio, USA) and the Biolab 3.0 

data acquisition software (16-bit A/D conversion) the resampled digital data files were 

imported (sampled at 250 ks/s rate), converted, and formatted into MindWare (MW) files, 

while preserving the integrity of the signal. One set of raw MW formatted data files were 

imported into MindWare® HRV Scoring Module v.3.0.17 (MindWare Technologies Ltd., 

Columbus, Ohio, USA). A duplicate set was converted into ASCII text files and imported 

into Kubios® HRV v.2.0 (University of Eastern Finland, Kuopio, Finland; Niskanen et al., 

2004). It is important to note that all software programs were used without applying any ad 

hoc custom-made routine changes (i.e., all default settings and specifications were 

maintained). The only exception was the adjustment of the default frequency bandwidths for 

LF and HF in MindWare; these were adjusted in accordance with the Task Force (1996) 

guidelines. Signal processing and default specifications are outlined below for each software 

program.

2.2.3. Data cleaning—Beat-by-beat intervals with near millisecond measurement of 

continuous ECG data were required for data cleaning. Missed or unidentified R-peaks by 

each respective program's detector algorithm were manually relabeled (refer to Table 1; data 

cleaning section). In conjunction with each software program's automated cleaning 

procedure, pre-defined cleaning guidelines adhering to the recommendations in the expert 

committee report were used by a trained investigator to accurately discriminate QRS 

complexes (Berntson et al., 1997). If an R-peak was automatically detected, but upon visual 

inspection was not found to be accurate, ≥2 short inter-beat-intervals were added to retain 
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the integrity of the heart period series. If an R-peak was not automatically detected, the 

following guidelines (in rank order) were applied: 1) RR interval distance from cleaned ECG 

recording sample was measured, 2) R-peak was estimated from remaining data points, and 

3) long R-peak were split into ≥ 2 equal RR intervals (Berntson et al., 1997).

2.2.4. ECG signal processing

2.2.4.1. MARS: Signal processing specifications for detector algorithms and interpolation 

methods were based on default settings (refer to Table 1). Detector algorithms require at 

least 5 min of data to calculate HRV indices (adjustable). Beat-by-beat visual inspection of 

the shape, trend, and length of each QRS complex were measured and identified based on 

template matching and standard Marquette algorithms for QRS labeling. ECG data was 

sampled at various rates resulting in QRS timing at different resolutions (1024 samples/300 

s) and RR filtering was automatic (manual filter available). The removal of artifacts was 

based on a 20% change from the previous signal as a criterion (Kleiger et al., 1987). In cases 

where artifacts and excluded RR intervals were automatically filtered and identified as 

unreadable signals, the remaining acceptable beats were used to replace the data points via 

cubic spline interpolation method. At least 4 acceptable R-peaks were needed in order for 

spline interpolation to identify the continuous function between two middle R-peaks. If there 

was no data in the first segment (e.g., noise), then RR interval series were interpolated from 

the default heart rate of 70 bpm (adjustable).

For spectral analyses, trending, interpolation rate, interpolation method, and windowing 

options (e.g., window width and overlapping) were based on default settings. Heart period 

series were linearly detrended, tapered using a Hanning window, and processed by FFT 

periodogram spectrum method. Time-and frequency-domain parameters were automatically 

calculated for each 5 min epoch across the entire data file. HRV parameters were then 

automatically averaged across the entire recording period.

2.2.4.2. MindWare: Signal processing specifications for detector algorithms could be 

manually overwritten, and included inter-beat-interval check and automated Minimum 

Artifact Deviation and Maximum Expected Deviation (MAD/MED) algorithm (Berntson et 

al., 1990). For the present study, 5 min analytical epochs and both detector algorithms were 

applied. R-peak detection was based on default digital low- and high-pass filters set within 

appropriate frequency ranges (0.05 and 35 Hz, respectively; adjustable). Frequency 

bandwidths were user-defined for LF (0.04–0.15 Hz) and HF (0.15–0.40 Hz). Beat-by-beat 

visual inspection of the shape, trend, and length of each QRS complex data was displayed on 

a full graphical interface. ECG signals were sampled at 1000 Hz and RR filtering was 

automatic (manual filter available). RR intervals that were excluded due to unreadable 

signals or recognition error were replaced by cubic spline interpolation and resampled at a 

frequency of 33.33 Hz.

Spectral analyses were performed on a series of RR intervals and were first linearly 

detrended using a Hanning window and processed by FFT standard power spectrum method. 

All time- and frequency-domain variables were automatically calculated for each 5 min 
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epoch and averaged across the entire recording period, except for SDANN and SDNNi, 

which were manually calculated using standard formulae (Task Force, 1996).

2.2.4.3. Kubios: Signal processing specifications for detector algorithms and interpolation 

methods were based on default settings (adjustable; refer to Table 1). Visual inspection of 

the beat-by-beat RR intervals were measured and identified based on template matching and 

proprietary algorithms. The sampling frequency was based on beat-by-beat RR intervals and 

automatically filtered, where RR intervals were divided into 5 min non-overlapping 

segments. As recommended by Kubios, based on visual inspection using the graphical 

interface, an artifact correction level (range from none to very strong) was selected for each 

date file. Each correction level applies thresholds (very low: 0.45 s, low: 0.35 s, medium: 

0.25 s, strong: 0.15 s, very strong: 0.05 s) that are scaled with a heart rate of 60 beats/min. 

Scaling is used to adjust for heart rate changes within the recording (i.e., higher heart rate 

applies greater thresholds). High-pass filters on RR interval series remove all baseline 

changes from the data file, and from this detrended data, any beats that exceed the respective 

thresholds are identified as artifacts and removed (M.P. Tarvainen, personal communication, 

March 21, 2012). Because data cleaning is limited to this gross categorization to detect 

artifacts, Kubios recommends that artifact correction level should not be selected blindly, but 

should include manual visual inspection and verification of the correction level selected 

within the graphical interface. Continuous heart period series were corrected by piecewise 

cubic spline interpolation method at the default rate of 4 Hz (adjustable). Using a window 

width of 256 s (window overlap of 50%; adjustable), samples were smoothed prior to 

detrending, tapered using a Hanning window, and processed by the Welch's periodogram 

method.

2.3. Analysis plan

All data were entered and double-checked by the senior data coordinator and analyzed with 

IBM SPSS Statistics 20 software (SPSS, Inc., Chicago, IL). Data were kept continuous and 

checked for normality and linearity using boxplots and histograms. Assumptions of 

additivity, homoscedasticity, uncorrelated error, and random selection of participants were 

tested (Shrout and Fleiss, 1979).

To assess measurement fidelity across the three software programs, Intraclass Correlation 

Coefficients (ICC), Pearson Correlation Coefficients, and Bland–Altman statistical methods 

were computed. An ICC is a measure of agreement between two or more evaluation methods 

on the same data that allows for fixed and random effects. Data are assumed to be parametric 

(continuous and normally distributed). ICCs typically range from 0 to 1, but can exceed −1 

or 1, which may be attributable to patterns of negative and positive correlations among the 

methods, limited variance in the data matrix, or no correlations among methods (Lahey et 

al., 1983). ICCs are categorized as very poor (0–0.2), fair (0.3–0.4), moderate (0.5–0.6), 

strong (0.7–0.8), or excellent (0.9–1.0; Shrout and Fleiss, 1979). ICCs are deemed 

advantageous over bivariate correlation coefficients as they represent the correspondence 

between two or more methods, and importantly, adjust for the effects of the scale of 

measurement. In other words, ICCs account for differences in rank order and mean 

differences between methods (data centered and scaled using pooled mean across methods 
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and standard deviation), while correlations only account for rank order differences (data 

centered and scaled using each method's own mean and standard deviation). Nevertheless, 

Pearson Correlation Coefficients were computed for comparison purposes. Analysis of 

variance (ANOVA) was also used to test omnibus mean differences of the HRV parameters, 

followed by contrasts using paired samples t-tests.

The Bland–Altman method is used to graphically display the degree of agreement between 

two techniques on a continuous variable and to assess possible constant and proportional 

biases (Bland and Altman, 1986, 2003). The differences in the measurements are plotted 

against the mean values of these measurements. If 95% of the differences fall within the 

limits of agreement (1 SD) there is no systematic variation across programs (Bland and 

Altman, 1986, 2003). To detect constant bias (i.e., the average discrepancy between methods 

of measurements), the mean bias and limits of agreement are used and should be close to 

zero. To detect proportional bias, visual inspection of the plotted graphs is commonly used; 

however, standardized β values can be used to test whether the slope is significantly different 

than zero (i.e., when mean values are regressed onto mean differences).

3. Results

The average length of the 20 ECG recordings was 131 min (SD= 46). All ECG recordings 

were inspected manually to review peak detection and to identify and remove artifacts. 

Manual editing took approximately 25 min per ECG recording. Recordings were found to be 

of excellent quality; over 90% of data were analyzable, artifact time did not exceed 1500 s 

(5.2%), and no recordings were found to exceed 20% noise or ectopic beats.

ICCs were computed to compare the fidelity of HRV scoring across the software programs 

(see Table 2). Among the time-domain indices, there was strong to excellent correspondence 

across all software programs for SDNN (ICCavg =0.96; ravg =0.97), SDANN (ICCavg =0.93; 

ravg =0.88), SDNNi (ICCavg =0.96; ravg =0.97), rMSSD (ICCavg =0.80; ravg =0.93), and 

pNN50 (ICCavg =0.98; ravg =0.99). Among the frequency-domain indices, there was 

excellent correspondence across all software programs for LF (ICCavg=0.90; ravg =0.94), HF 

(ICCavg=0.91; ravg =0.96), and LF/HF ratio (ICCavg =0.95; ravg =0.93). However, VLF 

exhibited poor correspondence (ICCavg =0.19); these findings may be largely attributable to 

the significant mean level differences observed across software programs (see Table 3). 

Pearson coefficients revealed moderate correlations for VLF when mean level differences 

are not considered (ravg =0.83).

Bland–Altman plots and analyses were conducted to assess measurement fidelity for each 

HRV parameter paired by software programs (30 plots not depicted for parsimony). For each 

HRV parameter, the differences between each of the paired software programs were plotted 

against the average values of these measurements. Consistent with the recommendations 

outlined by Bland and Altman (1986, 2003), data were log-transformed prior to the 

calculation of limits of agreement when heteroscedasticity was present. There was no 

evidence of constant or proportional biases for any of the time-domain variables: SDNN 

(Biasavg=0.02, [Limits of Agreementavg=−0.03, 0.08]; βavg= −0.07), SDANN (Biasavg=0.04, 

[−0.05, 0.14]; βavg=0.05), SDNNi (Biasavg= 0.03, [−0.06, 0.13]; βavg=−0.16), rMSSD 
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(Biasavg=0.09, [−0.00, 0.19]; βavg=0.07), and pNN50 (Biasavg=0.07, [−0.09, 0.25]; βavg=

− 0.06). Similarly, no constant or proportional biases were observed for the frequency-

domain variables: VLF (Biasavg =0.70, [0.43, 0.96]; βavg = −0.00), LF (Biasavg =0.10, 

[−0.02, 0.22]; βavg = −0.19), HF (Biasavg =0.13, [−0.01, 0.29]; βavg =0.22), and LF:HF ratio 

(Biasavg =0.10, [−0.02, 0.22]; βavg = −0.11). Altogether, the results from the ICCs and 

Bland–Altman analyses were congruent.

4. Discussion

Recent advances in the automated analyses of HRV offers an accessible and unique 

approach for quantifying the effects of sympathetic and parasympathetic branches of the 

ANS. Despite evidence of the reliability of HRV parameters across different recording 

devices, measurement protocols, and maneuvers (Dietrich et al., 2010; Faulkner et al., 2003; 

Pinna et al., 2007; Sandercock, Shelton and Brodie, 2004, 2005, 2003), there is no available 

information on the fidelity of commercially available signal processing software programs 

currently in use (Jung et al., 1996). The aim of the present study was to evaluate the 

measurement fidelity of HRV indices derived from three commonly used signal processing 

software programs.

Following stringent standardization (i.e., data collection, processing, cleaning), excellent 

measurement fidelity for time-domain variables (e.g., SDNN, SDANN, SDNNi, rMSSD, 

pNN50) was observed across programs. Excellent correspondence was also observed for LF, 

HF, and LF/HF ratio. Poor correspondence was found for VLF; however, examination of the 

Pearson correlation indicates a moderate association across software programs. The 

excellent comparability for HRV variables is likely attributable to similar signal processing 

techniques and pivotal user-defined specifications across software programs (i.e., R-peak 

detection algorithm, identical analytical epoch length). For instance, the use of algorithms 

parallel to the Pan-Tompkins for the recognition of QRS complexes was apparent across all 

software programs (Pan and Tompkins, 1985). As such, the ECG signal is passed through an 

automated low- and high-pass filter to remove noise. After filtering, the signal passes 

through derivative (to obtain QRS slope), squaring (to emphasize higher frequencies), and 

window integration phases (to identify waveform patterns), where lastly, a threshold method 

is applied and R-peaks are detected. As for the frequency-domain variables, windowing 

options (i.e., width and overlap) and frequency bandwidths must also be taken into 

consideration (Task Force, 1996). In the present study, all software programs applied linear 

detrending method, cubic spline interpolation, with similar windowing (Hamming and 

Hanning) and spectrum methods (Periodogram and Welch's periodogram).

User-defined data reduction decisions can have significant implications on the automatic 

analysis of HRV parameters. Short analytical epochs (e.g., 1 min) and recording durations 

(<18 h) may fail to capture the full spectrum of components or underlying circadian rhythms 

(Massin et al., 2000; Task Force, 1996). For example, the lowest frequency that can be 

assessed with 1 min is 0.016 Hz (G. Berntson, personal communication, December 15, 

2011), indicating that it does not quantify the full spectrum of VLF components. Thus, to 

capture data at the lowest frequency, larger analytical epoch durations must be chosen (e.g., 

3 to 5 min; Task Force, 1996). Further, the established physiological components and 
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frequency bandwidth ranges are less well-defined for VLF, as compared to HF and LF 

(Berntson et al., 1994; Cacioppo et al., 1994). Analytical epoch length, recording durations, 

and frequency bands should be consistent when making comparisons of HRV.

Given that technical specifications for data cleaning vary across programs, it is essential to 

know whether programs allow for manual inspection (i.e., some permit simultaneous 

automatic and manual cleaning and editing decisions). For example, MindWare offers users 

much flexibility to visually inspect and adjust RR fiducial points and identify important 

event markers (e.g., during tasks). In contrast, Kubios suggests visually inspecting data and 

applying an automated artifact correction based on gross categorization levels (e.g., low). 

Given the sensitivity of certain HRV parameters (e.g., rMSSD; Salo et al., 2001), the level of 

gross artifact correction may be appropriate for some variables, while less appropriate for 

others. Taken together, these specific user-defined decisions likely account for the 

exceptional correspondence across software programs.

The present study yields original findings indicating the robust comparability for HRV 

across commonly used signal processing programs. While proprietary detector and 

interpolation algorithms are typically set, the excellent correspondence across software 

programs is largely attributable to seemingly nuanced, yet significant decisions. These 

include decisions related to the modification of particular user-defined and default settings 

(e.g., analytical epoch duration, frequency-bandwidths), use of cleaning tools (e.g., selection 

of appropriate artifact correction level), and inherent procedures in each software program 

(e.g., removing partial inter-beat intervals prior to data analysis).

Prior to selecting signal processing software, the conceptualization and understanding of 

HRV physiological indices is imperative. There is growing interest and advancements using 

neuroimaging techniques (e.g., functional magnetic resonance imaging) to better understand 

neurobiological (brain–body) interactions (c.f., Gianaros and Sheu, 2009; Gianaros et al., 

2004). For example, HF has been associated with activity within the ventral anterior 

cingulate (Matthews et al., 2004), posterior cingulate cortex (O'Connor et al., 2007), 

amygdala, periaqueductal gray, and the hypothalamus in response to somatosensory stimuli 

(Gray et al., 2009) and isometric exercise (Napadow et al., 2008). Given the evidence of an 

association between the brain and the ANS (i.e., parasympathetic and sympathetic activity), 

these promising research directions underscore the importance of purposeful and informed 

selection of HRV parameters. Consider, if the research question centers around assessing 

parasympathetic activity, it is necessary to select HRV parameters that validly reflect this 

activity in the ANS (e.g., HF, pNN50, rMSSD; Task Force, 1996). This in turn will directly 

impact decisions related to methodological design and measurement issues, including the 

recommended recording length to capture parasympathetic activity (e.g., 1 min), and an 

effort to minimize non-stationarity across conditions and participants, particularly for 

frequency-domain variables (Task Force, 1996). Other decisions may include whether 

recordings will be partitioned by task or interval (e.g., baseline vs. task, sleep vs. wake 

state). Similar issues were eloquently raised in a thorough review by Nunan et al. (2010) 

investigating normative HRV values from short-term recordings in healthy adults. Taking 

these pivotal methodological decisions into consideration will facilitate comprehensive 

systematic comparisons across studies and further advance the field.
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4.1. Post-hoc observations

4.1.1. Kubios—Several researchers report using an alternate strategy to clean data prior to 

using Kubios by deleting aberrant inter-beat intervals less than 300 and greater than 1200 ms 

(c.f., Capa et al., 2011; Li et al., 2009; Rodríguez-Colón et al., 2011; Timonen et al., 2006). 

Data were re-analyzed with Kubios after applying this commonly reported data cleaning 

strategy. Post-hoc analyses revealed no significant differences across software programs for 

both time- and frequency-domain variables when this data cleaning strategy was applied 

(data not shown for parsimony).

4.2. Strengths and limitations

The first limitation of the present study was the use of short-rather than long-term recordings 

(i.e., 3 vs. 24 h). However, many studies typically record for similarly short durations. In 

keeping with the recommendations by the Task Force (1996), the present study adhered to a 

strict protocol for the acquisition, recording, collection, cleaning, and analyses of the data 

under standardized settings to minimize measurement error.

The second limitation was the use of only three software programs for comparison. These 

programs were purposely selected due to their ubiquitous use within clinical and research 

settings among psycho-physiologists, cardiologists, and general researchers. Nevertheless, it 

is important to recognize there are additional commercially available as well as investigator-

created software programs; however, their inclusion was beyond the scope of the present 

study. Future comparisons should be conducted using other software programs.

The third limitation was the assessment of only time- and frequency-domain variables. 

Geometric (e.g., triangular shapes of Lorenz plots) and nonlinear methods (e.g., detrended 

fluctuation analysis, approximate entropy) can also be used to analyze HRV (Pincus, 1995; 

Porta et al., 2001, 2007; Richman and Moorman, 2000; Task Force, 1996; Voss et al., 2009). 

However, these methods largely depend on the precision of equipment (i.e., obtain 

appropriate number of RR intervals), recording length (i.e., preferably 24 h for geometric 

methods), and capability of these advanced analyses in software programs. Time- and 

frequency-domain variables are traditional HRV parameters reported in the majority of 

studies; thus, the comparability of these specific parameters was deemed particularly 

important to inform future comparisons and syntheses across published studies (Task Force, 

1996).

Lastly, all ECG recordings were derived from a Holter monitor manufactured by GE 

Marquette, the same manufacturer of MARS software program. However, it is unlikely that 

having a common manufacturer created any bias for the MARS software analyses. In fact, a 

major strength of the present study was the use of identical ECG recordings in triplicate for 

the three software programs. In other words, each software program analyzed the exact same 

ECG data. Thus, these findings are generalizable to the scenario quite common in research 

and clinical settings when hardware and software manufacturers differ.

Jarrin et al. Page 12

Int J Psychophysiol. Author manuscript; available in PMC 2017 July 07.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



4.3. Recommended strategies

Although there are an increasing number of studies investigating HRV, the methodological, 

measurement, and technical specifications are not consistently applied in the field. These 

discrepancies add confusion to the interpretation of HRV and hinder advancement in the 

field because findings cannot be synthesized. Hence, to maximize measurement fidelity 

researchers must be cognizant of these subtle, yet pivotal fine details when using software 

programs. Two recommended strategies are provided.

4.3.1. Equipment and software specifications—Differences across user-defined 

choices and specifications of software programs may contribute to HRV discrepancies across 

studies. Researchers should report specific information about the recording equipment, 

signal (pre)processing software, software applications, and features selected (e.g., sampling 

rate of 250–500 Hz or higher, RR interval filter characteristics, R-peak detection and 

interpolation algorithms). Further, if frequency-domain variables are analyzed, additional 

information on the spectral decomposition method, spectral windowing, window overlap, 

and the defined range of frequency bandwidths should be specified.

4.3.2. Data reduction and cleaning—Data reduction and cleaning decisions prior to 

HRV analysis (either by default or adjustable settings) should be explained and justified. For 

example, because the removal of erroneous beats or the unintentional removal of normal 

beats may affect the analysis and the comparability of HRV parameters (Berntson et al., 

1997; Berntson and Stowell, 1998; Xia et al., 1993), the rationale for any exclusion criteria 

should be clearly stated. Furthermore, to facilitate systematic comparisons and synthesis of 

data, it is important to provide complete information on data reduction decisions. These 

include justification for how the data were segmented or partitioned for aggregating (e.g., 

conditions, tasks, control vs. clinical groups), cleaning (e.g., duration of analytical epochs), 

and analyzing (e.g., night vs. day). Complex study designs (e.g., multiple discreet intervals) 

may warrant use of software that permits greater flexibility for user-specifications and 

manual cleaning (i.e., Mindware). Regardless of what equipment or software is used, 

movement artifacts, technical failure, or poor data quality can seriously contaminate the 

integrity of the data. Despite the crucial task of manually cleaning data, specific procedures 

and decision rules are rarely reported. Basic information on the RR interval error 

identification, removal, criteria (e.g., thresholds), and correction procedures should be 

provided.

4.4. Future research

Future studies should assess the measurement fidelity of time- and frequency-domain HRV 

variables with longer recordings (e.g., 24 h), under differing conditions (e.g., day vs. night), 

and in response to standardized challenges (e.g., stress testing, cold pressor reactivity). 

Additional geometric methods (i.e., HRV triangular index) should also be considered. 

Further, comparisons could be made for HRV parameters derived from different recording 

hardware and then analyzed with different software programs, as this would be a more 

ecologically valid reflection of the diverse practices across the research field. The 

contribution of the present study highlights the importance of providing sufficient detail 

about the signal acquisition hardware, the signal processing software, and the overall 
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procedures used to derive HRV variables. Lastly, given that guidelines to specify standard 

definitions of HRV terms and measurement methodology were published almost two 

decades ago (e.g., Task Force, 1996; Berntson et al., 1997), there is merit in the proposal of 

updating the critical considerations in HRV analyses (e.g., Nunan et al., 2010).

4.5. Conclusion

The present study demonstrated that stringent decisions and specifications for subtle details 

are instrumental in the acquisition of excellent measurement fidelity across three commonly 

used HRV signal processing software programs. Specifically, signal processing, data 

cleaning, analysis, and interpretation specifications must be meticulously selected to 

enhance the precision of HRV data and should not be underestimated. Given the significance 

and value of comparing and synthesizing results across studies, it is crucial for researchers to 

understand and accurately report the technical specifications applied for HRV analyses.
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Table 1

System-dependent specifications across signal processing software programs.

MARS (GE Marquette) MindWare Kubios HRV Task Force

• Version –MARS Holter Analysis 
Workstation v7

–HRV v3.0.17 –Kubios HRV v2.0

Signal acquisition and conversion

• Import options –Raw ECG signals –Raw ECG signals, 
BIOPAC (.acq), Mindware 
(.MW)

–Only RR Intervals

• Input files –MARS software –Mindware format (.MW) –ASCII

• A/D resolution –Not reported –16 bit –Offiine analysis program

Signal preprocessing

• Preprocessing –Manual visual inspection –Manual visual inspection –Recommends manual and 
visual inspection prior to 
using program

• Sampling frequency –125 Hz –1000 Hz –Offiine analysis program –Optimal 250–500 
Hz or higher

• R-peak detection –Template matching (cross-
correlation for upcoming 
signal with templates already 
formed)

–Low-pass and high-pass 
filters for raw ECG data 
(adjustable)

–Proprietary algorithm (akin 
to Pan-Tompkins)

–Use well-tested 
algorithm (e.g., 
template, cross-
correlation, 
derivative plus 
threshold)

• RR interval filtering 
and interpolation

–Automated and manual 
filtering

–Automated and manual 
filtering

–Automated filtering only –LF cutoff=0.05 Hz
–HF cutoff =150 Hz

• Detrending or 
autoregressive 
algorithms

–Linear trend fit to FFT 
input of 600 s window
–Middle 5 min detrended

–Linearly detrended –Smoothness priors 
detrending
–AR model order: 16
–None, 1st–3rd order

• Resampling or 
interpolation rate

–5 min RR intervals
–Spline model to interpolate 
to 1024 evenly spaced data

–Resampled at frequency 
based on 200 bpm/60×10 
or 33.33 Hz

–4 Hz (default; adjustable) –At least 512 but 
preferably 1024 
samples for 5 min 
recordings

• Interpolation method –Cubic spline interpolation 
(Discrete Event Series; DES)

–Cubic spline interpolation –Cubic spline interpolation –Regularly sampled 
interpolation of DES 
with 
(non)parametric 
methods

• Window width –300 s –Not reported –256 s (default; adjustable)

• Window overlap –80% re-sampled –Not reported –50% re-sampled (adjustable)

• Windowing –Hanning
–Spectral coefficients scaled 
to account for attenuation of 
signal energy due to window

–Hamming –Hanning
–Frequency-domain: 256 
points/Hz (adjustable)

–Hanning/Hamming

• Spectrum method –Periodogram –Power spectrum –Welch's periodogram

Data cleaning

• Artifact detection 
and handling

–Manual handling artifacts –Manual handling artifacts –Artifact correction levels: –Interpolation on 
preceding or

–GE Marquette® algorithms –Dual ECG artifact 
detection algorithms, 
MAD/MED, IBI check 
(Berntson et al., 1990)

(none, very low, low, medium, 
strong, very strong; custom)

successive beats on 
HRV signal or 
autocorrelation 
function

HRV indices automatic analyses

• Interval calculations –Calculated for entire 
recording period (adjustable)

–Calculated for each epoch 
and averaged across entire 

–Calculated for entire 
recording period
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MARS (GE Marquette) MindWare Kubios HRV Task Force

recording period 
(adjustable)

• Time domain indices –Mean RR (ms)
–SDNN (ms)
–SDANN (ms)
–SDNNi (ms)
–rMSSD (ms)
–NN50 (counts)
–pNN50 (%)

–Mean RR (ms)
–SDNN (ms)
–rMSSD (ms)
–NN50 (counts)
–pNN50 (%)

–Mean RR (ms)
–SDNN (ms)
–SDANN (ms)
–SDNNi (ms)
–rMSSD (ms)
–NN50 (counts)
–pNN50 (%)

–SDNN (ms)
–SDANN (ms)
–SDNNi (ms)
–rMSSD (ms)
–NN50 (counts)
–pNN50 (%)

• Frequency bands –VLF (0.0033–0.04 Hz)
–LF (0.0400–0.15 Hz)
–HF (0.1500–0.4 Hz)

–VLF (0.0030–0.0400 Hz)
–LF (0.0400–0.1500 Hz)
–HF (0.1500–0.4000 Hz)

–VLF (0.00–0.04 Hz)
–LF (0.04–0.15 Hz)
–HF (0.15–0.4 Hz)

–VLF (0.00–0.04 
Hz)
–LF (0.04–0.15 Hz)
–HF (0.15–0.4 Hz)

• Units –Hz, ms2 –Hz, ms2 –Hz, ms2, %, n.u. –Hz, ms2, %, n.u.

• Additional output –# Rs detected, Ventricular 
and Supraventricular beats 
(<1%)

–# Rs detected, RSA, First 
ECG R time

–Geometric parameters (RR 
triangular index, TINN), 
Poincare Plot (SD1, SD2)

• Export options –PDF –ASCII –PDF, Matlab MAT-file, 
ASCII

Note. Information in the table was derived from product support manuals; not all information was reported.
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Table 2

Measurement fidelity for heart rate variability parameters across software programs.

MARS vs. MindWare MARS vs. Kubios MindWare vs. Kubios

ICC (95%CI) r ICC (95%CI) r ICC (95%CI) r

Mean RR (ms) 0.98 (0.93, 0.99) 0.96** 0.98 (0.94, 0.99) 0.96** 1.00 (0.99, 1.00) 1.00**

Time-domain

 SDNN (ms) 0.93 (0.80, 0.98) 0.94** 0.97 (0.93, 0.99) 0.97** 0.99 (0.96, 1.00) 0.99**

 SDANN(ms) 0.90 (0.73, 0.97) 0.86** 0.90 (0.71, 0.96) 0.82** 0.98 (0.95, 0.99) 0.97**

 SDNNi (ms) 0.93 (0.80, 0.98) 0.94** 0.98 (0.95, 0.99) 0.97** 0.98 (0.94, 0.99) 0.99**

 rMSSD (ms) 0.62 (−0.07, 0.86) 0.87** 0.83 (0.52, 0.94) 0.94** 0.96 (0.88, 0.99) 0.97**

 pNN50 (%) 0.96 (0.89, 0.99) 0.98** 0.97 (0.91, 0.99) 0.98** 1.00 (0.99, 1.00) 1.00**

Frequency-domain

 VLF (ms2) 0.77 (0.34, 0.92) 0.95** −0.49 (−3.15, 0.48) 0.76** 0.29 (−0.99, 0.75) 0.79**

 LF (ms2) 0.82 (0.50, 0.94) 0.90** 0.91 (0.74, 0.97) 0.96** 0.98 (0.93, 0.99) 0.97**

 HF (ms2) 0.87 (0.64, 0.95) 0.96** 0.95 (0.87, 0.98) 0.97** 0.92 (0.79, 0.97) 0.95**

 LF/HF ratio 0.93 (0.79, 0.97) 0.90** 0.96 (0.90, 0.99) 0.95** 0.89 (0.71, 0.96) 0.94**

Note. ICC = Intraclass Correlation Coefficient; r = Pearson Correlation Coefficient; CI = Confidence Interval; Mean RR = Mean beat-to-beat 
intervals; SDNN = Standard deviation of all RR intervals; SDANN = Standard deviation of the averages of RR intervals in all 5 min segments of 
the entire recording; SDNNi = Mean of the standard deviations of all RR intervals for all 5 min segments of the entire recording; rMSSD = Square 
root of the mean of the squares of differences between adjacent RR intervals; pNN50 = Proportion derived by dividing the number of interval 
differences of successive RR intervals greater than 50 ms by the total number of RR intervals; VLF = Very Low Frequency; LF = Low Frequency; 
HF = High Frequency.

**
p < .01.
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Table 3

Means and standard deviations of heart rate variability parameters across software programs.

MARS MindWare Kubios

M (SD) M (SD) M (SD) F

Mean RR (ms) 700.56 (51.88) 705.32 (48.57) 700.03 (48.87) 0.06

Time-domain

 SDNN (ms) 84.38 (21.81) 93.45 (23.59) 89.13 (22.01) 0.65

 SDANN (ms) 40.50 (12.36) 43.69 (15.52) 41.94 (15.05) 0.20

 SDNNi (ms) 73.00 (20.87) 81.51 (22.18) 76.41 (20.19) 0.66

 rMSSD (ms) 50.56 (14.65) 70.08 (25.86) 62.18 (22.96) 3.28

 pNN50 (%) 27.89 (12.79) 32.29 (14.20) 31.72 (13.91) 0.49

Frequency-domain

 VLF (ms2) 1220.98 (586.32) 1822.60 (936.91) 3715.50 (1880.56) 17.10**abc

 LF (ms2) 1280.83 (873.85) 1934.72 (1069.67) 1764.50 (927.43) 2.00

 HF (ms2) 996.22 (773.37) 1524.21 (1082.78) 1267.75 (737.91) 1.45

 LF/HF ratio 1.49 (0.66) 1.70 (0.68) 1.35 (0.60) 1.15

Note. M = Mean; SD = Standard Deviation; F = F test-statistic from omnibus ANOVA; Superscript denotes follow-up pairwise comparison: 
aMARS vs. MindWare. bMARS vs. Kubios. cMindWare vs. Kubios; Mean RR = Mean beat-to-beat intervals; SDNN = Standard deviation of all 
RR intervals; SDANN = Standard deviation of the averages of RR intervals in all 5 min segments of the entire recording; SDNNi = Mean of the 
standard deviations of all RR intervals for all 5 min segments of the entire recording; rMSSD = Square root of the mean of the squares of 
differences between adjacent RR intervals; pNN50 = Proportion derived by dividing the number of interval differences of successive RR intervals 
greater than 50 ms by the total number of RR intervals; VLF = Very Low Frequency; LF = Low Frequency; HF = High Frequency.

**
p < .01.
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