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Type 2 diabetes is characterized by insulin resistance,
which arises from malfunctions in the intracellular insulin
signaling network. Knowledge of the insulin signaling net-
work is fragmented, and because of the complexity of this
network, little consensus has emerged for the structure and
importance of the different branches of the network. To help
overcome this complexity, systems biology mathematical
models have been generated for predicting both the activa-
tion of the insulin receptor (IR) and the redistribution of glu-
cose transporter 4 (GLUT4) to the plasma membrane. Al-
though the insulin signal transduction between IR and
GLUT4 has been thoroughly studied with modeling and time-
resolved data in human cells, comparable analyses in cells
from commonly used model organisms such as rats and mice
are lacking. Here, we combined existing data and models for
rat adipocytes with new data collected for the signaling net-
work between IR and GLUT4 to create a model also for their
interconnections. To describe all data (>140 data points), the
model needed three distinct pathways from IR to GLUT4: (i)
via protein kinase B (PKB) and Akt substrate of 160 kDa
(AS160), (ii) via an AS160-independent pathway from PKB,
and (iii) via an additional pathway from IR, e.g. affecting the
membrane constitution. The developed combined model could
describe data not used for training the model and was used to gen-
erate predictions of the relative contributions of the pathways from
IR to translocation of GLUT4. The combined model provides a
systems-level understanding of insulin signaling in rat adipocytes,
which, when combined with corresponding models for human adi-
pocytes, may contribute to model-based drug development for
diabetes.

Type 2 diabetes (T2D)3 is one of our most costly and rapidly
spreading diseases. At the heart of this disease lies insulin resis-
tance, an inability of target cells to respond to insulin. This
resistance is commonly believed to start in the adipose tissue
from which it then spreads to the other target organs, such as
liver and skeletal muscle (1–3). When also these organs become
insulin-resistant, the pancreatic beta cells need to significantly
increase their insulin production. During this hyperinsuline-
mic condition, which can last for many years, the glucose
homeostasis functions normally, and it is only when the beta
cells eventually fail that T2D is manifested. Because of this
disease etiology, it is important to understand the insulin
signaling network in adipocytes because such an under-
standing may provide ideas for a possible cure for T2D
before it has manifested.

The intracellular insulin signaling network is a complex web
of thousands of proteins, and even though many questions
remain unanswered, several core pathways have been estab-
lished (for a review, see Ref. 4). All of these pathways originate
with binding of insulin to its receptor (the insulin receptor (IR)),
and the perhaps most well studied pathway leads to increased
glucose uptake via translocation of glucose transporter 4
(GLUT4) to the plasma membrane. In this pathway, binding of
insulin to IR leads to autophosphorylation at IR tyrosine resi-
dues, which in turn induces tyrosine phosphorylation of insulin
receptor substrates (IRSs). This is followed by a sequence of
steps, including increased production of membrane-bound
phosphatidylinositol 3,4,5-trisphosphate (PIP3), that lead to a
transient membrane translocation and phosphorylation of pro-
tein kinase B at threonine 308 (PKB-Thr-308) (5). PKB is also
phosphorylated by insulin at another site, serine 473 (PKB-Ser-
473). Unlike for Thr-308, PKB-Ser-473 phosphorylation is not
mediated via IRS but most likely via a pathway involving the
mammalian target of rapamycin complex 2 (mTORC2) (6).
There may also be an increased autophosphorylation of PKB-
Ser-473 caused by PKB-Thr-308. Once activated, PKB further
phosphorylates several sites at the downstream target Akt sub-
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strate of 160 kDa (AS160), which is one of the key factors
required for GLUT4 translocation to the plasma membrane (7).
In addition to this well established pathway, there are several
other factors regulating GLUT4 translocation that are less
defined, including not fully elucidated modifications at the
membrane (8, 9) and priming of the insulin-containing vesicles
(Ref. 10; for a recent review, see Ref. 11). Apart from this lack of
mechanistic details, the quantitative and relative contribution
of all the upstream signaling factors is still not established. In
other words, even though many of the intermediates and pro-
cesses that are involved are more or less identified, how these
processes interact, which processes are rate-limiting, and how
these processes can be modified in healthy and diseased condi-
tions are still far from fully understood. In short, a systems-level
understanding is missing.

A systems-level understanding in the field of biology, also
called a systems biology understanding, rests upon two pillars:
(i) the simultaneous collections of systems-wide and quantita-
tive experimental data from comparable conditions and (ii)
analysis of these data using mechanistic mathematical model-
ing. Importantly, fully developed mechanistic mathematical
modeling goes beyond mere correlations and statistics, which
only describe interrelations between data but not the interac-
tions of the underlying biological system. In other words, a
mechanistic systems biology model tests and develops mecha-
nistic descriptions of a system. Once an acceptable description
has been generated, this can be simulated in a computer to
produce in silico experiments, which can be used to e.g. plan,
design, and predict future experiments and serve as estimates of
non-measurable properties (12, 13).

This systems biology approach has been used for several
decades to unravel insulin binding to the IR (14, 15), the insulin
signaling pathway downstream of the IR (16), and GLUT4
dynamics in both primary rat adipocytes (17–21) and cultured
3T3-L1 cells (22). In human adipocytes, these models have
lately been expanded to include IR activation and the entire
pathway leading to glucose uptake (16, 23–25). These recently
developed human models are now at use in pharmaceutical
drug development, describing both normal signaling based on
data collected in adipocytes from healthy subjects and insulin-
resistant signaling with data collected in adipocytes from dia-
betic subjects. Also, these human models translate the results
based on cellular data to the whole-body level (16, 23). In rat
adipocytes, in contrast, such interconnective models based on
time-resolved data do not exist even though some detailed
models exist for certain subsystems. One such model describes
the GLUT4 translocation process (Fig. 1, green box). This model
has provided non-trivial conclusions regarding the necessary
number of pools involved in this GLUT4 recycling machinery
based on live-cell image analysis with temporal and spatial res-
olution, which allows for direct measurements of many of the
parameters included in the model (26). For the early insulin
signaling events in rat adipocytes, the counterintuitive dynam-
ics seen between IR and IRS1 have also been unraveled using
modeling (27) (Fig. 1, blue box), also here providing non-trivial
insights regarding the role and quantitative relations between
different pools of IRs. However, unlike for human adipocytes,
no model for primary rat adipocytes that connects the upper

IR-IRS1 dynamics with the ultimate GLUT4 translocation
dynamics exists (Fig. 1, middle questions). This is a critical lack
because much drug development still is done using rodents, and
many key questions only can be tackled by models that describe
the entire insulin signaling network, such as (a) which upstream
pathways are regulating which steps of the GLUT4 vesicle
translocation, (b) what is the quantitative contribution of these
upstream pathways to the GLUT4 vesicle translocation, and (c)
is our current knowledge sufficient to describe all available data
for insulin signaling in rat adipocytes, or are additional not yet
elucidated mechanisms necessary?

Here, we combine existing data for IR and IRS1 activation
and GLUT4 translocation dynamics with new measurements of
the key intermediate steps PKB-Thr-308, PKB-Ser-473, and
AS160-Thr-642 phosphorylations in primary rat adipocytes.
These combined data then allow us to construct a model, based
on comparable rat adipocyte data, for the entire pathway lead-
ing from IR activation to GLUT4 translocation. Different ver-
sions of acceptable parameter values and model structures are
used to quantify the importance of the upstream signals for
the different steps in the GLUT4 translocation machinery.
The resulting model is a quantum step forward toward a
systems-level understanding of insulin signaling also in rat
adipocytes, bringing us one step closer to knowledge-driven
drug development that bridges between the preclinical and
clinical phases.

i) Which are the connecting pathways?
ii) How much do each pathway contribute?
iii) Is our mechanistic understanding sufficient?

Nyman et al 2012

Stenkula et al 2010

Figure 2

Figure 3

Figure 4

YP

1 1
YP

Figure 1. Overview of the project. Models for the insulin binding and the
subsequent activation of IR and IRS1 (blue box) and the dynamic GLUT4 vesi-
cle translocation (green box) already exist. However, the connecting pathways
between them are not entirely known, and several questions exist. Which are
the pathways? How much does each pathway contribute? Is our mechanistic
understanding of the insulin signaling chain sufficient to describe all our
observations? We herein develop and test these three submodels (Figs. 2– 4),
integrate them into a combined model (Fig. 5), test the model with respect to
new validation data (Fig. 6), and identify unique predictions to quantify the
properties of the three pathways (Fig. 7). The star in the upper model graph
represents an unknown type of activation. IRi, internalized insulin receptor; X,
unknown protein; YP, known activation.
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Results

Module 1, describing the IR-IRS1 dynamics

The new model is now described and compared with data for
each of the three Modules 1–3, whereafter the combined model
is analyzed. The dynamics of Module 1, activation, internaliza-
tion, and recycling of the IR and the subsequent activation of
IRS1, have been unraveled in both human adipocytes (15) and
rat adipocytes (27). Because we herein study insulin signaling in
rat adipocytes, the insights and corresponding model from rat
adipocytes were used. In these cells, the IR and IRS1 appear to
behave in a counterintuitive manner where the peak of phos-
phorylation of IR (Fig. 2B) occurs later than the peak of phos-
phorylation of the substrate (IRS1) (Fig. 2C). In Nyman et al.
(27), this behavior could be explained with a negative feedback
or with the fact that there are different pools of IRs that have
different dynamic behaviors. These suggestions were tested in
detail in Nyman et al. (27), which also included data on the
fraction of IR remaining in the plasma membrane after insulin
stimulation (Fig. 2D), and here we chose to include the simplest
acceptable explanation: a negative feedback via an unknown
protein X (Fig. 2A). This negative feedback from downstream
IRS1 back to IRS1 could be interpreted as (i) a decrease in the
kinase activity of a protein that normally increases the activity

of IRS1, (ii) an increase in the activity of a phosphatase that
normally dephosphorylates IRS1, or (iii) an increase in specific
serine phosphorylations (i.e. Ser-636) that are believed to
decrease the activity of IRS1 (28). In the first module, we use the
model equations and parameters for IR and IRS1 from Nyman
et al. (27), and we verified that the model simulations (Fig. 2,
B–D, lines) are in good agreement with the data (error bars)
(�2 � 22.02 � cutoff � 35.17; p � 0.05) (see Materials and
methods in Ref. 12). The cutoff is the inverse of the �2 cumula-
tive distribution function and was computed with the degrees
of freedom specified by the number of data points (26) and the
chosen probability (95%). The experimental data in Module 1
for IR and IRS1 dynamics were obtained with 100 nM insulin,
and we therefore used 100 nM insulin in the model simulations.
The data in the different modules are taken from independently
conducted experiments with different insulin concentrations,
and we have altered the insulin concentration in the model
accordingly when simulating the different experiments.

Module 2, signaling via PKB and AS160

In Module 2 (Fig. 3A), we included known pathways that
bridge between Module 1, for the IR-IRS1 module, and Module
3, for GLUT4 translocation. The most well established path-
ways go via PKB, which is phosphorylated both at site Thr-308,
via activation of PIP3 and phosphoinositide-dependent protein
kinase-1, and site Ser-473, via mTORC2. Downstream of PKB,
we also included AS160, which is known to be essential for
regulation of GLUT4 translocation (7). To be able to find values
for the parameters in Module 2, we performed experimental
measurements of the dynamic response to insulin of PKB phos-
phorylation at sites Thr-308 and Ser-473 and AS160 at site Thr-
642. Isolated, primary rat adipocytes were stimulated with insu-
lin (28 nM) for 0, 0.5, 1, 2, 3, 5, 10, or 20 min. Cell lysates were
subjected to Western blotting, and protein phosphorylation
was quantified using phosphospecific antibodies; all samples
were normalized to �-actin (n � 4 independent experiments)
(Fig. 3, B–D). For this experiment, the insulin concentration
was 28 nM, which was also used in the model when fitting the
model parameters. A good agreement was found between
model simulations and the experimental data of PKB and
AS160 phosphorylation (Fig. 3, B–D, lines and dots) (�2 �
27.98 � cutoff � 36.42; p � 0.05) (see Materials and methods in
Ref. 12). The �2 cutoff was once again computed with the
degrees of freedom specified by the number of data points (24
points) and the chosen probability (95%). The remaining parts
of Module 2 are easiest to describe in connection to a descrip-
tion of the inputs to Module 3.

Module 3, connecting with GLUT4 vesicle translocation

In Module 3 (Fig. 4A), we used the dynamic GLUT4 vesicle
translocation model developed in Stenkula et al. (26) and tested
three input connections from Module 2: 1) from AS160-Rab-
GTP, 2) from an AS160-independent pathway downstream of
PKB, which we refer to as “PKBd” and which is given by a
delayed state downstream of the sum of the two states that are
phosphorylated at Thr-308, and 3) from a plasma membrane-
located pathway in close proximity to the IR, which we refer to
as “PMR.”
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Figure 2. Module 1: IR and IRS1 activation. A, the already existing model
describing the counterintuitive phosphorylation of IR and IRS1 in rat adi-
pocytes (27). The star represents an unknown type of activation. B–D, the
simulated (blue lines) phosphorylation responses to insulin stimulation (100
nM at t � 0) for IR (B), IRS1 (C), and IR in membrane (D) compared with exper-
imental data (red error bars, average � S.E.). IRi, internalized insulin receptor;
X, unknown protein; YP, known activation; IRp, activated insulin receptor;
IRS1p, activated insulin receptor substrate 1.

Systems biology analysis of insulin signaling

11208 J. Biol. Chem. (2017) 292(27) 11206 –11217



The first connection, from AS160-RabGTP, is described in a
simplified view compared with the actual mechanisms, which
are only partially understood. The more detailed underlying
mechanisms include the following. (i) AS160 in the non-insulin
stimulated state, through its GAP domain, maintains the inac-
tive GDP-bound form of Rab. (ii) AS160 upon insulin stimula-
tion becomes phosphorylated (Thr-642), which inhibits its

GAP activity. (iii) This inhibited activity allows the active form
of Rab (RabGTP) to increase, which leads to association of the
GLUT4-containing vesicles with the plasma membrane (7).
The net effect of these three facts (i–iii) is that insulin stimu-
lates GLUT4 translocation to the plasma membrane via the
intermediates AS160 and Rab. We modeled these steps via a
simple cascade describing two inhibitory steps, which thus can-
cel each other out, giving a net positive effect of insulin on
GLUT4 translocation (Figs. 3A and 4A and combined in Fig. 5).
More specifically, we allowed the effect of AS160-RabGTP to
increase both the rates V1 and V2, which represent the transloca-
tion of GLUT4 to the plasma membrane followed by release of
GLUT4 monomers (V1) and translocation of GLUT4 storage ves-
icles (GSVs) leading to formation of GLUT4 clusters in the plasma
membrane (V2), as defined in Stenkula et al. (26) (Fig. 4A).

The second connection, from PKBd, describes a PKB-Thr-
308 dependent, but AS160-independent, pathway. This con-
nection was included to describe differences between the insu-
lin-induced effects measured for V1 and V2: V1 had a much
higher -fold increase with insulin compared with V2 (Fig. 4B).
The -fold increase was measured in Stenkula et al. (26) where it
was concluded that translocation of GSVs to the plasma mem-
brane followed by release of GLUT4 monomers (V1) is the
fusion reaction that responds the most to insulin, whereas
translocation of GSVs forming GLUT4 clusters (V2) at the
plasma membrane is the most prominent fusion reaction in the
non-stimulated state. The measured -fold from basal to peak
for V1 is the factor 60, and for V2 the -fold is the factor 2. The
simulated -fold values are 58.1 and 1.98, respectively, which
thus fit the experimental data well. The sum of V1 and V2 was
also measured (Fig. 4C).

The third connection, PMR, was included to illustrate an
insulin-induced effect associated with the plasma membrane
downstream of the IR but also affecting the measured insulin-
induced effect at the rate of GLUT4 molecules moving out of
GLUT4 clusters into the pool of GLUT4 monomers (Vr) and
the measured inhibitory effect at the rate of GLUT4 endocyto-
sed from GLUT4 clusters into endosomes (Ve). These rates
were measured in experiments with and without inhibition of
endocytosis for different levels of relative exposure in Lizunov et al.
(29), as summarized in Fig. 4, E and F, under insulin conditions and
with the individual relative exposures in Fig. 4, G–J, under basal
conditions. All data in Fig. 4 were used to parametrize the three
connections between upstream insulin signaling and GLUT4
translocation. As can be seen in Fig. 4, B–J, the model can describe
the data well according to a visual inspection; a �2 test is not pos-
sible because we lack uncertainties for some of the data points. A
total of 98 data points were used in Module 3 (92 visualized in
graphs plus four rate constants and 2-fold constants). In both stud-
ies describing experimental data for Module 3 (Fig. 4, B–J, error
bars), the cells were incubated with an insulin concentration of 70
nM, which also was used in the simulations.

Verification of the novel combined insulin signaling model

We combined the three modules into a model for insulin
signaling from IR activation to complete GLUT4 translocation
in rat adipocytes (Fig. 5). The model is in simultaneous agree-
ment with all experimental data used for model development
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(Figs. 2, B–D; 3, B–D; and 4, B–J). This is, to our knowledge, the
first model of insulin signaling in rat adipocytes that describes
the entire dynamic and quantitative pathway from IR activation
to GLUT4 translocation.

To test the soundness of the model, we studied its behavior in
new scenarios for which it had not been tested. Because the key
new aspect of our model is the upstream signaling feeding into the
GLUT4 cycling, we identified data from the same experimental
system that perturbed these pathways differently.

These data are based on a study where rats have been treated
with dexamethasone prior to isolation of adipocytes and insulin
stimulation (30). Dexamethasone treatment inhibits insulin-
stimulated PKB phosphorylation at Thr-308 but only margin-
ally (if at all) at Ser-473. Dexamethasone also decreases the total
expression of PKB (30). In our model, we implemented these
changes by reducing the two parameters k308_1 and k308_2
(Fig. 6A) so that PKB-Thr-308 phosphorylation is reduced to 50
or 70% (Fig. 6B, dashed line), which is the experimentally

observed inhibition range (Fig. 6B, error bar). We also reduced
the total amount of PKB in the model according to the range in
data (37–51% reduction). We used these changes in PKB total
amount and Thr-308 phosphorylation to predict the resulting
alterations in glucose uptake and plasma membrane localiza-
tion of GLUT4 for the same parameter values that were used for
the plots in Figs. 2– 4. Glucose uptake is assumed to be propor-
tional to the total amount of GLUT4 in the plasma membrane.
For these chosen parameter values, the GLUT4 plasma
membrane pool is reduced by 16 –22% with dexamethasone
inhibition (Fig. 6C). To account for the uncertainties in all
parameters and data points, we used the method proposed in
Cedersund (13). The boundaries for the prediction are iden-
tified with a direct optimization where the reduction in
GLUT4 in the plasma membrane/glucose uptake is stepwise
changed while all parameters are optimized for the lowest
possible cost, i.e. to find the best agreement with all data (Fig.
6D, line) (“Materials and methods”). We chose 105 as the
cutoff level for the cost, and this gave an interval of 0.15 and
0.26, i.e. a 15–26% reduction (Fig. 6D, blue area). The pre-
dicted inhibition of GLUT4 in the plasma membrane is thus
well determined and can be compared with the correspond-
ing experimental value (30) (Fig. 6D, red area). The pre-
dicted value overlaps with the experimental value (Fig. 6E),
which means that the model is in good agreement with data
not used for fitting the parameters. The insulin concentra-
tion used when acquiring the experimental data was 7 nM, or
1000 microunits/ml, and thus the same concentration was
used to simulate these model predictions.

Predicting the upstream effectors to GLUT4 translocation

Having established some faith in the model, we therefore
moved on to characterize some predictions that are of high
biological interest for the new aspects of the model: the
three input signals that feed into the GLUT4 translocation
machinery. Using our model, we searched for new parame-
ters that would “stretch” the prediction of the -fold increase
of the three input signals, RabGTP, PKBd, and PMR, in
response to 70 nM insulin. For that, we used the same method as
above (13) to stepwise perform the stretch and at the same time
stay in good agreement with the experimental data. This resulted
in a 15–28-fold increase from basal to insulin steady state of PKBd
(Fig. 7A), an interval of 1.4–2.25 for PMR (Fig. 7B), and an interval
of 2.65–3.35 for RabGTP (Fig. 7C).

In summary, our analysis shows that the contributions of the
upstream signals to GLUT4 vesicle translocation, RabGTP,
PKBd, and PMR, all are constrained by available data. None of
these three upstream signals have been measured in experi-
ments. Therefore, these new predictions provide a first assess-
ment of the dynamic range of these three signals in response to
insulin stimulation.

Discussion
Herein, we have developed the first mathematical model

based on time-resolved data that describes the entire insulin
signaling pathway from IR activation to GLUT4 exocytosis in
rat adipocytes. The model was developed in three modules:
Module 1, IR-IRS dynamics (Fig. 2); Module 2, PKB dynamics

YP

YP

11

R

R

Figure 5. Interaction graph for the whole model. The complete model devel-
oped in this project with all modules (1, 2, and 3) included and connected. The
stars represent an unknown type of activation. Equations and simulation scripts
are available as supplemental material. PIP2, phosphatidylinositol 4,5-bisphos-
phate; PDK1, phosphoinositide-dependent protein kinase-1; IRi, internalized
insulin receptor; YP, known activation; X, unknown protein.
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and the pathways that are involved in GLUT4 translocation
(Fig. 3); and Module 3, containing the actual GLUT4 transloca-
tion dynamics (Fig. 4). The combined model (Fig. 5) is devel-
oped based on �140 data points, including immunoblotting on
the IR level and live-cell imaging data of GLUT4 exocytosis

from previous studies, as well as new data generated to obtain
temporal resolutions of several insulin signaling intermediates
(Fig. 3, B–D). Our model can describe not only all of these data
simultaneously (Figs. 2, B–D; 3, B–D; and 4, B–J) but also inde-
pendent validation data without parameter refitting (Fig. 6, D
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Figure 6. Model verifications. A, treatment with dexamethasone is implemented in the model (i) as a reduction of the rate constants k308_1 and k308_2 and (ii) as
a reduction of total PKB. The stars represent an unknown type of activation. B, in the model, dexamethasone leads to a PKB-Thr-308 reduction from control (blue line)
to dexamethasone-treated cells (dashed lines), which is in agreement with experimental data (error bar, mean � S.E.). C, this PKB-Thr-308 reduction together with the
reduction of total PKB in turn leads to a predicted decline in GLUT4 vesicle translocation to the plasma membranes by 16–21% at insulin steady state compared with
adipose cells treated with insulin alone for one set of parameters. The range for this one parameter was obtained by simulating either with the maximal S.E. boundaries
(64% reduced PKB expression, 50% reduced PKB-Thr-308 activation; yellow dashed line) or minimal S.E. boundaries (49% reduced PKB expression, 30% reduced
PKB-Thr-308 activation; red dashed line). D, to find the overall maximal and minimal values of the predicted GLUT4 reduction (blue interval), the prediction was lowered
in steps while optimizing all parameters to data to see how long this model structure can agree with estimation data (i.e. how long the blue curve can stay below the
cutoff) (13). Assuming that the fraction of GLUT4 in the plasma membrane is proportional to the glucose uptake, this prediction (15–26%) overlaps almost completely
with the experimentally observed reduction (red interval; 17–50%). E, alternative visualization of the experimental validation in D.
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and E). Having established some faith in the model, we there-
fore provide predictions of interesting model features that are
not yet available via experiments: the -fold values from basal to
insulin steady state for the three pathways affecting GLUT4
translocation, which are predicted to be 15–28 (PKBd), 1.4 –
2.25 (PMR), and 2.65–3.35 (RabGTP) (Fig. 7). In summary, the

combined model provides a new level of understanding for
insulin signaling in rat adipocytes: a quantitative systems-level
understanding that both summarizes available knowledge and
data and is able to predict new experiments that come as con-
sequences of the new systems-level understanding.

The work with defining the connecting pathways from the insu-
lin signaling IR-IRS1 module down to the GLUT4 translocation
module has lead us down to three independent input signals, and
all of these input signals are based on previously proposed mech-
anistic hypotheses and literature. In other words, none of the three
linking mechanisms are new hypotheses. One input signal is cen-
tered around AS160. The identification and characterization of
AS160 as a key regulatory mediator downstream of PKB was a
major discovery in understanding the mechanisms of insulin-
stimulated glucose transport in adipocytes (7). Knockdown of
AS160 increases the pool of ready-to-fuse vesicles, hence shifting
the GLUT4 equilibrium to the plasma membrane already in the
non-stimulated state. However, even with diminished AS160 lev-
els, insulin has been shown to increase GLUT4 exocytosis (31), and
reports have suggested that another PKB substrate, independent
of AS160, exists (32). This is the basis for the presence of the sec-
ond input signal, an AS160-independent pathway PKBd. In the
model, PKBd directly feeds into the GSV fast fusion events tightly
regulated by insulin, which fits the idea of PKB as a prominent
regulator of GSV fusion close to the plasma membrane. The fact
that our model supported PKB-Thr-308 activation as essential for
downstream signaling leading to GLUT4 translocation is in line
with previous reports from rat adipocytes (33) and herein served as
a verification of the model design. The third and last input signal is
centered around plasma membrane activation: PMR. This is
based, in part, on an elegant study by Koumanov et al. (8) where
the rate-limiting step of insulin-regulated GLUT4 exocytosis
involved a plasma membrane activation, which was supported in
later studies (26). This third signal could potentially involve clus-
tering of SNARE proteins at the plasma membrane (for a review,
see Ref. 34), which could increase the probability of fusion, similar
to exocytosis of insulin granules (35). Also, previous findings
in cultured adipocytes suggest a direct interaction of the IR
and the SNARE protein Munc18c required for complete
GLUT4 exocytosis (36) as well as local PIP3 accumulation
following insulin stimulation (37). In our model, PMR was
included as a plasma membrane-associated step down-
stream of the IR that represents the insulin-induced effects
associated with the plasma membrane, which in the model
inhibits the rate of GLUT4 endocytosis, increases the rate of
monomer formation from clusters, and increases the rate of
GLUT4 exocytosis into monomers (Fig. 5).

Although the presence of these three input signals is based on
existing literature, we provide a first systems-level description
of how they could act together. In this model, the three input
signals act in different ways to stimulate different parts of the
GLUT4 subsystem. In most cases, a single input signal is
responsible for the complete change observed in a specific rate:
PMR is alone responsible for the change observed in endocyto-
sis (Ve) and cluster-to-monomer breakdown in the membrane
(Vr), and RabGTP is alone responsible for the increased rate of
GLUT4 cluster formation (V2) (Fig. 4A). In contrast, for the
rate of monomer formation from exocytosis (V1), all three
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Figure 7. Model predictions. To predict the -fold values of the three inputs to
the GLUT4 translocation module, a stepwise increase/reduction of the -fold val-
ues was performed in the same manner as in Fig. 6D (13). The -fold values are
forced to attain certain values using an extended cost function as explained
under “Material and methods.” As long as the -fold is acceptable (final cost lower
than the predetermined cutoff), the -fold is further increased or reduced, which
eventually creates a range of acceptable -fold values. Finite ranges for the inputs,
PKBd (A), PMR (B), and RabGTP (C), could be obtained, implying that all three
predictions are identifiable for the given data and model structure.
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input signals contribute. Nevertheless, their contributions are
different because their dynamic range is different. The experi-
mentally observed dynamic range (-fold change from basal to
insulin steady state) for V1 is high: �20 (26). This dynamic
range is higher than what PMR and RabGTP can have because
they are constrained by the data in Fig. 4, E–J, (29) and by the
data for V2 (Fig. 4B, purple), respectively. In contrast, the
dynamic range for PKBd goes much higher because PKB-Thr-
308 has a large dynamic range (Fig. 3B) and because PKBd
needs to account for the difference between the large dynamic
range seen for V1 and the small dynamic ranges required for
RabGTP and PMR. In other words, neither RabGTP nor PMR
alone or their combination could act to produce the large
dynamic range seen in V1, but PKBd must be present as well.
This reasoning based on the data alone illustrates how the pre-
dictions produced in Fig. 7 can be understood intuitively even
though a model-based analysis is needed to ensure that the
reasoning holds true also when taking all quantitative features
in all available data into account. In summary, we can thus
answer the three questions in Fig. 1: our mechanistic under-
standing is sufficient, there are three connecting pathways (Fig.
5), and their contribution is specified by how they enter the
GLUT4 module (Fig. 5) and by their -fold responses (Fig. 7).

Here, we have focused on data for primary rat adipocytes. It is
likely that the distinct architecture of these primary cells, with a
thin cytosolic rim surrounding the lipid droplet, in contrast to cul-
tured adipocyte cell lines where cells contain multiple lipid drop-
lets and an increased cytosolic domain implies more or less differ-
ent insulin signaling networks leading to GSV exocytosis. For
example, it is well known that 3T3-L1 cells have a substantial
amount of glucose transporter 1 (GLUT1) (38), which is not regu-
lated by insulin but does contribute to glucose uptake. In this
study, we have therefore concentrated our analysis exclusively on
experimental data from primary rat adipocytes and not built fur-
ther on models developed for 3T3-L1 cells (22, 39). In general, we
believe that modeling of this kind requires that all data have been
collected from the same cell type under comparable conditions
where all existing differences between the experiments can be
described within the model. For the same reason, we do not herein
make use of any of the similar data and model results available for
human adipocytes (16).

As with all models, the model developed herein is not a final
or complete description of the studied system but is a simplified
description based on a limited set of experiments. In other
words, this model only includes such mechanisms that are
found necessary to describe the current set of data and not all
known mechanisms and variations. This choice of a minimal
acceptable model should minimize the prediction uncertainty,
at least for those predictions that are of the same character as
the already existing data (12). Our model-based analysis moves
the understanding of insulin signaling in primary rat adipocytes
to a new level: to a quantitative systems-level understanding.
Our analysis is systems-level because we (i) collect data from all
levels of insulin signaling (early receptor activation, downstream
signaling, and GLUT4 translocation) and (ii) describe all of these
data simultaneously using a single mathematical model. Our anal-
ysis is quantitative because the model describes quantitative fea-
tures in the data, such as correct -fold changes and the detailed

shapes of the responses. To the best of our knowledge, this is the
first instance of such a model for this system, and this new level of
understanding opens new possibilities. We can therefore now do
useful predictions with corresponding uncertainties, which is the
model’s propagation of all of the uncertainties in the original
experimental data to this particular prediction.

The model developed herein for insulin signaling in rat adi-
pocytes can also be used together with models developed for the
same kind of data from human adipocytes (such as Refs. 16 and
25). These human models exist in an insulin-resistant/diabetic
version and can thus be directly used to study which perturbations
drive the model from a diabetic state to a normal insulin response.
For the model developed herein, we need corresponding data from
adipocytes from rats that display a diabetic phenotype, for example
Zucker diabetic fatty rats, that are commonly used in drug devel-
opment. With this additional information, we can use the model to
predict drug responses in both human adipocytes from diabetic
patients and in rat models of diabetes and search for drugs that
have an effect in both these systems. This is important because the
drug development pipeline includes preclinical tests in rodents
where an effect must be shown before the drug is taken to clinical
trials.

Materials and methods

Mathematical modeling methods

We have used ordinary differential equations when formu-
lating the model, and the forms of the equations are directly
given by the interaction graphs in Figs. 2A, 3A, 4A, and 5. This
means that the IR-IRS module has the following equations.

where IR, IRp, IRi, IRS, IRSp, X, and Xp are states with initial
conditions as given, and v1a, v1b, vR, v2, v3, vm3, v4, and vm4
are reaction rates given by the following equations.

Scheme 2

Scheme 1
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where ins is the input (insulin added to cells), and ik1, ik1basal,
ik2, ikR, ik3, ikf, ikm3, ik4, and ikm4 are model parameters. The
output of the model is compared with data. For the IR-IRS
module, the following output was measured.

where measIRS, measIR, and measIRmem are variables that are
compared with the data in Fig. 2B, and scaleIRS, scaleIR, and
scaleIRmem are parameters used to scale between model sim-
ulations and data.

The values of the rate constants are hard to measure experi-
mentally. Instead, these values are estimated by finding the val-
ues of the parameters that maximize the agreement between
simulated outputs of the ordinary differential equation model
and the experimental data. This is done by minimizing the cost
function, V(p), that sums the squares of the residuals between
data and model simulations weighted by the data variance.

v� p� � �
i�1

m � yi�t� � ŷi�t, p��2

S.E.i
2�t�

(Eq. 1)

where t denotes measured time points, and p denotes model
parameters. Additionally, y is the experimental data, ŷ is the
simulated variable value, and S.E. is the standard error of the
mean of data. The sum i is over all measured variables for all
measured time points. To statistically test the quality of the
model’s agreement with the data for a parameter p, we use a �2

test: the cost function V(p) gives us the �2 value, which is
compared with an inverse of the �2 cumulative distribution
function computed using the degrees of freedom given by the
number of data points (12). In this report, Module 1 and
Module 2 were statistically evaluated. Module 3 was not eli-
gible for statistical evaluation because several data points are
missing S.E. values.

The following is one set of acceptable values for the param-
eters of the IR-IRS module.

To simulate the model for a given experiment, the input (ins)
is changed to the value that corresponds to the added concen-
tration of insulin in that particular experiment. Insulin concen-
trations in the data used for estimation are in the range 7–100
nM. For the prediction of the -fold increase of the three
branches of insulin signaling (Fig. 7), we chose to use 70 nM

insulin, which is the insulin concentration used in the experi-
ments of Module 3 (70 nM). In such predictions, we account for
the fact that we do not have unique values of the parameters and
that some parameters even may be unidentifiable from the
available data. This is done by using the method in Cedersund
(13) and especially the version advocated in Cedersund et al.
(40). In this version, one adds an extra term to the cost function
to create an extended cost function.

Ṽ� p� � �
i�1

m � yi�t� � ŷi�t, p��2

S.E.i
2�t�

� w�h� p� � h̃� (Eq. 2)

where w is a large number, h(p) is the studied model property
(e.g. the -fold increase), and h̃ is the value that we want the
model property to obtain. If w is large enough, a minimization
of Ṽ ensures that h(p) � h and that one seeks the best agreement
to the estimation data for this given value of the model prop-
erty. The agreement with the data, V(p), is plotted as the y axis
in Figs. 6D and 7, A–C; h(p) is the x axis.

All mathematical analyzes, i.e. model simulations and
parameter estimations, have been carried out in Matlab
together with the SBtoolbox2 package (41, 42). The scripts for
these analyses and how to simulate all the figures herein can be
found in the supplemental material.

Experimental methods

Reagents—Insulin was purchased from Invitrogen; anti-
AS160-Thr(P)-642, anti-PKB-Thr(P)-308 and anti-PKB-Ser(P)-
473 antibodies were from Cell Signaling Technology; and anti-
�-actin antibody was from Sigma.

Cell preparation and Western blotting—Adipose cells were
isolated from epididymal tissue as described previously (43).
Following isolation, cells were suspended (10% suspension) in
Krebs-Ringer buffer containing 25 mM Hepes, pH 7.4, 200 nM

adenosine, and 1% BSA (w/v) and stimulated with insulin as
indicated in the figures (at 37 °C with shaking at 150 cycles/
min). To stop incubations, cells were washed in Krebs-Ringer
without BSA on ice and subsequently lysed in a buffer contain-
ing 50 mM Tris/HCl, pH 7.5, 1 mM EGTA, 1 mM EDTA, 1 mM

sodium orthovanadate, 10 mM sodium �-glycerophosphate, 50
mM sodium fluoride, 5 mM sodium pyrophosphate, 0.27 M

sucrose, 1% Nonidet P-40, 1 mM dithiothreitol (DTT), and
Complete protease inhibitor mixture (one tablet/50 ml).
Lysates were centrifuged for 15 min at 1000 	 g, and protein
concentrations were determined by the method of Bradford
(44). Protein (10 �g/sample) was heated at 95 °C for 2 min in
SDS sample buffer and subjected to polyacrylamide gel electro-
phoresis on precast Bio-Rad gradient gels and electrotransfer to
nitrocellulose membrane. Membranes were blocked for 30 min
in 50 mM Tris/HCl, pH 7.6, 137 mM NaCl, and 0.1% (w/v)
Tween 20 (TBS-T) containing 10% (w/v) milk powder. The
membranes were then probed with the indicated antibodies in
TBS-T containing 5% (w/v) milk powder or 5% (w/v) BSA for
16 h at 4 °C. Detection was performed using horseradish perox-
idase-conjugated secondary antibodies and the enhanced
chemiluminescence reagent. The signal was visualized using a
Bio-Rad imaging camera, and band intensities quantified using
Bio-Rad imaging software.

Scheme 3

Scheme 4
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