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Copper is an essential element for proper organismal devel-
opment and is involved in a range of processes, including oxida-
tive phosphorylation, neuropeptide biogenesis, and connective
tissue maturation. The copper transporter (Ctr) family of inte-
gral membrane proteins is ubiquitously found in eukaryotes and
mediates the high-affinity transport of Cu� across both the
plasma membrane and endomembranes. Although mammalian
Ctr1 functions as a Cu� transporter for Cu acquisition and is
essential for embryonic development, a homologous protein,
Ctr2, has been proposed to function as a low-affinity Cu trans-
porter, a lysosomal Cu exporter, or a regulator of Ctr1 activity,
but its functional and evolutionary relationship to Ctr1 is
unclear. Here we report a biochemical, genetic, and phyloge-
netic comparison of metazoan Ctr1 and Ctr2, suggesting that
Ctr2 arose over 550 million years ago as a result of a gene dupli-
cation event followed by loss of Cu� transport activity. Using a
random mutagenesis and growth selection approach, we identi-
fied amino acid substitutions in human and mouse Ctr2 proteins
that support copper-dependent growth in yeast and enhance
copper accumulation in Ctr1�/� mouse embryonic fibroblasts.
These mutations revert Ctr2 to a more ancestral Ctr1-like state
while maintaining endogenous functions, such as stimulating
Ctr1 cleavage. We suggest key structural aspects of metazoan
Ctr1 and Ctr2 that discriminate between their biological roles,
providing mechanistic insights into the evolutionary, biochem-
ical, and functional relationships between these two related
proteins.

Copper is a critical metal for all forms of eukaryotic life
because of its ability to shuttle electrons and cycle between
oxidation states, Cu� and Cu2�, under biologically relevant
conditions. As such, this redox property has been harnessed

during the evolution of copper-containing enzymes to partici-
pate in many diverse functions, such as respiration, superoxide
disproportionation, pigmentation, connective tissue matura-
tion, and neuropeptide biogenesis (1–3). Because of the critical
importance of copper, life has evolved methods to ensure
appropriate acquisition, distribution, and storage. Defects in
copper metabolism are linked with pathologies that include
neutropenia, cardiomyopathy, Menkes syndrome, Wilson’s
disease, and peripheral neuropathy (4 –7).

The baker’s yeast Saccharomyces cerevisiae has yielded
numerous insights into the biology of copper acquisition. For
example, S. cerevisiae was instrumental in the discovery of cop-
per transporter 1 (Ctr1),3 a homotrimeric plasma membrane-
spanning protein expressed in eukaryotes and responsible for
the uptake of extracellular copper (8, 9). Ctr1 contains a large
extracellular amino-terminal metal-binding domain rich in
methionine residues that facilitates high-affinity Cu� transport
through the transmembrane pore (10). Lining the transmem-
brane pore is an M-X3-M motif present on transmembrane
domain two that is proposed to function as a Cu� selectivity
filter (11, 12). Mutation of these residues to leucine results in a
protein incapable of Cu� transport. The third transmembrane
domain contains a glycine zipper motif that is required for mul-
timerization of Ctr1 monomers into functional Cu�-transport-
ing homotrimers (13, 14). Because of the high selectivity of
Cu�, Ctr1 requires a cell-surface reductase to reduce extracel-
lular Cu2� to Cu� for transport (15, 16). Loss of Cu2� reductase
activity results in diminished Ctr1-mediated Cu� transport.
S. cerevisiae also expresses a redundant high-affinity Cu�

transporter, Ctr3 (17). Although Ctr3 also possesses a critical
MXXXM motif and glycine zipper, the amino-terminal metal-
binding domain is significantly smaller than that of Ctr1. Also,
although the amino-terminal domain of Ctr1 contains several
methionine-rich regions, the Ctr3 amino-terminal domain
lacks these and instead relies on cysteine residues for Cu�

transport. Other fungi also possess redundant high-affinity
Cu� transporters, such as Ctr4 and Ctr5 from Schizosaccharo-
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myces pombe and Ctr1 and Ctr4 from the distantly related
Cryptococcus neoformans (18, 19). When in the cytosol, copper
is inserted into copper-dependent enzymes for which it serves
as a co-factor, shuttled to the secretory compartment or mito-
chondria, stored inside the vacuole, or bound to the Ace1 met-
alloregulatory transcription factor, where it activates expres-
sion of the Cu�-binding and detoxifying metallothioneins. In
S. cerevisiae, vacuolar Cu� is mobilized to the cytosol by Ctr2,
an integral membrane protein structurally similar to Ctr1, in
concert with a vacuole-localized metalloreductase (20, 21).

Multiple organisms, including the fission yeast S. pombe, the
alga Chlamydomonas reinhardtii, the woodlouse Oniscus asel-
lus, and the American lobster Homarus americanus, store cop-
per in a vacuole-like compartment (22–26). Indeed, lysosomal/
endosomal copper stores have been identified in hepatocytes of
a mouse model for Wilson’s disease, a genetic disorder charac-
terized by increased hepatic copper levels (27). Presumably this
copper is trapped in storage vesicles because of the inability to
export copper into the bile. Although there is widespread evi-
dence for vesicular copper stores in metazoans, it is currently
unclear how endosomal copper stores are mobilized to the
cytoplasm. A protein related to the mammalian Ctr1 high-af-
finity Cu� transporter, Ctr2, was originally identified based on
its sequence homology to Ctr1 (28). Like Ctr1, the Ctr2 protein
possesses three membrane-spanning domains, assembles into a
homomultimer, and possesses an MXXXM motif in trans-
membrane domain two that is absolutely required for Cu�

transport by all bona fide Ctr1-like Cu� transporter proteins.
Moreover, Ctr1 and Ctr2 associate in a complex in vivo, show
similar tissue selectivity for high expression levels, and the Ctr1
and Ctr2 genes are genetically linked in the mouse and human
genome (29). However, Ctr1 and Ctr2 have distinct functions in
copper metabolism based on a number of features. Although
initially proposed to function directly as a low-affinity copper
importer at the plasma membrane or as a lysosomal copper
exporter, work in our laboratory suggests that Ctr2 does not
function as a direct copper transporter but rather functions as a
regulator of Ctr1 copper transport activity (30 –32). First,
although Ctr1 localizes to both the plasma membrane and
intracellular vesicles, endogenous Ctr2 is confined to an endo-
somal compartment (33–37). Second, in contrast to loss of
Ctr1, which causes a reduction in copper accumulation, loss of
Ctr2 in mouse tissues and in isolated mouse embryonic fibro-
blasts (MEFs) results in increased cell-associated copper. Third,
Ctr2 expression modulates cellular copper accumulation even
when both methionine residues of the essential MXXXM motif,
are mutated to LXXXL (29). Fourth, unlike all other Ctr1-like
proteins analyzed from fungi, plants, reptiles, and mammals,
expression of the mouse or human Ctr2 protein fails to com-
plement the copper deficiency phenotype of S. cerevisiae cells
lacking a functional copper transporter (38, 39).

Consistent with the loss of Ctr2 resulting in increased cellu-
lar and tissue copper, Ctr2 stimulates the cleavage of the Ctr1
copper-binding ecto-domain, in a mechanism involving an ini-
tial, rate-limiting ectodomain cleavage by the Cathepsin L
endosomal protease (40). Cleavage of the Ctr1 ecto domain
results in a truncated form of Ctr1 (tCtr1) that supports
reduced cellular Cu accumulation as compared with full-length

Ctr1. Therefore, loss of Ctr2 maintains full-length Ctr1, thereby
driving increased Cu uptake at the plasma membrane. In MEFs
and some cell types the increased cell-associated Cu is prefer-
entially localized to endosomal compartments, suggesting a
role for Ctr2 in the mobilization of endosomal Cu stores. The
observation that tCtr1 is capable of mediating the release of
vesicular copper stores, whereas the full-length Ctr1 is not, sug-
gests that Ctr2-mediated generation of tCtr1 functions to reg-
ulate both copper uptake at the plasma membrane and endo-
somal copper mobilization by modulating the cleavage of the
Ctr1 ecto-domain (41, 42). Given the requirement for both Ctr2
and Cathepsin L for Ctr1 ecto-domain cleavage and the copper
hyperaccumulation phenotypes because of loss of either com-
ponent, these observations support an indirect role for Ctr2 in
regulating Ctr1-mediated copper transport at the plasma mem-
brane and from endosomal compartments. Together, these
observations raise the question of the origin of metazoan Ctr2.

Here we report a biochemical and molecular phylogenetic
analysis of eukaryotic Ctr1 and Ctr2 proteins suggesting that
metazoan Ctr2 arose �550 million years ago through a gene
duplication event involving the Ctr1 genomic locus. The result-
ing Ctr2 has since experienced a more rapid exploration of
mutagenic space, a hallmark of neo-functionalization, losing
the ability to transport copper but gaining the ability to regulate
Ctr1 cleavage. By performing an unbiased mutagenic screen
followed by biochemical analyses, we isolated single point
mutants of mammalian Ctr2 that restore copper transport
activity without loss of its function in Ctr1 ecto-domain cleav-
age. Interestingly, these point mutations change Ctr2 residues
that are highly conserved among metazoan Ctr2 into the cor-
responding highly conserved Ctr1 residues, thus reversing the
direction of evolution. These studies define key residues
involved in copper transport and shed light on the evolutionary
biochemical history of metazoan copper homeostasis.

Results

In an effort to understand the origins of mammalian Ctr2,
125 Ctr protein sequences from a wide variety of eukaryotic
organisms were analyzed via a molecular phylogenetic
approach. Rather than solely constructing a sequence align-
ment and performing maximum likelihood estimation, we
sought to utilize well established taxonomy data to inform tree
building (43). To this end, we built a Ctr phylogenetic tree
guided by a species tree utilizing the program TreeBeST, cou-
pled with curated taxonomic data from NCBI (Fig. 1A) (44).
Both mismatch and Jones-Taylor-Thornton distance models
yielded two clusters of proteins corresponding to either Ctr1 or
Ctr2. All species analyzed contained at least one copy of Ctr1.
Analysis of species harboring a Ctr2-encoding gene suggests
that, at the beginning of the metazoan lineage, here represented
by the sea sponge Amphimedon queenslandica, Ctr2 was not
present. At the time of the protostome/deuterostome diver-
gence, �550 million years ago, Ctr2 appeared and was main-
tained in subsequent species, with the notable exception of the
phylum Arthropoda (45). This is in agreement with previous
studies that identified and analyzed the Drosophila melano-
gaster Ctr proteins Ctr1A, Ctr1B, and Ctr1C, indicating that all
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three have Cu� transport activity and suggest that they are
more closely related to Ctr1 rather than Ctr2 (46 – 48).

A key functional difference between mammalian Ctr1 and
Ctr2 is that Ctr1 acts as a functional Cu� transporter when
expressed in S. cerevisiae cells lacking endogenous high-affinity
Cu� transporters, whereas Ctr2 does not show Cu� transport
in this sensitive yeast assay (29). To test the Ctr1 versus Ctr2
protein assignments made by the Ctr phylogeny tree generated
(Fig. 1A), the ability of Ctr1 and Ctr2 proteins to transport Cu
was interrogated by their ability to support the growth of

ctr1�ctr3� S. cerevisiae cells on non-fermentable medium
(YPEG), which requires a functional, copper-loaded cyto-
chrome c oxidase (49). The assigned Ctr1 and Ctr2 proteins
from the sea urchin Strongylocentrotus purpuratus were used to
test this prediction. S. purpuratus cDNAs encoding the pre-
dicted Ctr1 and Ctr2 proteins were subcloned into yeast
expression vectors containing a carboxyl-terminal GFP fusion
and tested for the ability to support YPEG growth in S. cerevi-
siae ctr1�ctr3� cells. In agreement with the phylogenic predic-
tion model, sea urchin Ctr1 restored growth on YPEG, whereas

Figure 1. Ctr2 appearance through evolution as a uniquely metazoan gene. A, Ctr protein sequences from the indicated species were identified and
retrieved from the NCBI Protein database by iterative BLAST searches. Sequences were aligned with MUSCLE and subjected to TreeBeST analysis to reveal
which species possesses predicted Ctr1 and/or Ctr2. The species tree was created from the NCBI Taxonomy database. A blue dot represents the predicted
appearance of Ctr2, whereas the red dot represents the predicted loss of Ctr2. Species classification is shown on the right. B, S. cerevisiae ctr1�ctr3� cells were
transformed with the indicated plasmids and plated on the indicated medium. Sp, Strongylocentrotus purpuratus. C, the same yeast strains as in B were
inspected by fluorescence microscopy and photographed. DIC, differential interference contrast.
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expression of Ctr2 did not support copper-dependent growth
(Fig. 1B). Both Ctr1 and Ctr2 were expressed and localized to
the plasma membrane and the vacuole (Fig. 1C). These results
suggest that the gene referred to as mammalian Ctr2 is uniquely
metazoan and was not present in lower organisms but appears
around the time of the protostome/deuterostome divergence.

A number of mechanisms have been suggested to drive the
appearance of new genes, including horizontal gene transfer,
chimeric gene fusion between portions of existing genes either
through recombination as DNA or via an RNA intermediate, as
well as the de novo origination of genes from a previously non-
functional genomic sequence (50, 51). Because of the sequence
and overall structural similarities between the mammalian Ctr1
and Ctr2 proteins, we hypothesized that Ctr2 may have arisen
from gene duplication followed by neo-functionalization (52).
A hallmark of neo-functionalization is that the daughter gene
undergoes more rapid mutation compared with the parental
gene because of the pressure on the parental copy to maintain
function, whereas the daughter copy is free to explore evolu-
tionary space. To determine whether Ctr2 has experienced a
greater mutational force over time, we compiled Ctr1 and Ctr2
sequences from 35 metazoan species and compared the ratio of
non-synonymous mutations (nucleic acid changes that alter the
protein sequence) with synonymous mutations (those that do
not alter the protein sequence), referred to as dN/dS (Fig. 2A).
Indeed, Ctr2 shows a higher global dN/dS ratio than Ctr1, as
would be expected from a duplicated and neo-functionalized
gene (53, 54). When dN and dS are examined on an individual
codon basis, Ctr1 has a much higher percentage of codons dis-
playing dN�dS (negative selection) than Ctr2 (Fig. 2B).

To identify whether there are regions of Ctr1 and Ctr2 most
subject to negative selection, codons which are significantly
selected for are displayed with the protein topology overlaid
(Fig. 2C). This analysis shows that, with the exception of the
5�-most region, encoding the amino-terminal region of the pro-
tein, Ctr1 is subject to similar negative selection across the
entirety of the gene. However, although Ctr2 was negatively
selected for preferentially in regions encoding the three trans-
membrane domains, regions predicted to encode soluble por-
tions of the protein, such as the amino and carboxyl termini and
the loop between transmembrane domains one and two, are not
subjected to negative mutational pressure. To visualize the
amino acids most subject to mutation, the human Ctr1 and
Ctr2 sequences were analyzed via the ConSurf server (Fig. 2D)
(55). Residue conservation agrees with dN/dS analysis in that
the ecto-domain of Ctr1 is highly variable over time, but the
remainder of the protein is highly conserved among Ctr1 pro-
teins. Along with the demonstration that the lack of a functional
Ctr1 is embryonic lethal (56, 57), whereas mice lacking Ctr2 do not
show an overt growth phenotype, this analysis suggests that Ctr2
was more free to explore mutagenic space than Ctr1. The sugges-
tion that mutation of Ctr1 is more detrimental to organismal fit-
ness than mutation of Ctr2 supports a model in which Ctr2 arose
via Ctr1 duplication and neo-functionalization.

Gene duplication can occur from the duplication of a seg-
ment of DNA as well as the expression and retrotransposition
of RNA inserted into chromosomal DNA (50). In the latter case,
the newly duplicated gene would be expected to be under the

control of an entirely different promoter compared with the
parental gene. To probe the nature of the gene duplication
event that gave rise to Ctr2, the genomic architecture for
human Ctr1 and Ctr2 was compared. Analysis of ChIP-seq data
from the human ENCODE (Encyclopedia of DNA Elements)
project shows a significant overlap in the repertoire of proteins
bound within a 1000-base pair region upstream of the tran-
scription start site for Ctr1 and Ctr2 (Fig. 3A), suggesting that a
similar set of transcription factors controls the expression of
the Ctr1 and Ctr2 genes (58). To investigate this in more detail,
500 base pairs upstream of the transcription start sites for Ctr1
and Ctr2 were analyzed from 10 separate species with the Con-
Tra promoter alignment tool (Fig. 3B) (59). Four transcription
factors broadly involved in blood cell development, epithelial
formation, immune response, and stem cell maintenance (Gfi1,
Elf5, Nfatc2, and Klf4, respectively) were found to be highly
conserved in the 10 species analyzed in both Ctr1 and Ctr2,
suggesting similar transcriptional regulation. Consistent with
this observation, we previously demonstrated that Ctr1 and
Ctr2 mRNA levels are similar across a number of human and
mouse tissues (28, 29). Both Ctr1 and Ctr2 transcript levels are
high in the liver, which functions as the primary Cu storage
organ, but relatively low in skeletal muscle, presumably because
of the differentiated nature of this cell type.

If Ctr2 arose from a duplication of the Ctr1 genomic locus
rather than through the retrotransposition of an RNA interme-
diate, then the two genes would be expected to have a similar
arrangement of introns and exons. To address this, we exam-
ined the genomic architecture of Ctr1 and Ctr2 from the fully
sequenced human, cow, mouse, and zebrafish genomes (Fig.
4A). The overall intron/exon architecture shows four coding
exons for both transcripts, with the Ctr1 gene containing a non-
coding exon at the 5� end of the transcript (Fig. 4B). Although
the final three exons are of similar size throughout all species
examined, there exists a notable difference between Ctr1 and
Ctr2 in the first coding exon. For Ctr1, this exon codes for a
large metal-binding domain rich in His, Met, and Cys residues.
In all Ctr2 genes examined, this first exon encodes only two
amino acids, one of which is the initiator methionine. It appears
that, although the 5� (promoter) and 3� regions of the Ctr1 gene
were retained in Ctr2, the first exon was largely deleted, gener-
ating a Ctr2 coding region that would lack an amino-terminal
metal binding ecto-domain, perhaps explaining the lack of cop-
per transport activity observed for Ctr2.

To test this possibility, a Ctr1-Ctr2 chimera was constructed
in which the first 42 amino acids from human Ctr1, comprising
the copper-binding ecto-domain, were fused to Ctr2 at the
amino terminus (Fig. 5A). It has been suggested that the Ctr1
ecto-domain functions to concentrate copper ions at the mouth
of the transmembrane pore and thus increase the local concen-
tration of copper available to be transported (60 – 65). We
hypothesized that this function will allow Ctr2 to rescue copper
transport-dependent growth; however, addition of the Ctr1
ecto-domain to Ctr2 was not able to confer growth on non-
fermentable medium (Fig. 5B) despite the observation that both
Ctr2 and Ctr1 (1– 42) � Ctr2 were expressed as GFP fusion
proteins localized to the plasma membrane and vacuole (Fig.
5C). This suggests that deletion of the Ctr1 first coding exon,
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resulting in the absence of a large ecto-domain, is not solely
responsible for the lack of copper transport function for Ctr2.

To explore sequences that account for copper transport dif-
ferences between Ctr1 and Ctr2, we hypothesized that it should
be possible to “reverse” these mutations to create a copper
transport-competent Ctr2. An unbiased mutagenic screen was
developed in which yeast-Escherichia coli shuttle plasmids
encoding mouse Ctr2 were propagated in DNA repair-deficient
E. coli (Fig. 6A). Sequencing validated that each Ctr2 gene har-
bored an average of one to two point mutations. The mutated
plasmid pool was transformed into ctr1�ctr3� yeast cells and

selected on YPEG medium in which only cells harboring copper
transport activity grow. Of 26,000 colony-forming units plated
on YPEG, 34 independent transformants grew. Plasmids res-
cued from these transformants were sequenced and represent
six unique Ctr2 mutants, with each plasmid containing only
one mutation per gene (Fig. 6B). Of the six unique mutations
identified, two showed significantly more robust growth than
the others and were examined in more detail.

These two variants of interest harbored Ctr2 changes at
codons L34F and K47E, respectively. To verify that these muta-
tions are solely responsible for the observed growth on YPEG,

Figure 2. Ctr2 demonstrates relaxed purifying selection. A, predicted Ctr family genes from 51 metazoan species were aligned, and single-likelihood
ancestor counting analysis was performed under standard parameters using the Datamonkey server. Global dN/dS values are reported. B, the number of
individual codons from the Ctr1 or Ctr2 DNA alignment that display negative selection (p � 0.05) were divided by the number of total codons in the Ctr1 or Ctr2
alignment, respectively. C, normalized dN/dS values for each codon displaying selection (p � 0.05) for Ctr1 and Ctr2 alignments are plotted. Cylinders represent
transmembrane domains. D, protein sequences from metazoan Ctr1 and Ctr2 were aligned and analyzed for conservation with the ConSurf server using a
Bayesian evolution method. Shown are the human Ctr1 and Ctr2 proteins with amino acids that represent variable (blue), neutral (white), or conserved (red)
positions. Arrows point to the highly conserved MXXXM motif necessary for copper transport. Asterisks denote residues Phe-77 and Glu-91 in human Ctr1 as well
as Leu-34 and Lys-47 in human Ctr2.
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these same changes were separately introduced into the mouse
Ctr2 coding region and fused with a carboxyl-terminal EGFP
tag, and recipient ctr1� ctr3� cells were plated on YPEG (Fig.
6C). Although both individual mutations are able to rescue
growth of this strain lacking endogenous high-affinity Cu�

transporters, K47E does not complement as well as L34F. When
combined, the double mutant K47E/L34F supports enhanced
growth relative to either single mutations and is dependent on
the MXXXM motif in transmembrane domain 2 that is abso-
lutely required for Cu� transport by all known Ctr1 proteins

(66, 67). As the screen was performed using mouse Ctr2, the
corresponding mutations were made in a separate yeast vector
expressing human Ctr2 fused to a carboxyl-terminal EGFP tag
to test this observation in another mammalian Ctr2. Although
expression of the human Ctr2 K47E allele was unable to rescue
growth, Ctr2 L34F demonstrated copper transport-dependent
growth (Fig. 6D). Moreover, ctr1� ctr3� cells expressing
human Ctr2 harboring both mutations shows enhanced growth
beyond either mutation alone, suggesting that the K47E muta-
tion is necessary for the conversion of Ctr2 into a high-affinity

Figure 3. The Ctr1 and Ctr2 genes contain similar promoter elements. A, DNA regions 1 kb upstream of the transcription start site, located at the 5� region
of the 5� UTR, for Ctr1 and Ctr2 were identified via the UCSC Genome Browser, and ChIP-seq data from the ENCODE Consortium were analyzed. Proteins that
bound to both promoters are displayed in the center of the Venn diagram, whereas those found to occupy only one of the two promoters are shown in the
non-overlapping portion of the diagram. B, Ctr1 and Ctr2 promoters from the indicated 10 species were analyzed with the ConTra v2 server under standard
parameters for predicted transcription factor binding sites. Transcription factors are displayed as colored blocks placed above their binding location. A black
rectangle indicates the predicted presence of a transcription factor-binding site in the indicated species.
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Cu� transport-competent molecule. As with the mouse Ctr2
variant proteins, the MXXXM motif is required for copper-de-
pendent growth in this context.

Inspection of the K47E and L34F amino acid substitutions
revealed that both of the mutations were in residues that are
highly conserved in Ctr2 (Fig. 2D). This suggests that there has
been a selection for these residues and that evolutionary pres-
sure exists to maintain Ctr2 in a state that is not capable of
supporting copper transport. Surprisingly, these mutations
convert highly conserved Ctr2 residues into the identical resi-
due found at the same position in Ctr1 (Fig. 7A). Moreover,
these residues in Ctr1 are highly conserved, suggesting that
they have been selected over time to maintain Ctr1 Cu� trans-
port activity. Thus, these mutations “revert” Ctr2 into a more
Ctr1-like state that rescues growth on medium requiring a

functional copper transporter to provide copper to cytochrome
c oxidase.

To stimulate copper-dependent yeast cell growth, the Ctr2
mutants could either transport extracellular copper into the
cytosol or mobilize vacuolar copper stores. Fluorescence
microscopy of cells expressing the EGFP-tagged human Ctr2
and mutant derivatives revealed that wild-type and mutant
Ctr2 fusion proteins localize to both the vacuole and the plasma
membrane, a pattern typical for overexpressed membrane pro-
teins (Fig. 7B). Immunoblotting for the Ctr2-EGFP fusions
showed that the wild-type and mutant proteins are expressed at
similar levels (Fig. 7C). Together, these data indicate that the
mutations in Ctr2 do not grossly alter the stability or localiza-
tion of the proteins expressed in yeast relative to wild-type Ctr2.
To determine whether expression of the Ctr2 variants alters

Figure 4. Ctr2 genomic loci are similar to Ctr1 but lack an exon coding for the copper-binding ecto-domain. A, genomic data for Ctr1 and Ctr2 from the
listed species were downloaded from Ensembl and aligned to compare intron/exon structure. Exons are represented by green (Ctr1) and orange (Ctr2)
rectangles, whereas introns are displayed as black lines. Purple rectangles represent UTRs. B, depiction of the general architecture of Ctr genes with regions
encoding the metal binding ecto-domain, the intracellular loop, three transmembrane domains, and the cytosolic tail. Ctr1 and Ctr2 share a similar intron/exon
structure, with the notable exception that Ctr2 lacks the exon coding for a large ecto-domain. The dashed red line indicates the region of difference.
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copper levels in yeast ctr1� ctr3� cells, ICP-MS analysis was
used to measure total cell-associated copper levels (Fig. 7D).
Human Ctr1 was expressed as a positive control and dramati-
cally increased cellular Cu levels compared with cells harboring
the empty vector. Expression of human Ctr2 L34F, but not
K47E, led to increased cell-associated copper levels, which were
further increased in cells expressing the Ctr2 L34F/K47E allele,
in agreement with the enhanced copper-dependent growth
observed with the Ctr2 double mutant. These observations sug-
gest that the Ctr2 mutants selected for copper-dependent
growth in yeast also support the accumulation of copper in
yeast cells in a manner dependent on the conserved MXXXM
motif, which is essential for Cu� transport by Ctr1.

A hallmark of the Ctr1 copper transporters is their exquisite
specificity for transporting Cu� rather than Cu2�. To investi-
gate whether the copper transport-competent Ctr2 mutants
display specificity for Cu�, the human Ctr2 mutants were
expressed in a ctr1�ctr3�fre1� yeast strain that lacks both the
endogenous high-affinity Cu� transporters and a major cell
surface Cu2� metalloreductase, Fre1, that is required for Ctr1
and Ctr3 function (Fig. 8A) (15, 16). The Ctr2 mutants that
support copper-dependent growth in ctr1� ctr3� cells did not
support growth when expressed in an isogenic strain also lack-
ing the Cu2� metalloreductase Fre1. When the medium was
supplemented with the Cu2�-reducing agent ascorbic acid,
Ctr2 L34F and Ctr2 L34F/K47E rescued copper-dependent
growth in both the ctr1� ctr3� and ctr1� ctr3� fre1� strains.
This suggests that the Ctr2 mutants, like Ctr1, preferentially
transport Cu� over Cu2�.

Ag� is isoelectric with Cu�, with both metals possessing
thiophilic binding properties, and when administered to bio-
logical systems, Ag� can serve as a toxic mimetic for Cu�-de-
pendent processes (49). Ctr1 has been shown previously to
mediate Ag� transport and sensitizes cells to Ag� toxicity (68).
Therefore, to further evaluate the copper ion preferred by Ctr2
mutant proteins, yeast cells expressing the human Ctr2 Cu�

transport-competent mutants were evaluated for Ag� resis-
tance. Indeed, yeast ctr1� ctr3� cells expressing Ctr2 L34F or
Ctr2 L34F/K47E were significantly sensitized to a range of Ag�

concentrations, although not to the same degree as cells
expressing Ctr1 (Fig. 8B). This is in accordance with the obser-
vation that these cells also accumulate less copper than Ctr1-
expressing cells. Interestingly, although the human Ctr2 K47E
mutant does not rescue growth on YPEG or increase cellular
copper, it does sensitize cells to Ag� toxicity compared with
vector, whereas WT Ctr2 does not sensitize cells compared
with vector alone (Fig. 8B). This could be due to the extreme
toxicity of low levels of Ag� even when transport is minimal. To
explore the metal specificity for transport by the Ctr2 mutants,
cells were exposed to several transition metals over a range of
concentrations and analyzed for growth. Zinc, nickel, lithium,
cobalt, manganese, lead, and mercury showed no difference in
toxicity as a function of wild-type or mutant Ctr2 expression
(data not shown). However, the Ctr2 L34F/K47E variant, but
not the Ctr2 L34F mutant, showed increased sensitivity to cad-
mium for growth (Fig. 8C). The increased cadmium toxicity of
yeast cells expressing a Cu� transport-competent variant of
Ctr2 is not a function of increased cellular copper, as expression

Figure 5. A metal-binding ectodomain is not sufficient to induce Ctr2-mediated rescue of respiration-dependent growth. A, model showing mono-
meric full-length human Ctr1 and Ctr2 along with a chimeric protein consisting of the first 42 residues of Ctr1 fused to Ctr2. Metal-binding Met and His residues
are indicated in blue and red, respectively, and glycans are indicated with branches. B, the indicated proteins were expressed in S. cerevisiae ctr1�ctr3� cells and
plated onto the indicated growth medium. C, the same cells as in B were evaluated by fluorescence microscopy and photographed. DIC, differential interfer-
ence contrast.
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of Ctr1 did not increase cadmium toxicity (Fig. 8C). Moreover,
the cadmium toxicity associated with Ctr2 L34F/K47E expres-
sion depends on the MXXXM motif necessary for Cu� trans-
port by both this Ctr2 variant and by Ctr1.

To test the copper transport function of the Ctr2 mutants
that enhance yeast copper accumulation and copper-depen-
dent growth in mammalian cells, MEFs lacking both the Ctr1
and Ctr2 genes were stably transfected with a plasmid express-
ing human Ctr1, wild-type human Ctr2, or the human Ctr2
L34F/K47E mutant fused to EGFP. Expression of Ctr1 and Ctr2
L34F/K47E led to increased CoxIV levels and decreased levels
of CCS compared with WT Ctr2 (Fig. 9A). Furthermore,
Ctr1�/� Ctr2�/� MEFs expressing Ctr1 or the Ctr2 L34F/K47E
variant accumulate significantly more copper compared with
cells expressing WT Ctr2 (Fig. 9B). Previous reports suggested
that Ctr2 resides primarily on intracellular vesicles but also par-
tially at the plasma membrane (29, 32). We hypothesize that the
increase in Cu� observed here is a result of extracellular Cu�

imported from the population of Ctr2 localized to the plasma
membrane. Although it cannot be ruled out that the L34F/K47E
mutations alter Ctr2 trafficking so that a larger percentage is
present at the plasma membrane, the previous S. cerevisiae
experiments suggest that the L34F/K47E mutations impart a
gain of function to import extracellular Cu� into the cell. Taken
together, these results demonstrate that the Ctr2 variant that
enhances copper accumulation and copper-dependent growth
in yeast cells also supports enhanced copper accumulation in
mammalian cells.

Mammalian Ctr2 physically interacts with Ctr1 and stimu-
lates the processing of the Ctr1 copper-binding ecto-domain in
a manner involving cathepsin L protease as the rate-limiting
step (29, 40). Although the Ctr2 L34F/K47E mutant is sufficient
to support copper transport by Ctr2 in mammalian cells, the
ability of this Ctr2 variant to stimulate cleavage of the Ctr1
ecto-domain was assessed. Mouse embryonic fibroblasts lack-
ing Ctr2 but expressing endogenous Ctr1 were stably trans-
fected with a doxycycline-inducible cassette expressing either
wild-type human Ctr2 or the mutant variants (Fig. 9C). As

Figure 6. Random mutagenesis identifies Ctr2 mutants capable of rescu-
ing respiration-dependent growth in yeast. A, scheme depicting the strat-
egy for isolating Ctr2 mutants capable of copper-dependent growth. Ctr2
expression vectors were transformed into XL-1 E. coli and propagated for 24 h
before plasmid harvest. The plasmid pool was transformed into S. cerevisiae
ctr1�ctr3� cells and plated on YPEG medium. Colonies were isolated, and
plasmids were sequenced. B, table displaying the six unique Ctr2 mutations
capable of conferring growth on YPEG. C, cells containing the indicated
mouse genes were spotted onto the indicated medium. MXXXM indicates
mutation of transmembrane domain two methionine residues critical for Cu�

transport activity to leucine. D, mutations that were identified in the mouse
Ctr2-coding region were mutated in the human Ctr2 gene and assayed for
growth in a manner similar as in C.

Figure 7. Ctr2 mutants are biochemically similar to Ctr1 and increase
total cellular copper accumulation. A, Ctr1 and Ctr2 from the indicated
species were aligned with MUSCLE. The two Ctr2 residues identified from the
mutagenic screen, L34F and K47E, and the corresponding residues in Ctr1 are
highlighted in purple and cyan, respectively. B, S. cerevisiae ctr1�ctr3� cells
transformed with the indicated plasmids were inspected by fluorescence
microscopy and photographed. DIC, differential interference contrast. C, the
same cells as in B were harvested and immunoblotted with anti-GFP and
PGK1 antibodies. D, the same cells as in B were analyzed by ICP-MS to deter-
mine whole-cell copper levels. Data are presented as mean � S.E. from five
biological replicates. **, p � 0.01; ***, p � 0.001.
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reported previously, cells lacking Ctr2 show very low levels of
tCtr1. However, when either the wild type or the mutant variants
of Ctr2 were expressed by doxycycline administration, truncated
Ctr1 (tCtr1) levels increased at the expense of full-length Ctr1.
These data demonstrate that the amino acid changes in Ctr2 that
are required for Cu� transport are not required for Ctr2-mediated
cleavage of the Ctr1 copper-binding ecto-domain.

Discussion

The ability to acquire, store, and mobilize copper ions is crit-
ical to maintaining normal growth and development under

conditions of both copper sufficiency and limitation. Although
several fungal species express dedicated vacuolar Cu� efflux trans-
porters, such as Ctr2 in S. cerevisiae and Ctr6 in S. pombe, the
mechanisms by which copper is mobilized from endosomal pools
is not well understood in other organisms (20, 69). Previous
reports suggest that mammalian Ctr2 functions to export endo-
somal copper stores (30). Here we suggest that Ctr2 arose through
a gene duplication event followed by neo-functionalization.

Comparative analyses coupled with mutagenesis and func-
tional studies support a model in which the metazoan lineage
originally contained a single gene, Ctr1, that functioned to

Figure 8. Ctr2 transport activating mutations impart selectivity for Cu� and increase cadmium sensitivity. A, S. cerevisiae ctr1�ctr3� and
ctr1�ctr3�fre1� cells were transformed with the indicated expression plasmids and plated on the indicated medium, with wedges indicating decreasing cell
density plated. B, S. cerevisiae ctr1�ctr3� cells were transformed with the indicated plasmids, transferred to medium containing the indicated concentration of
AgNO3, and grown for 24 h with agitation at 30 °C. Data are shown as percent growth of strain grown in medium without treatment, with the histogram
displaying data for growth in 1.56 �M AgNO3. C, S. cerevisiae ctr1�ctr3� cells were transformed with the listed plasmids and transferred to medium containing
the indicated amount of CdCl2 and grown for 24 h with agitation at 30 °C. Data are shown as percent growth of strain grown in medium without treatment, with
the histogram displaying data for growth in 1.95 �M CdCl2. *, p � 0.05; ***, p � 0.001.
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transport copper into cells (Fig. 9D). Near the protostome-deu-
terostome split during evolution, the Ctr1 genomic locus may
have largely duplicated to form a nascent Ctr2 locus. Indeed, in
both the mouse and human genome, the Ctr1 and Ctr2 genes
are closely linked, although this is not the case for all metazoans
(29). The analysis of negative selection pressure suggests that
the new Ctr2 gene explored significantly more mutagenic space

than the original Ctr1 gene. Given the essentiality of copper for
normal growth and for Ctr1 in embryonic development in
mammals, this could largely be due to the pressure for Ctr1 to
preserve residues required for Cu� transport (56, 57). As a con-
sequence, Ctr2 may have lost the ability to transport Cu� while
gaining the ability to stimulate cleavage of the Ctr1 copper-
binding ecto-domain in concert with the cathepsin L protease.

Figure 9. Ctr2 transport-activating mutations increase bioavailable copper in mammalian cells while supporting Ctr1 ecto-domain cleavage. A,
Ctr1�/�/Ctr2�/� MEFs containing the indicated gene were treated with 100 ng/ml doxycycline for 24 h, harvested, and immunoblotted with anti-Ctr1 (T,
truncated; F, full-length), anti-GFP, anti-CoxIV, anti-CCS, and anti-tubulin antibodies. B, the same samples as in A were prepared for ICP-MS analysis of whole-cell
copper levels. Data are presented as mean � S.E. from four biological replicates. *, p � 0.05; ***, p � 0.001. C, Ctr2�/� MEFs containing the indicated gene were
treated with 100 ng/ml doxycycline (Dox, �) or PBS (�) for 24 h, harvested, and immunoblotted. D, model for the appearance of Ctr2 during evolution. The
single Ctr1 gene underwent a gene duplication to give rise to Ctr2, lacking the coding information for a copper-binding ecto-domain. The new Ctr2 gene then
underwent at least two mutational events that led to a loss in the ability to transport Cu� and a gain in the ability to stimulate the Cathepsin L-mediated
cleavage of the Ctr1 ecto-domain.
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Although the changes in copper transport activity between full-
length Ctr1 and tCtr1 have not yet been validated in a purified
system, data suggest that Ctr2- and cathepsin L-dependent
cleavage of the Ctr1 ecto-domain has two consequences. First,
tCtr1 at the plasma membrane has decreased Cu� import activ-
ity compared with Ctr1. Second, expression of tCtr1 supports
the mobilization of endosomal copper pools to a greater extent
than Ctr1 (29).

Although consistent with another report suggesting that
Ctr2 plays a role in lysosomal/endosomal copper mobilization,
the data shown here and published studies suggest that, rather
than serving as a direct copper exporter, Ctr2 plays an indirect
role in this process through stimulating the cleavage of Ctr1.
Previous studies have demonstrated that Ctr1 ecto-domain
cleavage requires the action of Ctr2, which forms a complex in
vivo with Ctr1 and partially co-localizes on recycling endo-
somes (29, 40). This suggests that Ctr2 either hetero-oligomer-
izes with Ctr1, perhaps through their conserved glycine zipper
domains, or that the two proteins interact as homotrimers of
Ctr1 and Ctr2. Although Ctr2 facilitates Ctr1 ecto-domain
cleavage independent of the MXXXM motif in the second
transmembrane domain, it may have retained this motif for
other functions, such as for sensing endosomal copper levels,
because this region of Ctr2 is predicted to be positioned on the
luminal side of the endosome.

An intriguing observation from our inspection of Ctr2 pro-
teins in nature is that the Arthropoda lineage lacks a Ctr2 ho-
mologue. Indeed, previous studies of the three D. melanogaster
Ctr proteins (Ctr1A, Ctr1B, and Ctr1C) demonstrated that they
are all functional homologues of Ctr1 that have either systemic
or tissue-specific functions (46 – 48). It is uncertain how Dro-
sophila and other arthropods store and mobilize copper. Per-
haps an explanation can be found in a report describing the role
of polyphosphate-rich granules in mediating copper storage in
the midgut of the velvet bean caterpillar Anticarsia gemmatalis
(70). Indeed, phosphate co-localizes within the copper storage
organelles in C. reinhardtii, the acidocalcisomes, and these
same organelles have been shown to exist in the insect lineage
(24, 71).

When considering the mobilization of intracellular copper
pools, it is also informative to understand how these pools are
generated. P-type Cu�-transporting ATPases both load copper
into secretory vesicles and pump excess copper across the
plasma membrane into the extracellular environment (72).
Higher metazoans possess two distinct P-type ATPase-encod-
ing genes, ATP7A and ATP7B, that, when mutated, give rise to
Menkes syndrome or Wilson’s disease, respectively (4). Our
analysis, coupled with a previous report, suggests that ATP7A
and ATP7B appear to have undergone a gene duplication at
approximately the same time as Ctr2 (73). However, lower
metazoans such as Drosophila and Caenorhabditis elegans,
prior to the split of Chordata, possess a single copy of this cop-
per pump, ATP7. Interestingly, the ATP7B and Ctr2 proteins
are most highly expressed in the liver, the primary organ for
copper storage. Prior to the appearance of these two genes, no
species is known to possess a liver. Perhaps the evolution of the
liver, which, among many other functions, serves in copper
storage, necessitated the evolution of a unique set of copper-

transporting proteins. Also of note is that ATP7A and ATP7B,
although traditionally thought to reside at the Golgi, partially
localize to intracellular vesicles (74, 75). As it is currently
unknown how copper enters the vesicular storage pools, we
speculate that these copper pumps may be responsible for load-
ing the copper storage compartments. Also of interest is met-
allothionein, an intracellular metal binding and detoxification
protein that has been implicated in copper storage (76, 77).
Humans and other higher eukaryotes contain expanded repeats
of metallothionein genes (78). Perhaps duplication of the cop-
per importer, exporter, and storage genes contributed to
increased organismal plasticity.

It is important to note that, although the mammalian Ctr2
and the fungal Ctr2/Ctr6 proteins both function to mobilize
copper from intracellular stores, they may accomplish this goal
in mechanistically different ways. Ctr2 from S. cerevisiae and
Ctr6 from S. pombe directly transport copper from the vacuole
lumen to the cytosol, whereas our data suggest that mammalian
Ctr2 induces the proteolytic cleavage of full-length Ctr1 to gen-
erate a transporter capable of vesicular copper transport (20,
40, 69). In this sense, Ctr2 is an example of separate organisms
independently evolving a similar function, vesicular copper
mobilization, through two separate methods. This type of con-
vergent evolution is now widely documented, with examples
ranging from independent evolution of myoglobin net surface
charge in deep-diving animals, hemoglobin function of high-
altitude hummingbirds, transcriptional profiles of electric
organs in fish and eels, and genes linked to auditory and visual
processes involved in echolocation in dolphins and bats (79 –
84). The notion that biology has found multiple ways to develop
a homeostatic storage mechanism underscores the importance
of copper homeostasis in physiological processes.

Experimental procedures

Yeast strains and plasmids

All S. cerevisiae strains have been described previously. Cells
were routinely grown in selective medium with agitation at
30 °C. All yeast plasmids were created by cloning into the
p413GPD backbone at SpeI and XhoI restriction sites. The plas-
mid containing mouse Ctr2 used for random mutagenesis has
been described previously. For the creation of plasmids con-
taining GFP-tagged variants, codon-optimized gBlocks (Inte-
grated DNA Technologies) were synthesized for human Ctr1-
EGFP, human Ctr2-EGFP, mouse Ctr2-EGFP, sea urchin
Ctr1-EGFP, and sea urchin Ctr2-EGFP. Point mutations were
created using the QuikChange II site-directed mutagenesis kit
(Agilent Technologies).

Phylogenetic analysis

Ctr protein sequences from the indicated species were iden-
tified and retrieved from the NCBI Protein database by iterative
BLAST (Basic Local Alignment Search Tool) searches. A mul-
tiple sequence alignment (MSA) was created using MUSCLE
(Multiple Sequence Comparison by Log-Expectation). A spe-
cies tree was created and downloaded from the NCBI Taxon-
omy database. The MSA and species tree were then subjected to
TreeBeST analysis under standard parameters.
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Ctr2 random mutagenesis

A mouse Ctr2 expression plasmid was transformed into XL1-
Red mutagenic E. coli (Stratagene), a strain deficient in three of the
primary DNA repair pathways that is typically used to introduce
relatively conservative single-nucleotide mutations in genes.
Mutagenesis was performed according to a standard protocol, and
plasmid DNA was extracted from a pooled culture of cells.
Mutated plasmid DNA was transformed into ctr1�ctr3� yeast
cells, and cells were grown on selective medium. Colonies were
then replica-plated on YPEG, and colonies showing good growth
were purified on fresh YPEG before plasmid rescue and sequenc-
ing to determine the nature of the Ctr2 mutation.

Growth inhibition assay

S. cerevisiae ctr1�ctr3� cells were transformed with the indi-
cated plasmids and grown to exponential phase in selective
medium with agitation at 30 °C. Cells were then transferred to a
96-well plate to a final concentration of metal as indicated. Cells
were grown with agitation at 30 °C for 24 h before A600 was
measured.

Functional complementation spot assays

ctr1�ctr3� or ctr1�ctr3�fre1� cells were transformed with
the indicated plasmids and grown to exponential phase in selec-
tive medium with agitation at 30 °C. 10-fold serial dilutions
were spotted on YPD, ethanol (2%), and glycerol (3%) (YPEG)
medium, YPEG containing 50 �M copper, and YPEG contain-
ing 10 mM ascorbic acid and 1.5% agar and incubated for 5–7
days at 30 °C.

Fluorescence microscopy

The ctr1�ctr3� strain was transformed with the indicated
plasmid, grown in selective medium to exponential phase at
30 °C, washed, and resuspended in PBS before being pipetted
onto a microscope slide containing an agar pad. The slide was
then covered with a no. 2 coverslip and sealed with Vaseline
before being imaged on a Zeiss Axio Imager.

Rates of non-synonymous and synonymous changes

MSAs were created from either Ctr1 or Ctr2 amino acid
sequences via alignment with MUSCLE. Amino acid MSAs
were then upload to the PAL2NAL web server along with the
DNA sequences of either Ctr1 or Ctr2, respectively, to create a
codon alignment (85). This codon alignment was then
uploaded to the Datamonkey web server for subsequent analy-
sis (86). The non-synonymous/synonymous mutation ratio
(dN/dS) was calculated using single-likelihood ancestor count-
ing analysis under standard parameters. Global negative selection
was calculated by summing the number of positions in which
dN � dS (p 	 0.1) and dividing by the total number of MSA posi-
tions. Normalized dN-dS values were obtained as described previ-
ously. Amino acid alignments for both Ctr1 and Ctr2 were
uploaded to the ConSurf server for conservation analysis, with the
human sequence used as the query sequence and all other param-
eters as default (55). Sequence scores 1–3 were indicated as vari-
able, 4–6 as neutral, and 7–9 as conserved. The sequence was then
visualized using Protter to infer amino acid positions.

Genomic DNA analysis

ChIP-seq data from the ENCODE Consortium visualized on
the UCSC genome browser was manually inspected for the
presence of bound factors. DNA regions between the transcrip-
tional start site and 1000 base pairs upstream were investigated.
For transcription factor binding site predictions, the ConTra
web server was used (59). Briefly, human Ctr1 or Ctr2
sequences were selected and 500 bases upstream of the tran-
scriptional start site was queried under standard parameters for
the presence of predicted transcription factor binding sites.
Transcripts from indicated species were downloaded from
Ensembl genome browser 87 and examined for location of 5�
UTR, introns, exons, and 3�UTR.

Metal analysis

Mammalian and yeast total cell copper concentrations were
measured by ICP-MS (Agilent Model 7500cs, Santa Clara, CA).
Briefly, log-phase yeast cells were grown in SC-His media (MP
Biomedicals) normalized to cell number, washed, and har-
vested into acid-washed 1.5-ml micro-centrifuge tubes. Yeast
pellets were dissolved 1:10 weight/volume with trace analysis
grade nitric acid (Sigma). Mammalian cells were treated with 100
ng/ml doxycycline for 24 h and harvested at �80% confluency.
Cell pellets were lysed and samples normalized to protein concen-
tration before lysates were digested by addition of trace metal anal-
ysis grade nitric acid (Sigma) at a 1:10 volume/volume ratio. All
samples were then heated at 85–95 °C for �1 h before analysis.

Protein extraction and immunoblotting

For the preparation of protein extracts, mammalian or yeast
cell pellets were resuspended in ice-cold radioimmune precip-
itation assay buffer (Cell Signaling Technology) supplemented
with proteinase inhibitors (Halt Protease Inhibitor Mixture,
Thermo Scientific). Homogenates were vortexed for �10 s and
centrifuged at 20,000 
 g at 4 °C for 10 min, and supernatants
were collected. Protein concentrations were measured with the
BCA protein assay kit (Thermo Scientific). SDS-PAGE and
immunoblotting were carried out following standard protocols.
The antibodies used were anti-GFP (Sigma-Aldrich), anti-
phosphoglycerate kinase (Invitrogen) anti-cytochrome c oxidase
(CoxIV; Mitosciences, Eugene, OR), anti-copper chaperone for
SOD1 (CCS, Santa Cruz Biotechnology), and anti-�-tubulin
(Cell Signaling Technology, Danvers, MA). The anti-Ctr1 anti-
body has been described previously. HRP-conjugated anti-
mouse or anti-rabbit IgG (GE Healthcare) was used as second-
ary antibody for immunoblotting.
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