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Abstract

Process quality control and reproducibility in emerging measurement fields such as metabolomics 

is normally assured by interlaboratory comparison testing. As a part of this testing process, 

spectral features from a spectroscopic method such as nuclear magnetic resonance (NMR) 

spectroscopy are attributed to particular analytes within a mixture, and it is the metabolite 

concentrations that are returned for comparison between laboratories. However, data quality may 

also be assessed directly by using binned spectral data before the time-consuming identification 

and quantification. Use of the binned spectra has some advantages, including preserving 

information about trace constituents and enabling identification of process difficulties. In this 

paper, we demonstrate the use of binned NMR spectra to conduct a detailed interlaboratory 

comparison and composition analysis. Spectra of synthetic and biologically-obtained metabolite 

mixtures, taken from a previous interlaboratory study, are compared with cluster analysis using a 

variety of distance and entropy metrics. The individual measurements are then evaluated based on 

where they fall within their clusters, and a laboratory-level scoring metric is developed, which 

provides an assessment of each laboratory’s individual performance.
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1 Introduction

Chemometrics is a field that refers to the application of a wide range of statistical and 

mathematical methods, including multivariate methods, to problems of chemical origin [1–
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3]. With the advance of analytical instrumentation in chemical metrology, an increasing 

amount of data can be generated which requires multiple approaches for extracting reliable 

information. This has required and enabled the development of improved analytical 

procedures for data analysis based on sound chemometric principles in order to reliably 

assess the properties of interest in a system under study.

In recent years, the importance of metrology in the world has grown significantly since its 

main focus is to provide reliability, credibility, universality and quality measurements. Since 

measurements are essential, directly or indirectly, in virtually all decision-making processes, 

the scope of metrology is immense, involving important areas of society such as industry, 

trade, health, safety, defense and the environment. It is estimated that about 4 % to 6 % of 

the gross domestic product of industrialized countries is dedicated to measurement [4]. In 

this context, the use of chemometrics in combination with metrology is a potential approach 

to the interpretation of data in decision making, providing improved industrial and 

technological development. One of the important metrological activities that can be 

highlighted is the participation and organization of interlaboratory quality assurance 

programs. Quality assurance includes interlaboratory studies used as an external evaluation 

tool and in the demonstration of the reliability of laboratory analytical results. It also serves 

to identify gaps in the analytical process and enable comparability improvement. Moreover, 

it is one of the items required for accreditation tests by ISO/IEC 17025: 2005 [5].

According to ISO 13528: 2015 [6] and ISO/IEC 17043 [7], there are several statistical tools 

to be used to assess the results of analytical laboratories participating in proficiency testing. 

Among them there are the Z-scores, Z′-scores, Zeta scores and En scores. The problem with 

these metrics is related to the fact that they can only be used for cases of univariate 

measurement results and have not been systematically extended to multivariate analyses. 

However, some studies have demonstrated efforts to analyze the quality of multivariate data. 

An example of this is in the field of metabolomics [8] in which principal components 

analysis (PCA) was used to evaluate data from an interlaboratory comparison. In other work 

[9], a metric called Qp-score is proposed to evaluate the performance of each laboratory for 

multivariate data. Other than these studies, there have been few attempts to perform 

interlaboratory comparisons on multivariate data. But even these studies have used spectral 

data to measure some property or set of properties and then determined standard univariate 

scores for these measurements. For instance, in Gallo et al. [9], the participating laboratories 

determined calibration curves for metabolite concentration with respect to nuclear magnetic 

resonance spectroscopy (NMR) spectral feature intensity and then determined a score from 

those curves. In Viant et al. [8], several significant features within each spectrum were 

identified and then univariate scores determined based on the intensities of those features. In 

each case, however, the scoring process reduces a vector of thousands of components to one 

possessing relatively few components, and it is still difficult to extract a comprehensive 

metric of “goodness” from this information.

Considering the lack of a multivariate metric in the ISO standards that address the subject, 

the objective of this study is to propose the application of algorithms, already known in the 

literature that can be used for the evaluation of multivariate data in proficiency tests. We re-

examine the data collected by Viant, et al. [8], and extend their analysis by proposing a 
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scoring metric that assumes a single value for each NMR spectrum, which can be further 

extended to a laboratory-level metric that can be used for quality control and analysis.

1.1 Brief statement of the interlaboratory comparison problem

The problem of laboratory-outlier detection in an intercomparison study can be expressed in 

the following way:

(1)

where R is the measured response function, T is the underlying true value, I is some 

instrument function and epsilon is noise. R is a function of the experimental independent 

variables x (in this case, NMR chemical shifts and the NMR (static) field strength) but also 

depends on the replicate number r and the facility identifier f. This expression for R allows 

an explicit statement for how the response might vary based on the use of different 

measuring devices in different locations, and even run-to-run variability in the same device. 

The underlying truth T depends only on the independent variables, while I explicitly 

contains the variability among the measurements.

In the normal regression problem, I is treated as being part of the noise epsilon. For an 

interlaboratory study, however, the instrument function could actually contain a great deal of 

information about the individual laboratories that make the measurements.

The purpose of an interlaboratory comparison study is to identify those laboratories whose 

instrument function is sufficiently systematically different to indicate that those laboratories 

may be sampling from a different population. For instance, in the Viant et al. study [8], 

NMR spectra were taken at various magnetic field strengths. The individual spectra consist 

of magnetic field dependent features (chemical shifts) and magnetic field independent 

features (spin-spin couplings). As a result, spectra taken under different field strengths are 

not directly comparable. If the instrument function contains such systematic lab-to-lab 

variations, then, the performance of one laboratory relative to the others will be consistently 

different when compared across a range of many different values of the independent 

variables x, which in this case means many different samples.

It should be noted here that measurements taken of the same object at different laboratories 

by different analysts on different instruments are considered to be independent of each other, 

in the sense that there is no cross-communication between the different laboratories. 

Likewise, the measurements of different objects by the same laboratory will also be 

independent.

1.2 Multivariate metrics used for interlaboratory comparison

In chemometrics and information theory, there are several common metrics used for pattern 

recognition [10–16]. It is important to mention the Euclidean distance [17–20] and the 

Mahalanobis distance [21–26] as the most used, however, there are other metrics based on a 

probabilistic approach [27], for example, the Hellinger distance [28], the Kullback-Leibler 
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divergence [29] and the Jensen-Shannon distance [30, 31]. All these metrics may be useful 

in metrological activities such as, for example, proficiency testing.

1.2.1 Similarity measures based on vector distance: Euclidian and 
Mahalanobis distance—The Euclidean distance is defined by

(2)

where the x and y column vectors represent two spectra and xk and yk are the features of 

those spectra, with the sum taken over the elements of the vectors. The Euclidean distance 

gives greater weight to large differences between prominent features than to differences 

between small, but possibly clinically significant, features. However, it does not correct for 

correlation structures in the data. To resolve this issue, the Mahalanobis distance is often 

used, which is defined by

(3)

where Σ is the covariance matrix which may be estimated in numerous ways.

1.2.2 Similarity measures based on probabilistic distance: Hellinger distance, 
Kullback-Leibler divergence, and the Jensen-Shannon distance—Alternatives to 

the Euclidean and Mahalanobis distances include metrics from information theory to analyze 

probability density functions. Interpreting an NMR spectrum in this way requires that the 

spectrum be non-negative and also that it integrate to unity. Under this interpretation, the 

spectrum indicates what fraction of the total oscillatory power is contained at each 

frequency. The metrics we discuss here are the Hellinger distance [28], the Kullback-Leibler 

(KL) divergence [29], and the Jensen-Shannon distance [30, 32–34]. The Hellinger distance 

between two spectra is defined by

(4)

and varies between 0 and 1. If dH = 0, then x and y are identically equal, indicating similar 

performance of the two data sets from which x and y are obtained. If dH = 1, x is zero 

everywhere that y is positive and vice versa, indicating a divergence of the two data sets. In 

terms of an interlaboratory comparison, dH≪1 corresponds to similar performance between 

laboratories, while dH ≈1 represents divergence in the results of the laboratories.

The KL divergence, sometimes termed the relative entropy, is defined by
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(5)

The KL divergence is not symmetric, and so what is used here is the symmetrized KL (SKL) 

divergence, sometimes termed the Jeffreys divergence,

(6)

Unlike the Hellinger distance, the SKL divergence varies between 0 and positive infinity, 

with positive infinity corresponding to divergence between the laboratories. Furthermore, if 

an element of x or y is zero anywhere where the other is nonzero, the SKL divergence will 

diverge to infinity.

The SKL divergence is not a distance metric because it does not satisfy the triangle 

inequality, so as an alternative we will also use the Jensen-Shannon (JS) distance [35–37], 

defined by

(7)

where m is the arithmetic mean of x and y. Like the Hellinger distance, the JS distance 

varies between 0 and 1 and can be interpreted in the same way as the Hellinger distance.

The SKL divergence in particular is extremely sensitive to differences in small features, such 

as the presence of a feature in one spectrum and its absence in another. This behavior makes 

some sense in a metabolomics context, as the presence of even a trace compound would 

make a mixture completely different from a mixture that lacked that compound, and hence 

their spectra should be, in some sense, incomparably different.

As the JS and Hellinger distances vary between 0 and 1, we use here a hyperbolic 

transformation where dhyp = ln[(1+d)/(1−d)]. In this transformation, the distances are treated 

as being the length of line segments in the Poincaré disk model of a hyperbolic space. Under 

this transformation, the distances vary between 0 and positive infinity, in the same manner as 

the SKL divergence and Mahalanobis distance, and thus all the distance metrics can be 

directly compared. All future references to the Hellinger and JS distances actually refer to 

distances under this hyperbolic transformation.

1.3 Expanded definition of the Z-score

In the ISO standards [6, 7], the Z-score is defined for a set of measurements first by fitting a 

normal distribution to that set of measurements, extracting a sample set mean, μ, and 

variance, σ2. That is, for each measurement i whose value is xi, the Z-score Zi for each 

measurement is then calculated according to Zi =(xi − μ)/σ. If the data are well-
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approximated by a normal distribution, this method works well. For data that cannot be 

shown to follow a normal distribution, however, a more general theory is needed. For 

instance, the distance functions analyzed in this paper are strictly positive, and so an 

exponential or lognormal distribution may be more appropriate. Furthermore, arbitrarily 

small values of the distance functions are considered good, as opposed to the normal Z-score 

where small values are just as bad as large values. Consequently, a more general theory is 

needed.

In general, the cumulative distribution function for a probability distribution can be 

expressed as C = C(x;P), where P is a set of parameters that define the distribution. For 

instance, the normal and lognormal distributions have parameters μ and σ, while the 

exponential distribution has the parameter λ. Every probability distribution also has a 

standard form

(8)

where P* is the set of parameters under some standard conditions, such as with the normal 

distributions with mean and variance equal to unity. Then the generalized Z-score Zi for a 

measured value xi is

(9)

where C*−1 indicates the inverse function. For a single-tailed distribution such as a 

lognormal or exponential distribution, the Z-score for the α-confidence interval can be 

defined as Zi = C*−1(α). The Z-score corresponding to the median of the distribution is then 

Zmedian = C*−1(½), and the 95 % confidence interval is Z95 = C*−1(0.95).

1.4 Calculation of Z-scores for multivariate metrics

The sample-level Z-scores, Zi, are calculated as follows, with the procedure summarized in 

Table 1 and Fig. 1. The spectra are first clustered in some manner, which results in a set of 

spectral clusters S. In the case of an interlaboratory study such as analyzed here, each cluster 

Sk consists of the multiple spectra of sample k provided by, for example, different 

laboratories. This is shown graphically in Fig. 1, panels a–c. Likewise, in an interlaboratory 

study, the spectra can also be clustered into a set of data sets A, where each data set Ai 

consists of the spectra taken by a particular, say, laboratory. Note that many interlaboratory 

studies include replication of samples in order to test the variability within each laboratory, 

while some laboratories might obtain multiple spectra for each sample under different 

conditions such as a different instrument or different settings on the same instrument. In this 

paper, a data set contains all spectra for a particular instrument with particular settings, while 

a spectral cluster contains all spectra for a material with a particular label, even if it is a 

replicate. Specifying the data set i and cluster k of a spectrum therefore serves to uniquely 

identify that spectrum.
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Within each cluster Sk, the interspectral distance matrix Dk is determined, whose elements 

are

(10)

where si,k and sj,k are spectra from Lab xi and Lab xj for cluster Sk, and d is the desired 

distance function. This is shown in Fig. 1d.

The average diameter distance D̑i,k is defined as the average distance from spectrum si,k to 

the other spectra in cluster Sk, and is calculated as

(11)

where n is the cardinality of Sk. Note that, as Dk is symmetric, this is equivalent to both the 

row average and the column average. This is similar to the intercluster distance method used 

in the Unweighted Pair Group Method with Arithmetic Mean hierarchical clustering 

algorithm [38]. The D̑i,k values were empirically observed to be lognormally distributed, and 

so are then fit to a lognormal distribution. The Z-score vector Zi is calculated by Zi,k = 

C*−1(Ck(D̑i,k)), where Ck is the cumulative distribution function after being fit to cluster k 
and C* is the corresponding standard distribution function. Each individual Zi,k is an 

indication of where the spectrum si,k lies with respect to the other members of cluster Sk. In 

the case of the lognormal distribution Zi,k(½)=1 and Zi,k(0.95)≈5, so a Zi,k of 1 indicates that 

si,k lies closer the center of Sk than the median, and Zi,k greater than about 5 indicates that 

si,k lies outside the 95% confidence interval of cluster Sk. It should be noted that the D̑i,k 

values may take on other distributions depending on the application.

1.5 Calculation of laboratory-level Z-scores for outlier detection

The statistical analysis on the spectra still results in a k-vector of Z-scores for each 

laboratory, Lab xi, and it is still necessary to generate a single number for each data set 

(laboratory). Because Zi = 0 is an important measure, the Euclidean norm of a data set’s Zi 

vector, ||Zi||, provides a measure of that laboratory’s performance relative to the other 

laboratories. In order to identify patterns in how laboratories deviate from each other, 

dimensional reduction using PCA is also performed on the Z matrix. The PCA model is 

defined as T = ZPT, where T is the matrix of PCA scores and P is the matrix of PCA 

loadings. The PCA model is then reduced by retaining the L most significant components, 

resulting in the reduced model . For most of the metrics considered here, L = 2. 

We refer to ||Ti,L|| as the projected statistical distance, as it is the distance projected onto the 

PCA space, and use this number as the basis for comparing the datasets.

This PCA model can shed light on the instrument function by how many significant 

principal components it has. If the PCA model has many significant components, then the 

instrument function is essentially random and can be treated as a component of the noise (Eq 
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x ). If the PCA model has few components, however, it means that the instrument function is 

not random. In this case, the measurements in some laboratory data sets are more frequently 

close to the consensus value than those of other data sets, and then there is a basis for 

identifying the distant data sets (laboratories) as outliers.

For each Lab xi, we calculate ||Ti,L||, and then fit these statistical distances to a new 

distribution with distribution function C̑. This new distribution has a Z-score associated with 

it, which we call the projected statistical score, denoted Z̑i and calculated using Z̑k = 

C̑*−1(C̑(||Ti,L)) As with the D̑i,k values, the distribution function C̑ will need to be 

determined based on the application. Note also that Ck and C̑ may also be different 

distributions. Once the Z̑i values have been computed, if any fall outside the 95 % 

confidence interval, the corresponding Lab xi is considered as an outlier and removed from 

consideration. A new C̑ and corresponding Z̑i values are then computed. This iterative 

process results in a consensus set of laboratory metrics that is self-consistent, thereby 

allowing a more precise specification of consensus than merely identifying the laboratory-

outliers, as the ISO standards would direct.

2 Implementation Details

2.1 Data Sets

Two different sets of measurements were used in this study, which were obtained through 

the interlaboratory comparison exercise reported in Viant et al. [8] in which seven 

laboratories participated. In the exercise, each participating laboratory was sent one set of 

synthetic mixture samples and one set of biological-origin samples along with a detailed 

analysis protocol. Each laboratory obtained a one-dimensional 1H NMR spectrum for each 

sample from both sets. Three of the laboratories performed measurements for two NMR 

field strengths, for a total of ten spectra for each sample. Four sets of spectra were obtained 

at an NMR field of 500 MHz, four at 600 MHz, and two at 800 MHz. These sets are the data 

sets A. The data set identifiers and the corresponding NMR field strengths are shown in 

Table 2. The spectra are reported as chemical shift frequencies in parts per million (ppm), 

with a range from 10.0 ppm to 0.2 ppm, with a region from 4.7 ppm to 5.2 ppm excluded 

due to water solvent suppression artifacts. The spectra are binned with a bin width of 0.005 

ppm, for a total of 1860 variables in each spectrum. Due to additional water suppression 

artifacts apparent in the spectra, for this analysis, an additional region from 4.2 ppm to 4.7 

ppm was excluded, after which the NMR spectra were renormalized.

The set of synthetic data consists of six synthetic mixtures (S1–S6), each containing glucose, 

citrate, fumurate, glutamine, alanine and nicotinate in various concentrations. One mixture, 

S1, has six replicates, for a total of 11 samples and 110 spectra. The set of biological data 

consists of liver extracts from European flounder (Platichthys flesus) obtained from two 

different sampling locations, an unpolluted control site and a polluted site. Six samples were 

obtained from each site (BC1–BC6 for the control samples and BE1–BE6 for the polluted 

samples). One sample, BC1, has three replicates, for a total of 14 samples and 140 spectra. 

There are therefore 11 clusters of synthetic data and 14 of biological data.
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Why these data were chosen is discussed in detail by Viant et al. [8], but, succinctly, the 

purpose was to compare the performance of the NMR spectroscopic methods using both 

synthetically derived mixtures with precisely defined composition and tissue extracts with 

highly variable or unknown composition. In this study, we compare the performance of the 

laboratory-outlier detection method using the synthetic mixtures and using the biological 

mixtures. Because of their simpler controlled composition, the synthetic mixtures were 

expected to provide a better basis for comparing the various laboratories.

2.2 Procedure and Software

In the original work of Viant et al. [8], a principal components analysis (PCA) was 

performed on both the synthetic data set and on the biological sample data set, excluding the 

replicates. In the case of the synthetic data set, a PCA model was derived that consistently 

differentiated among the various samples, without magnetic field dependence dominating 

the most significant principal components. For the biological samples, however, a PCA 

model using all spectra showed strong magnetic field dependence in the first principal 

component with notable class separation in the second (Figure S8, in Viant et al. [8]), so 

subsequent analysis was based on PCA models including only spectra from the same 

magnetic field strength.

In this work, therefore, the synthetic samples are used to conduct a quality assurance test in 

order to identify those data sets that may have problems with their workflow. The biological 

samples from these laboratories are removed from consideration in the PCA, and it is found 

that a PCA model is found that will consistently differentiate between the control and 

exposed samples. The algorithms used in this paper were implemented in Python, and all 

scripts are made available in the supporting information.

In this work, we regard “clusters” to be all of the spectra of a specific sample collected by 

each participating laboratory. For example, spectra from all of the S1a samples are treated as 

a cluster, and they are different clusters from the S1b and S2 samples, even though some 

samples are replicated of the others. Once the potentially outlier laboratory data sets have 

been flagged and removed, a PCA is conducted on the remaining biological spectra, showing 

that it is possible to separate the fish from the polluted site and those from the control site, 

independent of the magnetic field frequency.

The Mahalanobis distance requires some preprocessing because the NMR spectra are not 

full rank, and so the covariance matrix of a full data set is not well-conditioned. To address 

this issue, the inverse covariance matrix is calculated using the singular value decomposition 

pseudoinverse as implemented in Numerical Python (numpy.linalg.pinv), retaining singular 

values greater than 0.1 times the maximum singular value. The covariance matrix was 

calculated by calculating the variance-covariance matrix for each individual cluster and 

pooling them to estimate an overall covariance matrix for the entire set. It should be noted 

that the number of singular values to retain in the covariance matrix inversion is a free 

parameter, and changing it can have an effect on the final results.
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3 Results and discussion

The results obtained through this study are presented in the following manner. In Sections 

3.1 and 3.2, the methodology discussed in Sections 1.2 through 1.4 is presented in the 

context of the synthetic-mixture NMR spectra. These sections discuss the interspectral 

distance metrics and the methods for generating sample-level Z-scores within each cluster.

In Sections 3.3 and 3.4, the laboratory-level Z-scores are calculated and used for laboratory-

outlier detection, as presented in Section 1.5. These sections discuss the use of principal 

components analysis to identify patterns in laboratory performance and of the scoring 

technique to rank the laboratories by their overall performance. This information allows us 

to determine which laboratories are similar enough to be comparable and which are not. As 

discussed in Section 1.2, there are many different distance metrics that can be chosen, and 

we do not know a priori which one is most appropriate. The identified outlier-laboratories 

differ somewhat based on which distance metric is used, and so it is not possible to make a 

single statement of which laboratories are outliers.

In Section 3.5, the results of the synthetic sample laboratory-outlier detection are used to 

analyze the biological-sample NMR spectra. As mentioned in Section 1, in the Viant, et al. 

study, it was not possible to develop a PCA model that was not dominated by magnetic field 

dependence. In this section, we show that the outlier detection method results in an 

improved separation and also in detection of a previously-unidentified feature that may be 

responsible for that separation.

Section 3.5 also includes a laboratory-outlier detection analysis on the biological samples. 

The outlier laboratories detected in this analysis were different from those detected by 

analyzing the synthetic samples and resulted in a less pronounced separation among the 

polluted-site and control-site animals. It was concluded, therefore, that using synthetic data 

as a filter adds valuable perspective in finding laboratory-outliers.

3.1 Similarity measures

Figure 2 presents the NMR spectra for three synthetic samples, chosen to highlight the 

differences among the various distance metrics. The laboratories are labelled according to 

the identification numbers assigned to them in the Viant, et al. study [8]. A few patterns can 

be observed from the distance metrics. First, the Hellinger and the Jensen-Shannon distances 

universally indicate that the two spectra taken at 800 MHz are different from the others, 

without much discernable detail about other sets of spectra. This may simply mean that, 

because of an increase in the resolution of spectral information, the spectra at different 

magnetic field frequencies are not readily comparable. The Mahalanobis distance and SKL 

divergence detect that one of the labs, 9451, also exhibits some notable differences, although 

the Mahalanobis distance detects this difference only inconsistently. It should be noted that 

examining the figures in this way is inherently highly subjective, and that this analysis is 

intended only to draw high-level patterns that will later be examined with the more rigorous 

analysis to follow.
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3.2 Distance scoring

In order to produce a single number to classify the laboratories’ spectral consistency with the 

other members of the group, the average diameter distance D̑i,k is calculated and then fit to a 

lognormal distribution. The lognormal distribution was chosen here based on a QQ 

comparison, which showed that the D̑i,k values could be fit well by several distributions such 

as lognormal, χ, χ2, or Γ distribution. We chose the lognormal distribution here because it is 

the maximum entropy distribution for a specified mean and standard deviation. We also 

tested the Γ distribution, which yielded the same set of laboratory-outliers.

The results of the lognormal distribution fits are shown in Fig. 3 for the SKL divergence and 

for the Mahalanobis distance. These figures show the D̑i,k values and corresponding Zik 

values (Z-scores) for each of the 110 spectra in this data set. Those spectra with a Zik > 5.18 

are labelled in the figure, meaning they lie outside the 95% confidence interval of the 

corresponding lognormal distribution Ck. The Mahalanobis distance identifies data set 7042 

as a possible outlier among the data sets, but this is not consistent, and other sets have large 

Zi for some spectra. The other measures consistently identify set 7042 as an outlier, and both 

the Hellinger and JS distance identify set 0714 as an occasional outlier. Visual inspection of 

the Z-scores can provide some guidance, but it is not sufficient to clearly or consistently 

identify laboratory-outlier data sets among the synthetic spectra, which is what motivates the 

principal components analysis on the Z-scores to follow.

3.3 Principal components analysis on Z-scores matrix

In order to conduct the PCA, as described in Section 1.4, the Z-scores for the spectra in each 

Lab xi are cast as a k-vector whose elements are the Z-scores for the NMR spectra in that set 

(Fig 1g). There are two limiting cases that this PCA would discriminate between. On the one 

hand, it is possible that some data sets contain spectra that are closer to the consensus value 

than the others, while also containing spectra that are farther from the consensus values than 

others. On the other hand, however, some data sets might consistently contain the spectra 

closest to the consensus value, while other sets consistently contain spectra far from the 

consensus value.

The PCA loadings calculated for all metrics are shown in Fig. 4, with the explained variance 

ratios included for each principal component. Recall from Section 1.4 that this PCA is 

conducted using the Zi,k values, rather than on the NMR spectral data as would normally be 

expected for chemometric data. Consequently, the loadings seen in Fig. 4 will each be a 

laboratory performance vector similar to those presented in Fig. 3.

In the case of the probabilistic distance measures, the first principal component explains 

roughly 95 % of the variance, while the second component accounts for most of the 

remainder. Furthermore, the first component represents a roughly uniform increase or 

decrease in the Z-scores for all spectra in a given data set. This means that, for the most part, 

data sets contain spectra that are close to the consensus value or that are far from it, but not 

both. Any particular data set’s performance could then be assessed by its score along this 

single dimension.
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The situation is less clear for the Mahalanobis distance. The first principal component 

explains only about 82 % of the variance among the Z-scores, and there are two other 

components that also explain roughly 15 % of the variance between them. Furthermore, the 

first component does not describe the uniform increase or decrease in the distance to the 

consensus of all a data set’s spectra. Rather, when the spectra are compared using the 

Mahalanobis distance, some data sets have one or two spectra that are far from the 

consensus while the rest are close. This result may be influenced by run-to-run variation in 

the individual laboratories that is captured by the Mahalanobis distance but not the other 

metrics.

3.4 Scoring on principal components analysis

The PCA scores for each data set allow the projected statistical distance ||TL,i|| to be 

calculated which is representative of each data set’s distance from consensus. For the 

Mahalanobis distance, ||TL,i|| is determined using the first three components, and for the 

other metrics it is the first two. ||TL,i|| is then fit to a lognormal distribution and the projected 

distance score Z̑i is computed for each data set. Then, if any data set has a Z̑i outside the 

95 % confidence interval, the set with the largest Z̑i is labelled as a laboratory-outlier and 

removed from consideration. The process is repeated until no data sets lie outside the 95 % 

confidence interval. Recall that, as discussed in Section 1.5, ||TL,i|| is the distance of each 

laboratory from the point Zi = 0 in the PCA space. Therefore, it measures how far each data 

set is from agreement with the consensus.

The results of this process are shown in Figs. 5 and 6. Figure 5 shows the ||TL,i|| and 

corresponding Z̑i values, while Fig. 6 shows the principal component scores for the labs 

along with contours of constant ||TL||, in order to show the outliers. The sets identified as 

outliers are the two data sets taken at 800 MHz and one of the sets at 600 MHz, 9541. It 

should be noted that these three data sets were identified in the original Viant, et al. study [8] 

as being difficult to compare with the other data. The 800 MHz data contained information 

not present in the other data and data set 9541 exhibited peak shifting that made it difficult to 

compare with the other sets.

In the case of the Mahalanobis distance, the same outliers are detected. As can be seen in 

Fig. 6b, data set 9541 has a large score in the direction of the third principal component 

which is has a strong contribution to it being identified as an outlier. This principal 

component corresponds to a data set having spectra for samples S1a and S5 far from 

consensus, as shown in Fig. 4. Even without the contribution of this component, however, 

this data set is pushed very close to the 95 % confidence boundary.

3.5 Using synthetic sample data as a quality control measure for real data

In the original Viant, et al. study [8], a PCA was conducted on the NMR spectra from both 

the synthetic samples and the biologically-obtained samples. It was possible to combine the 

synthetic-sample data across many platforms in a single analysis, but this proved to be 

impossible to do for the biological data without the results being dominated by magnetic 

field strength. In this study, we remove the data sets identified by our laboratory-outlier 

analysis and then conduct the PCA on the remaining data sets simultaneously. The results of 
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this analysis are shown in Fig. 7. Two cases are considered. In both cases, the 800 MHz data 

sets are removed as outliers. In one case, set 9541 is also removed as an outlier based on the 

analysis using the laboratory-outlier detection methodology, and, in the other, only the 800 

MHz spectra are considered as outliers based on the idea that these spectra should exhibit 

different chemical shift features, as discussed in Section 1. In both cases, the second 

principal component is a field-strength-dependent axis that carries little clinically relevant 

information (that is, it does not serve to separate the exposed-site fish from the control-site 

fish). A similar component was obtained by the PCA in Viant, et al. study [8] as the first 

principal component. However, when the first and third principal component scores are 

plotted, there is an evident separation between samples from fish in the polluted site and 

from the exposed site. This separation is comparable to that seen for a single data set, as was 

seen in the original study [8]. It should be noted that there is not a perfect separation 

between the two groups because of the complexities of biological systems.

Because the separation between the animals from the two sampling sites is evident in both 

cases, it is worthwhile to examine the causes for separation in these two analyses. The two 

sampling sites are roughly split along the component 1/component 3 diagonal, so the NMR 

bins responsible for that separation are a linear combination of those components’ loadings. 

These loadings represent the “impacted direction” in the NMR space and are shown in Fig. 

8, which also shows the significant bins identified by Viant, et al. [8]. In all cases, the PCA 

models show that exposed animals exhibit decreased levels of glucose and lactate and 

increased levels of three unidentified substances in their livers. However, in Fig. 8a, which 

shows the PCA model after data set 9451 has been removed, a small increase in another 

unidentified substance can be seen at a chemical shift of about 1.48 ppm. This bin was not 

identified in the Viant study, and it is also not readily visible in Fig. 8b, which shows the 

PCA model when this data set is not excluded. It is possible that the peak shifting issues that 

were observed with data set 9541 served to obscure this set of bins.

It should be noted that the analysis performed here could have been applied to the biological 

spectra themselves in order to screen the data sets, rather than to the synthetic samples. The 

results of such an analysis are summarized rather than shown in detail, but they are as 

follows. When the SKL divergence is used on the biological samples, only one data set, 

7042 at 800 MHz, is identified as an outlier. When the other metrics are used on the 

biological samples, both 800MHz sets are identified. It is impossible to draw any 

conclusions from the PCA results using the SKL divergence, and the PCA results using the 

other metrics are the same as the case shown in Fig. 7b.

The reason that more outlier data sets are detected, and more consistently, is due to the stark 

differences between the synthetic samples and the biological samples. The synthetic samples 

were made from known concentrations of a few particular metabolites with narrow and 

distinct features in their spectra. Consequently, differences among the spectra will appear 

prominently when examined using an information-theoretic analysis. The biological 

samples, on the other hand, are a mixture of thousands of potentially unknown and poorly 

characterized substances, and so differences among the spectra are more difficult to analyze.
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Taken at face value, this conclusion would suggest that every NMR interlaboratory study 

would need to include a synthetic data set for quality control along with the biological 

samples under study. Such a procedure could make interlaberatory studies difficult to 

conduct, because it would effectively double the amount of effort needed to conduct the test. 

However, interlab studies often contain quality control replicates. For instance, in the Viant, 

et al. [8] study, the biological replicates were samples C1a, C1b, and C1c. As a middle 

ground that does not require two complete interlabs, we conduct the outlier detection 

analysis on these replicates. This would allow us to probe the instrument function directly, 

given that we know we are analyzing the same samples. The result is shown in Fig. 9, which 

shows the outliers detected by using the various metrics. Unlike the analysis of the synthetic 

samples, as shown in Fig. 4, the outliers detected in this way are not consistent across the 

metrics. Consequently, using these outputs of the algorithm, it is not possible to make an 

unequivocal statement of which laboratories are laboratory-outliers. It is possible, however, 

to say that the same laboratories are detected as possible laboratory-outliers the majority of 

the time. These results underscore the potential utility of using synthetic samples for quality 

control before conducting analysis on the more complex spectra obtained from biological 

samples, but also that it is possible to get similar results using quality control replicates of 

the biological samples as long as some care is taken.

4 Conclusion

A two-stage quality control method for interlaboratory comparison was proposed and 

employed. In this method, the results from a mixture of known substances were used in 

order to screen for possible process problems, before an interlaboratory analysis was 

performed on samples of biological origin.

The quality control method was applied to nuclear magnetic resonance spectral data from an 

interlaboratory comparison study from literature. In this study, each data set included NMR 

spectra of synthetic mixtures and biological samples, thus enabling the synthetic samples to 

be used as a quality control measure on the biological samples. The biological samples 

consisted of one group of fish liver samples from a site exposed to a pollutant and one group 

from a control site. The method would be considered successful if it was able to separate the 

biological samples into an exposed and a control group when analyzed using principal 

components analysis.

Applying the quality control method to the synthetic mixtures proved to be an effective 

means of identifying difficulties in comparing data sets among the biological samples. Three 

data sets were identified as potential outliers. These were the same sets as were identified in 

the original study as exhibiting issues such as peak shifting and incomparable features. In 

the original study, these three data sets prevented a full interlaboratory analysis from being 

conducted. That is, the NMR spectra across all data sets could not be compared. Once these 

data sets were removed from consideration, a principal components analysis was able to 

separate the biological samples according to their exposure to pollutants. That the algorithm 

presented here is able to identify these data sets without expert intervention lends credence 

to its relevance to other studies.
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In order to test whether the study of the synthetic mixtures is necessary, the method was 

applied to the biological samples only. In this case, the set of outliers was smaller, and the 

principal components analysis did not result in a clean separation between the exposed and 

control groups. This result underscores the utility of a set of simple mixtures as a means of 

process control, instead of needing to perform the analysis on the biological samples with 

their high chemical complexity. The spectrometric methods can easily identify process 

issues when using the synthetic samples with their highly-controlled compositions, but the 

complex and unknown composition of the biological samples serves to obscure any process 

issues that may arise. As a further test, the method was applied to only the biological 

replicate samples, and a result similar to using the synthetic samples was obtained. This 

means that using biological replicates for process control is possible, although the use of 

synthetic samples is still more robust.

Supplementary Material
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Figure 1. 
Overview of scoring and outlier detection procedure
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Figure 2. 
NMR spectra (left) and pairwise interspectral distances (right) for three of the synthetic 

metabolite clusters (see Fig 1d).
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Figure 3. 
Average diameter distances (Eq. 8) for spectra from all data sets for three of the synthetic 

metabolite clusters, annotated with corresponding Zi,k values (Eq. 10). Spectra that have a 

Zi,k greater than 5 are marked in red. Distances and Z-scores are shown for (left) the SKL 

divergence and (right) the Mahalanobis distance

Sheen et al. Page 20

Chemometr Intell Lab Syst. Author manuscript; available in PMC 2018 March 15.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



Figure 4. 
PCA loadings (P) shaded by explained variance fractions for the Z matrices (Zi,k values). 

Black represents more explained variance, so the black bar is the first principal component. 

Plots are annotated with the explained variance fractions for the first L principal 

components. Note that, because this PCA is conducted on the Zi,k values, each loading 

vector will appear as a laboratory performance vector similar to that in Fig. 3.
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Figure 5. 
Projected statistical distance ||TL,i|| calculated using each metric. Bars are annotated with 

their corresponding Z̑i Outlier data sets are colored red.
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Figure 6. 
PCA scores for the Z matrix calculated using the SKL divergence and Mahalanobis distance, 

along with curves of constant ||TL,i|| Note that, although the PCA is calculated using mean 

centering, the ||TL,i|| values are calculated based on distance from Zi = 0, as discussed in 

Sections 1.5 and 3.4. Outlier data sets are colored blue and labelled with the data set 

identifier. Inlier data sets are colored red and not annotated.
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Figure 7. 
PCA scores and explained variance fractions for the biologically-obtained NMR spectra, 

after removal of outlier data sets identified using the synthetic mixtures, along with the 

approximate direction of separation indicated by the thick black lines. Samples from the 

control site are colored cyan and those from the polluted site are colored red. The dark blue 

points are the three biological samples BC1a, BC1b, and BC1c. Outlier data sets are 

removed based on results from (a) the outlier detection methodology in this work (see Table 

2) and (b) removing only the 800 MHz spectra.
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Figure 8. 
Principal component loadings corresponding to the direction of separation in Fig. 7. Bins 

identified in the Viant study are marked with vertical dashed lines. Glucose is blue, lactate is 

cyan, and the three unknown metabolites are red, magenta, and green. The previously 

unidentified substance is circled in red. Outlier data sets are removed based on results from 

(a) the outlier detection methodology in this work (see Table 2) and (b) removing only the 

800 MHz spectra.
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Figure 9. 
Projected statistical distance ||TL,i|| calculated using each metric considering only the 

biological replicate samples C1a, C1b, and C1c. Bars are annotated with their corresponding 

Z̑i Outlier data sets are colored red.
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Table 1

Summary of scoring metric and consistency algorithm.

1. Calculate inter-spectral distances Dij,k (Fig. 1d)

2. Calculate the average diameter distances D̑i,k (Fig. 1e)

3. Fit D̑i,k to the chosen distribution Ck for each Lab xi (Fig. 1f)

4. Calculate Z matrix (Fig. 1g)

5. Perform PCA on Z (Fig. 1g)

6. Identify the L principal components (Fig. 1g)

7. Calculate projected distances ||Ti,L|| for each laboratory (Fig. 1g).

 a. Fit ||Ti,L|| to the chosen distribution C ̑

 b. Calculate projected distance scores Z̑i

 c. Remove data set i if Z̑i > Z̑95 and go to step 7a
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Table 2

Data set identifiers, corresponding NMR frequencies, and laboratory-outlier identifications for the synthetic 

samples

Data set identifier NMR field strength (MHz) Outlier

0115 600

0122 500

0258 600

0333 500

0711 600

0714 800 ×

2861 500

7042 800 ×

8865 500

9541 600 ×
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