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Abstract

Reversible protein-tyrosine phosphorylation is catalyzed by the antagonistic actions of protein-

tyrosine kinases (PTKs) and phosphatases (PTPs), and represents a major form of cell regulation. 

Acute myeloid leukemia (AML) is an aggressive hematological malignancy that results from the 

acquisition of multiple genetic alterations, which in some instances are associated with 

deregulated protein-phosphotyrosine (pY) mediated signaling networks. However, although 

individual PTKs and PTPs have been linked to AML and other malignancies, analysis of protein-

pY networks as a function of activated PTKs and PTPs has not been done. In this study, MS was 

used to characterize AML proteomes, and phospho-proteome-subsets including pY proteins, 

PTKs, and PTPs. AML proteomes resolved into two groups related to high or low degrees of 

maturation according to French–American–British classification, and reflecting differential 

expression of cell surface antigens. AML pY proteomes reflect canonical, spatially organized 

signaling networks, unrelated to maturation, with heterogeneous expression of activated receptor 

and nonreceptor PTKs. We present the first integrated analysis of the pY-proteome, activated 

PTKs, and PTPs. Every PTP and most PTKs have both positive and negative associations with the 
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pY-proteome. pY proteins resolve into groups with shared PTK and PTP correlations. These 

findings highlight the importance of pY turnover and the PTP phosphatome in shaping the pY-

proteome in AML.

Keywords

AML; Kinome; Proteome; PTPome; pYome

1 Introduction

Enormous efforts aim to define genomics-based molecular signatures in order to guide the 

development of precision treatments for individual malignancies. This goal reflects 

knowledge that tumorigenesis is driven by combinatorial changes in oncogene and tumor 

suppressor gene [1]. This is exemplified by acute myeloid leukemia (AML), which is a 

collection of diseases caused by a variety of recurrent and unique mutations [2–5]. A total of 

23 genes were significantly mutated, and another 237 were mutated in two or more samples 

in the genomes of 200 AML samples [5]. Some of mutated genes are well established as 

being relevant to AML pathogenesis (e.g., DNMT3A, FLT3, NPM1, IDH1, IDH2, and 

CEBPA) [5]. Gene expression signatures have been suggested for AML[6,7]. However, the 

utility of cancer-associated mRNA expression-based signatures has been questioned [2]. To 

some extent this may reflect the generally poor correlation between mRNA and protein 

abundances [8–11]. None of the current classification schemes for AML are entirely 

prognostic. Nearly 50% of AML samples have a normal karyotype, and many of these 

genomes lack structural abnormalities [5]. These observations provide a rationale for 

proteomic studies of AML as an alternative source of molecular features as a basis for 

classification and treatment.

Characterization of AML proteomes and/or phosphoproteomes by various technical 

platforms including multiparameter phospho-flow cytometry [12], MS [13], and reverse-

phase protein array [8] suggest that patients may stratify into groups defined by distinct 

phosphorylation networks, which may have prognostic utility. Protein-phosphotyrosine (pY) 

modifications are a dynamic product of the antagonistic actions of protein-tyrosine kinases 

(PTKs) and protein-tyrosine phosphatases (PTPs, Fig. 1A). Both enzyme classes are well 

known for their genetic links to AML [14–17]. PTKs are well established potential drug 

targets in various malignancies, including AML [18]. PTPs are also principal factors in 

cancer, wherein they are known to function as positive effectors and/or antagonists of 

pathways that drive cell transformation [19]. MS analysis of the entire complement of 

classical PTPs, the tyrosine-phosphatome (PTPome), confirmed that variation in PTP 

expression affects cellular protein tyrosine phosphorylation [20]. However, the extent to 

which the protein-pY landscape of a cell is a regulated product of the activated tyrosine-

kinome and PTPome, as simply depicted in Fig. 1A, has not been systematically 

investigated.

Herein, we report an integrated analysis of AML proteomes and subproteomes 

encompassing tyrosine phosphorylated proteins, activated PTKs, and the PTPome. Our 
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findings reveal new insight into the existence of diverse PTK–PTP relationships associated 

with pY networks in AML.

2 Materials and methods

2.1 AML samples and controls

Samples were obtained with REB approval from the Princess Margaret Hospital leukemia 

repository (Supporting Information Table 1). AML samples are sterile, viable cryopreserved 

AML cell suspensions, obtained through Ficoll separation of diagnostic bone marrow 

aspirates; and normal control cells are peripheral blood mononuclear (PBMC) fractions. All 

cells were stored under liquid nitrogen before use.

2.2 Total peptide profiling and peptide enrichment by pY and oxPTP antibodies

Figure 1B depicts three integrated procedures that were used to analyze AML samples in 

this study. AML cells were lysed in a urea buffer and then digested by trypsin as described 

previously [21]. For total protein analysis (proteome), 5μg (protein) starting material was 

digested to peptides and then analyzed by LC-MS/MS. For protein-pY profiling (pYome), 5 

mg digested protein was subjected to affinity purification by antipY antibody (PTMScan, 

Cell signaling Technology, Danvers, MA, USA) [22]. For comprehensive profiling of 

classical PTPs (PTPome), 3 mg digested protein was oxidized with pervanadate, and 

oxidized PTP active site motif containing peptides were enriched by anti-oxPTP mouse 

antibody (R&D systems, cat#MAB2844) as described previously [20]. Detailed protocols 

for total proteome, pYome, and PTPome are provided in the supplementary protocol 

(Supporting Information).

2.3 LC-MS/MS analysis

Peptides were separated at an operating temperature of 50°C on a 50-cm Easy-Spray column 

(75-μm inner diameter) packed with 2 μmC18 resin (Thermo Scientific, Odense Denmark). 

The peptides were eluted over 120 min (250 nl/min) for pYome and PTPome analyses, and 

240 min for whole proteome analysis. The LC was coupled to an Orbitrap Elite mass 

spectrometer by using a nano-ESI source (Thermo Fisher Scientific, San Jose, CA, USA). 

Mass spectra were acquired in a data-dependent mode with an automatic switch between a 

full scan and up to ten data-dependent MS/MS scans, using HCD fragmentation. Target 

value for the full scan MS spectra was 3 000 000 with a maximum injection time of 120 ms 

and a resolution of 70 000 at m/z 400. The ion target value for MS/MS was set to 1 000 000 

with a maximum injection time of 120 ms and a resolution of 17 500 at m/z 400. Repeat 

sequencing of peptides was kept to a minimum by dynamic exclusion of sequenced peptides 

for 20 s.

Acquired raw files were analyzed by MaxQuant software (v. 1.3.0.5) for identification and 

quantification on Swiss-Prot database (2013.07 version, 20 199 entries). For proteome and 

pYome data, the search included cysteine carbamidomethylation as a fixed modification, N-

terminal acetylation, methionine oxidation, phospho-serine, phospho-threonine, and 

phospho-tyrosine (pYome data only) as variable modifications. For PTPome data, cysteine 

converting to cysteic acid was added as variable and cysteine carbamidomethylation was 
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changed from fixed to variable modification. The default search parameters in MaxQuant 

were used. Minimum number of peptides for protein quantification was two unique peptides/

proteins. Localization probabilities for phosphorylation site and cysteic acid for cysteine 

were required to exceed 75%. The MS spectra of phosphor-peptides discussed in Section 3 

are shown in Supporting Information Fig. 6. MS information related to all detected pY 

peptides and PTPome peptides is shown in Supporting Information Tables 5 and 8, 

respectively.

Bioinformatics analysis was completed by using Perseus software tools [23] (perseus-

framework.org/) within the MaxQuant environment, R-program, and Cytoscape. For 

unsupervised clustering and volcano plots, normalized LFQ protein intensities were log2 

transformed, and with imputation of missing values on a per-sample basis using the Perseus 

default parameters.

Intensities of pY peptides were normalized to peptide amounts in each sample that were 

measured by using a micro-BCA assay. For clustering analysis of samples based on pY 

peptides, imputation of missing peptide values was completed in order to replace zero 

values.

Correlation coefficients between pYome and tyrosine kinases or PTPs were calculated by 

using the correlation function “Corr,” and method “Spearman” in the R-program. The log2 

intensity of peptides or proteins and the correlation coefficient of different pY sites were 

used for hierarchical clustering by Euclidean distance with average linkage in Perseus.

2.4 Signaling pathway analysis in AML

The AML pYome enrichment map was created using g:Profiler with default configurations 

[24]. We selected the terms with at least ten genes (Supporting Information Table 5). For 

each term, we used our pY expression data to calculate total expression score (TES) and 

average identification frequency (AIF), which are the total expression of all genes associated 

with the term and the average identification of the term’s proteins among our 12 samples, 

respectively (Supporting Information Table 5).

The pathway analysis and network visualization was carried out by using Cytoscape (2.8.2) 

and Cytoscape Enrichment Map application [25] with the following parameters: analysis 

type = generic, p-value cutoff = 1, FDR Q-value cutoff = 1, overlap coefficient = 0.42, and 

similarity cutoff = Jaccard + overlap combined. The p-value, TES, AIF, and number of genes 

per term were visualized as the node size, node color intense, node-border color intense, and 

node label, respectively. We selected the most significant terms (ten terms) based on 

Cytoscape subnetworks and g:Profiler enrichment map. The gene-to-gene interaction 

network with integrated subcellular localization information was built by using the 

Cytoscape Genemania application [26]. From Genemania, we retrieved the interactions 

between the identified genes only, by setting the “related genes” option in Genemania to 0. 

The subcellular localization information was collected using four databases: LOCATE-

human [27], LOCATE-mouse [28], the Human Protein Reference Database [29], and 

Unipro-tKB. We clustered the subcellular locations into six main locations that are 
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Extracellular, Membranes, Cytoplasm, Organelles, Nucleus, and Unknown (Supporting 

Information Table 6).

2.5 Data and materials availability

MS data have been deposited to the ProteomeXchange Consortium [30] via the PRIDE 

partner repository with the dataset identifier PXD001170.

3 Results

3.1 Comprehensive analysis of the AML proteome

In order to address relationships between the AML proteome, pYome, and PTPome, an 

experimental platform was implemented, as outlined in Fig. 1B. Protein extracts were 

converted to tryptic peptides and then either analyzed by LCMS/MS directly, or subjected to 

affinity purification to enrich for pYcontaining peptides, or PTPs as indicated. Proteomic 

datasets were then investigated for relationships by using an integrated approach involving 

pathway enrichment and protein–protein interaction-based network analyses.

In order to characterize the AML proteome, a set of 12 primary AML samples was collected 

(Supporting Information Table 1). FLT3-ITD (internal tandem duplication) was detected in 

one patient sample (#118). Total protein extracts were subjected to quantitative analysis by 

MS [21]. Four healthy patient-derived PBMC samples were used as a normal blood cell 

reference. In aggregate, 4485 distinct protein groups were identified (Supporting 

Information Table 2), and unsupervised hierarchical clustering, based on 3318 proteins 

observed in two or more AML patients, resolved the samples into three groups (Fig. 1C). 

One group corresponds to the four PBMC samples, which is significant difference from 

other two groups (p < 0.05, Supporting Information Fig. 1A and B). Another group, 

designated Mhigh, consists of four samples including morphologically mature M5 andM5a 

samples (FAB, French–American–British classification), and one that was annotated as prior 
myelodysplastic syndrome (designated PM in Fig. 1C). The third group, designated Mlow, 

consists of eight samples with minimal (M1) or no (M0)maturation, and including one 

sample with unknown FAB classification (indicated asNA in Fig. 1C), and another that was 

originally scored as M4, but upon relapse was classified as acute lymphoblastic leukemia 

(ALL). This indicates that monocytic differentiation, which characterizes M5 FAB 

classification, is associated with a distinctive proteome discernable by MS analysis at the 

moderate depth of coverage (approx. 3000 proteins) achieved in this study. Four hundred 

sixty-two proteins were identified as differentially expressed between the Mhigh and Mlow 

subgroups (Supporting Information Table 3). Fifty proteins were very highly differentially 

expressed (|fold change| >10; p < 0.01) between the Mhigh and Mlow subgroups (Table 1). 

Among this set of proteins, only the actin-binding protein Fascin (FSCN1) was more highly 

expressed in the Mlow group, whereas 49 proteins were more highly expressed in the Mhigh 

subgroup, including six hematopoietic cell lineage markers, and 25 predicted extracellular or 

secreted proteins.

A number of proteins were found to be significantly differentially expressed when the AML 

and control PBMC proteomes were compared (Supporting Information Table 4). Of these, 
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107 were more highly expressed in PBMC, and 269 more highly expressed in AML. Within 

the 376 differentially expressed proteins are 15 cancer genes according to the Sanger Cancer 

Gene Census: CD74, CDK6, DDX6, ETV6, FNBP1, HMGA1, MSH2, MSH6, NDRG1, 

NUP214, NUP98, PSIP1, RPL22, SMARCB1, and TCEA1 [31]. Data on 200 AMLs from 

The Cancer Genome Atlas (TCGA) Resource [5], accessed and analyzed by using 

cBioPortal for Cancer Genomics (www.cbioportal.org), indicated that mutation of these 

cancer genes is infrequent in AML (Supporting Information Table 4). FLT3 and JAK2, 

which are mutated in some AML [5], were only detected at the protein level in one sample 

and showed no significant differences in protein expression between normal and AML. This 

may reflect low-level expression of these signaling proteins, below our LOD in total 

proteome analyses.

3.2 Tyrosine phosphorylation and pathway analysis

Comprehensive protein-pY analysis was completed to quantitatively characterize the AML 

pYome. 219 pY sites, encompassing 159 proteins, were measured (Supporting Information 

Table 5). In order to determine the cellular processes and pathways represented in the pY 

dataset, pathway enrichment analyses were conducted. This revealed statistically significant 

functional groups (Fig. 2A). An AML enrichment map, created by using g:Profiler [24, 32], 

resulted in over 1600 GO, KEGG, and REAC terms. Terms with at least ten genes were 

selected (232 terms, Supporting Information Table 6). Additionally, pathway enrichment 

analysis was completed by using the Cytoscape EnrichmentMap application [25]. As shown 

in Fig. 2A, the network includes five disconnected terms. The three most statistically 

significant groups (Fig. 2A, encircled with dashed lines) were cell surface receptor signaling 
pathway, response to peptide, and peptidyl-tyrosine phosphorylation. In order to explore 

additional functional relationships within the AML pYome, we further used this set of genes 

and Cytoscape Genemania [26] to construct anAMLgene-to-gene interaction network, 

shown in Fig. 2B (Supporting Information Table 7). Phospho-protein expression level, 

identification frequency, and known subcellular localization information were used to 

arrange the interaction network. The resultant schema depicts a network consistent with the 

transduction of extra cellular signaling cues across the plasmamembrane, through 

membrane-associated signaling components, and leading to cytoplasmic and nuclear 

effectors (Fig. 2B). Two detected receptor tyrosine kinases (RTKs), FLT3 and KIT, that 

function atop activated pathways (Fig. 2B) are known to be mutated in AML [5].

3.3 An activated kinome in AML

Unsupervised hierarchical clustering based on the quantified pY-peptides divided AML 

samples into two groups (Supporting Information Fig. 2A). Each group contains samples 

from both the Mlow and Mhigh categories, suggesting the degree of AML cell maturation per 

se is not associated with gross differences in protein tyrosine phosphorylation. Thirty-three 

protein kinases were among the identified pY-containing proteins. Activation-loop (A-loop, 

DFG–pY–APE motif), as shown in Supporting Information Fig. 2B, was detected in eight 

kinases. Figure 3 presents a matrix of phosphorylated kinases arranged in a hierarchical 

(top-to-bottom) manner, with RTKs followed by nonreceptor PTKs, followed by nontyrosine 

protein kinases. MS ion currents for pY-peptides can be compared in the horizontal 

direction. The maximum magnitude of the MS intensity for each pY peptide species is 
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shown in the last column (in shades of blue), as an indicator that some pY peptides may 

have been present in low levels or have low MS response rates.

Each of the samples contained two or more pY-containing nonreceptor PTKs (Fig. 3A), 

which, according to the computed interaction network (Fig. 2B), are coupled to plasma 

membrane-associated receptors. Signals derived from SRC-family tyrosine kinases, and the 

non-RTK SYK, were six- and 26-fold higher in Group 2 compared with Group 1, 

respectively (Fig. 3A). Half the samples, including four in Group 1 and two in Group 2, did 

not contain a detected RTK. Three RTKs were measured including KIT and FLT3, which are 

well known to be activated in AML [33, 34], and FGFR3, which is not generally associated 

with acute leukemia. FLT3 mutation (FTL3-ITD) was only identified in sample #118 

(Supporting Information Table 1), which had highest phosphorylation signal at position 

Y936 (Fig. 3). While FLT3 protein was only detected in sample #228 (Supporting 

Information Table 2), which had highest phosphorylation signal at FLT3 Y969. 

Phosphotyrosine-proteome (pYome) analysis (Fig. 3) revealed tyrosine phosphorylations of 

FLT3 in some samples which did not have FLT3 mutation or detectable FLT3 protein, 

indicating pYome analysis is a sensitive and complementary tool for analysis of signaling 

pathways in patient samples.

3.4 PTPome quantification

Anti-oxPTP peptide antibody was used to enrich PTP peptides as described previously [20]. 

Sixteen classical PTPs were quantified from eight AML samples (Fig. 4A; additional MS 

information is provided in Supporting Information Table 8). Venn analysis illustrates that 

three PTPs were themselves subject to tyrosine phosphorylation, and 11 were also measured 

as part of the total proteome analysis (Fig. 4B). We note that the AP-MS approach for 

PTPome characterization identified more PTPs [35] than total proteome analysis [11], and 

they were quantified in a greater number of samples. All PTPs identified by total proteome 

or pYome were quantified by PTPome. Therefore, the AP-MS method provided more 

thorough data toward the analysis of the impact of the PTPome on total cellular tyrosine 

phosphorylation, as described below. The influences of the activated tyrosine kinome and 

PTPome on the pYome in AML were considered. There was a strong correlation (coefficient 

of determination R2 > 0.65, p < 0.05) between measures of activated tyrosine kinases and the 

overall level of protein-pY (Fig. 4C). In addition, the PTPome may not be simply a negative 

regulator of cellular protein-pY, since there was a moderate positive correlation, although not 

significant (p > 0.05), between the level of expressed PTPs and cellular protein-pY (R2 > 
0.3, Fig. 4D). There was no correlation between PTP expression level and activated tyrosine 

kinases.

3.5 Integrated analysis: The pYome as a product of the activated kinome and PTPome

Correlation analyses were performed in order to further reveal relationships among the 

pYome, activated kinome, and PTPome. The correlation coefficients relating pYome and 

kinome or PTPome are shown in Supporting Information Table 9, and an integrated heat 

map of correlation coefficients between pYome and kinome/PTPome is shown in Fig. 4E 

(see also Supporting Information Fig. 3). Instances where there are positive correlations 

between pYome and kinome, but negative correlations with the PTPome may represent 
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examples of net antagonistic regulation of protein phosphorylation by kinase and 

dephosphorylation by PTP (Fig. 1A).

The dendrogram on top of the heat map in Fig. 4E largely separated the kinome and 

PTPome. Strikingly, every PTP, as well as most kinases, had both positive and negative 

associations with the pYome. The kinases were largely separated into two groups (Group A 

and B in Fig. 4E). The three measured RTKs (KIT, FGFR3, FLT3) did not cluster together, 

and only one cluster contained both kinases (DYRK1A, DYRK2) and phosphatases 

(PTPRB, PTPRG, PTPN13, PTPN18).

Analysis of the horizontal dendrogram revealed 17 clusters of pY sites (Supporting 

Information Table 9). Five clusters that contain more than ten pY sites are shown in Fig. 4E, 

numbered 4, 8, 9, 12, and 13. The sequence contexts of the pY sites associated with these 

five clusters are distinctive, as shown in Fig. 4E (see also Supporting Information Table 9). 

Four to six representative pY sites from each of these clusters are shown to the right of the 

determined consensus sequence logo. Another five clusters with more than five, but less than 

10 pY sites are shown in Supporting Information Fig. 4. In general, pYome cluster 4 is 

positively correlated with group A kinases, including HCK and ABL2, and several PTPs. 

Clusters 8 and 9 are both highly positively correlated with group B kinases, including FGR, 

SYK, BTK, but differ in their PTP correlations. Clusters 12 and 13 show strong positive 

correlation with all of the kinases. Cluster 12 shows strong negative correlations with most 

of the phosphatases, whereas cluster 13 shows moderate positive correlation with most of 

the phosphatases.

Although many kinases show both positive and negative correlations with the pYome, a 

subgroup of five kinases (FGR, SYK, BTK, PTK2B, and SGK223) in Group B has positive 

correlations with a majority of the pYome. PTPN1 and PTPN2 (see asterisks in Fig. 4E) are 

structurally and functionally related [36], but show distinct relationships with the pYome. 

PTPN1 has modest positive and strong negative correlations in clusters 4 and 9, respectively, 

whereas PTPN2 has almost opposite relationships in these two regions (Fig. 4E and 

Supporting Information Table 9). Supporting Information Figure 5 shows a more detailed list 

of 58 protein-pY sites highly discordant in their correlation with PTPN1 and PTPN2. In 

general, PTPN1 has negative correlation with most of pY sites (44 sites), whereas PTPN2 is 

negatively correlated with only 14 sites. Indeed, four reported PTPN1 substrates, FLT3 [37], 

SYK [38], STAM2 [39], and PXN [40], showed negative correlations with PTPN1 

expression. Approximately half of the pY sites that were negatively correlated with PTPN2 

expression are annotated for nucleic acid interaction/localization such as RPS13, SRRM2, 

GSTp1, SF3A3, and RPS10 (Supporting Information Fig. 5).

4 Discussion

Classification of AML according to the FAB system is based on morphologic features, along 

with flow cytometry analysis of surface markers, cytogenetics, and assessment of recurrent 

molecular abnormalities. So far, none of the current classification schemes for AML are 

entirely prognostic. Comprehensive proteome analysis segregated AML into two 

significantly different groups, designated Mlow and Mhigh. Among the highly differentially 
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expressed proteins are six known hematopoietic surface antigens, and more than 20 other 

secreted/extracellular proteins. This is consistent with the known heterogeneity in AML 

antigen expression [41]. Our findings illustrate the potential for comprehensive or targeted 

proteome profiling as an approach to complement FAB classification of AML. FAB 

classification is commonly for AML, but does not take into account some prognostic factors. 

The World Health Organization (WHO) has developed a newer system for AML 

classification that includes some of these factors [42].

Pathway analysis of the AML pYome was consistent with the canonical view that these 

malignancies are dependent on, if not driven by, activated pY-mediated signaling networks 

generally proceeding from the plasma membrane to the nucleus (Fig. 2). Clustering analysis 

of the AML pYomes revealed two groups (Fig. 1D), one of which (Group 2) showed a 

higher overall level of protein-pY, and a greater complement of activated non-RTKs 

compared with the other (Fig. 3). SYK and SRC-family kinases have been identified as 

therapeutic targets in AML [43, 44]. Both Groups 1 and 2 contained some samples with 

activated FLT3 and/or KIT, both implicated as targets in AML [33, 34], but Group 1 on 

average had a lower level of activated non-RTKs (Fig. 3). Curiously, one of the Group 2 

tumors expressed activated FGFR3, as indicated by its pY-containing A-loop peptide. 

FGFR3 is a target in t(4;14) multiple myeloma [45, 46] and widely expressed in chronic 

leukemia [47], but has not been established as a target in AML. These results illustrate the 

potential for pY-focused phospho-proteomics as a systematic approach for the discovery of 

candidate tyrosine kinase targets [48, 49], and may be instructive toward testing primary 

AML tumors ex vivo for sensitivity to tyrosine kinase inhibitors.

Only recently have proteomics technologies emerged to facilitate comprehensive analysis of 

the classical PTPs, the PTPome [20]. This study represents a primary attempt to integrate 

cellular protein-pY patterns with the expression of activated kinases and the PTPome. It is 

conceivable that positively and negatively correlated PTP expression with a given pY site 

reflects the indirect activation of phosphorylation (e.g., dephosphorylation of an inhibitory 

pY site on an upstream PTK) and a direct role in dephosphorylation, respectively.

Almost half of the measured pYome was positively correlated with the PTPome (Fig. 4E, 

clusters 4, 8, and 13). It was reported recently that PTP activity in acute leukemia patients 

was high compared to the controls [50]. PTPN1 and PTPN2 are structurally and functionally 

related [36], but in AML their correlation with the pYome, particularly with respect to 

clusters 4 and 9, were contrasting (Fig. 4E). This may reflect differences in their subcellular 

localization, which has been shown to regulate their access to substrate RTKs (e.g. [51]). 

Our results indicate that a high level of classical PTP expression in AML neoplasms does 

not necessarily result in low levels of pY-containing proteins, and supports the notion that 

protein-pY turnover is elevated in AML.

In conclusion, this study indicates and emphasizes the complexities involved in the 

biological regulation and technical measurement of protein phosphorylation. The 

comparison of the relative influences of the activated tyrosine kinome and PTPome on the 

pYome in AML indicated a generally stronger contribution by the kinome than the PTPome. 

Our findings illustrate that the expression of PTPs, which are highly variably expressed in 
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cell lines, tissues, and tumors [20], will have a strong influence on pY networks. Awareness 

of this may be of particular importance when modulation or monitoring protein-pY is a 

therapeutic aim.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Significance of the study

In this study, we used a battery of proteomics methods to characterize the proteomes of 

primary acute myeloid leukemia neoplasms. This included label-free quantification of 

total proteome and phosphotyrosine-proteome, and comprehensive characterization of 

classical phosphotyrosine phosphatases (the tyrosine-phosphatome). We demonstrate our 

first integrated analysis of these different kinds of phospho-proteomics datasets. In 

particular, we provide a so-called cluster-of-clusters in which we relate the profile of 

cancer protein-phosphotyrosine as a function of activated tyrosine kinases and expressed 

protein-tyrosine phosphatase enzymes. To the best of our knowledge, no such integrated 

analysis has been published. The data argue that the proteome may have utility as a 

means to stratify neoplasms according to their protein expression profiles. Importantly, 

our results illustrate how the tyrosine-phosphatome, not just the protein kinases, 

influences the phospho-proteome.
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Figure 1. 
Profile of total protein in AML. (A) The dynamic regulation of protein tyrosine 

phosphorylation by kinases (kinome) and phosphotyrosine phosphatase (PTPome). (B) The 

experimental design and proteome analysis of AML tumors. AML cells were treated as 

illustrated and three MS datasets were obtained from LC-MS/MS analysis: Proteome, 

pYome and PTPome. (C) AML proteome analysis. Unsupervised clustering of AML and 

PBMC cells according to the normalized variation of abundance of 3318 proteins. The 

French–American–British morphology classification (FAB classification; M0 through M5), 

when known, is indicated. The samples cluster into three main groups including the control 

PBMC samples (shaded gray); a group designed Mhigh (shaded blue) comprising AML 

samples related to M5 classification cases; and a third group, designated Mlow, mainly 

comprising AML cases with minimal (M1) or no (M0) maturation. Averages of protein 

expression in two experiments were used for statistical analysis.
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Figure 2. 
Biological functional network analysis of AML pYome. (A) Pathway enrichment analysis of 

AML pYome. The network represents the identified GO and KEGG terms (nodes) and the 

relationship between them (edges) based on similarity of the associated genes/proteins. The 

node size reflects the significance [–log10(p-value)]. The node label and color are the 

number of proteins and the total expression score (TES) of each term, respectively. The node 

border size reflects the average identification frequency (AIF) of the proteins. The edge 

weight reflects the similarity between terms. The dotted red circles indicate the most 

significant functional groups. (B) Construction and analysis of AML pYome interaction 
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network. The TES, AIF, and localization information were added to the network and the 

proteins were arranged based on the cellular localization. The node color represents the 

expression level while the node size represents to number of samples where the protein was 

identified (1–12). The node shape represents the cellular localization of the protein. Proteins 

with more than two locations were attributed as ALL (represented with circle). The 

interaction network was constructed by using Cytoscape Genemania Application, and with 

the proteins in the most significant GO terms identified in the pathway enrichment analysis.

Tong et al. Page 16

Proteomics. Author manuscript; available in PMC 2017 July 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Protein kinase phosphorylation in AML. Heat map showing the relative abundance of pY 

peptides for the indicated protein kinases that were detected in AML. Phosphopeptides were 

quantified according to integrated extracted ion currents with MaxQuant software and 

normalized to sample starting material. The blue column on the far right represents log10 

maximum intensities for each phosphorpeptide across all AML samples. The ratio of signals 

from Group 2 and Group 1 samples (fourth column) was calculated as the ratio of mean 

average of quotients of summed signals from Group 2 peptides versus summed signals from 

Group 1 peptides (Supporting Information Table 5). In cases of zero divisors, a value of 10 

was used. In cases of only a single peptide with a zero divisor, the ratio was set to >10.

Tong et al. Page 17

Proteomics. Author manuscript; available in PMC 2017 July 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
The integrated analysis of protein-tyrosine phosphatases (PTPome), relationship among 

pYome, kinome, and PTPome, and AML proteome. (A) Unsupervised clustering of PTP 

signature peptides in the indicated AML samples. (B) Venn analysis showing overlap 

between proteins detected by whole proteome analysis, pY-enrichment (pYome), and anti-

oxPTP antibody enrichment (PTPome). (C) and (D) The correlation of MS intensities 

derived from all pY-containing peptides compared with tyrosine kinase Aloop phospho-

peptides (C) or PTP signature peptides (D). (E) Heat map of the correlation coefficients 

between total pY peptides (pYome) and kinase pY-peptides (kinome) or PTP peptides 
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(PTPome). Correlations determined by using the Corr() function in R. Sequence frequency 

analysis is shown for five clusters having more than ten phosphor-tyrosine peptides. 

Sequence logo plots represent amino acid frequencies for six amino acids from both sides of 

the phosphorylation site (www.weblogo.berkeley.edu). Asterisks indicate PTPN1 and 

PTPN2. Proteins that contain representative pY sites from the five clusters are listed to the 

right of the sequence logos.
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