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Summary

Cancer cell lines are major model systems for mechanistic investigation and drug development. 

However, protein expression data linked to high-quality DNA, RNA and drug screening data have 

not been available across a large number of cancer cell lines. Using reverse-phase protein arrays, 

we measured expression levels of ∼230 key cancer-related proteins in >650 independent cell lines, 

many of which have publically available genomic, transcriptomic and drug screening data. Our 

dataset recapitulates the effects of mutated pathways on protein expression observed in patient 
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samples, and demonstrates that proteins and particularly phosphoproteins provide information for 

predicting drug sensitivity that is not available from the corresponding mRNAs. We also 

developed a user-friendly bioinformatic resource, MCLP, to help serve the biomedical research 

community.

Introduction

Cancer cell lines are major model systems for investigating cancer mechanisms and 

developing effective therapies. With the advance of high-throughput genome 

characterization technologies, several studies have systematically characterized a large 

number of cancer cell lines for mutations, copy number alterations and gene expression 

profiles, and these studies represent valuable resources for the cancer research community 

(Barretina et al., 2012; Garnett et al., 2012; Klijn et al., 2015). Importantly, comprehensive 

drug response and multiplexed genomic manipulation data are rapidly emerging across large 

datasets (Marcotte et al., 2016; Seashore-Ludlow et al., 2015). In contrast, although 

proteomic data is available for limited cell line sets such as the NCI-60 cell lines 

(Moghaddas Gholami et al., 2013; Nishizuka et al., 2003), there have been no large-scale 

proteomic data of human cancer cell lines. This is despite the fact that proteins comprise the 

basic functional units in biological processes and represent major targets for cancer therapy. 

Furthermore, our ability to impute protein levels and function from DNA and RNA levels is 

limited by posttranscriptional and posttranslational regulatory processes. Therefore, there is 

an urgent need to fill this gap, which would greatly contribute to the comprehensive 

molecular portrait and translational utility of cancer cell lines.

Reverse-phase protein arrays (RPPAs), which have been widely used to elucidate the 

molecular basis of human cancer, evaluate protein-based biomarkers, and investigate the 

mechanisms underlying sensitivity and resistance to cancer therapy, offer a powerful 

approach for this purpose (Cheung et al., 2015; Ince et al., 2015; Sheehan et al., 2005; 

Spurrier et al., 2008; Yang et al., 2015; Yang et al., 2013). This rapidly maturing quantitative 

antibody-based assay can assess a large number of protein markers in many samples in a 

cost-effective, sensitive and high-throughput manner (Hennessy et al., 2010; Nishizuka et 

al., 2003; Tibes et al., 2006). More recently, The Cancer Genome Atlas (TCGA) has 

employed this technology to characterize thousands of patient samples across a broad range 

of cancer types and generated the expression data of >200 total and phosphorylated protein 

markers in major signaling pathways, including PI3K, mTOR, MAPK, TGF-β, WNT, cell 

cycle, apoptosis, immune responsiveness, and DNA damage response (Akbani et al., 2014; 

Li et al., 2013). To serve the broader biomedical research community, we initiated the MD 

Anderson Cell Lines Project (MCLP) with the goal of characterizing a large number of 

cancer cell lines using the RPPA platform and presenting a bioinformatic resource for 

analyzing these data.

Li et al. Page 2

Cancer Cell. Author manuscript; available in PMC 2018 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Results

Overview of protein expression data of cancer cell lines

We generated high-quality normalized protein expression data for 706 cell lines (including 

651 independent cell lines) using the Cancer Center Support Grant supported RPPA platform 

(Experimental Procedures, Supplemental Experimental Procedures, Figure S1 and Table S1). 

The average number of protein markers (including both total and phosphorylated proteins) 

profiled per sample is 227. Many of the cell lines (65%) have been profiled at the DNA and 

RNA levels through other major cell line efforts such as the Cancer Cell Line Encyclopedia 

(CCLE), COSMIC Cell Lines Project, and a recent project from Genentech (Barretina et al., 

2012; Garnett et al., 2012; Klijn et al., 2015) (Figure 1A); however, 246 cell lines are unique 

to our study. The MCLP cell lines encompass 19 lineages, with six lineages having more 

than 50 cell lines characterized (lung, blood, head and neck, breast, ovary, and skin) (Figure 

1B).

To enhance the utility of the MCLP, we collected genomic, transcriptomic and drug 

sensitivity data from our in-house and other major publicly available cell line resources 

(Barretina et al., 2012; Daemen et al., 2013; Garnett et al., 2012; Klijn et al., 2015; 

Seashore-Ludlow et al., 2015) (Figure 1C). The number of MCLP cell lines with available 

mRNA expression, copy number alteration, and single nucleotide variation data is 464, 456 

and 418, respectively. For mRNA and copy number alteration data, our MCLP shares >300 

cell lines with three major public cell line resources; for single nucleotide variation data, our 

MCLP shares >250 cell lines with two major public resources. For drug sensitivity data, 

both the Cancer Therapeutic Response Portal (CTRPv2, based on CCLE cell lines; 

Seashore-Ludlow et al., 2015) and Genomics of Drug Sensitivity in Cancer (GDSC) 

resources (Garnett et al., 2012) include >250 MCLP cell lines.

We performed several analyses to assess the quality of our RPPA data. To evaluate 

reproducibility, we generated the RPPA data of replicate samples of NCI-60 cell lines. The 

median value of the sample-wise Pearson correlations between the NCI-60 replicates was 

0.92, which was substantially higher than that of random cell lines pairs sampled from 

NCI-60 cell lines, 0.46 (Z-score = 14.97, p = 6.15×10-51, Figure 1D, Figure S1D). Since 

some cell lines were derived from the same patient such as HEC-1-A and HEC-1-B or as 

derivative drug resistant and sensitive pairs (Table S1), we next calculated the sample-wise 

correlations between all derivative cell line pairs and compared them to random cell line 

pairs sampled from all the cell lines surveyed. We found that the correlations among the 

derivative pairs (median R = 0.87) were again much higher than those of random pairs 

(median R = 0.42, Z-score = 18.65, p = 6.77×10-78, Figures 1E, S1E). The positive 

correlations among random cell line pairs probably reflect the intrinsic similarities of protein 

expression profiles in cell lines, particularly in the same lineage. Indeed, the correlation of 

random pairs within a single lineage were higher than those sampled across lineages (Figure 

S1F). Finally, we assessed the protein-wise correlations between matched total and 

phosphorylated protein pairs such as AKT and AKT_pT308. Approximately 34% of the 

total-phosphorylated protein pairs showed a correlation of >0.5 while only 2% of random 

pairs exceeded the same cut off (Figure 1F). These results indicate that RPPA data can 
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reliably capture information content across the cell lines and protein markers surveyed. 

Together, our study presents a robust RPPA protein expression dataset of the largest number 

of cancer cell lines with matched DNA, RNA profiling and drug sensitivity data. To avoid 

sample redundancy, we only retained one cell line from all derivative cell line pairs and 

focused on 651 independent cell lines for subsequent analyses.

Comparison of mRNA and protein expression in cancer cell lines

The RPPA-based characterization of the MCLP dataset with parallel transcriptomic data 

enabled us to investigate the relationship between mRNA and protein expression in a 

systematic manner. Among our MCLP cell lines, 369 cell lines (mainly from 11 lineages) 

have available mRNA expression data from the CCLE. We analyzed 250 proteins (including 

188 total proteins and 62 phosphoproteins) with matching protein and RNA data. We found 

that the corresponding mRNA and protein pairs generally showed good correlations: 86.4% 

of the mRNA–protein pairs had a significantly positive correlation, whereas only 1.6% of 

the pairs showed a significantly negative correlation (false discovery rate [FDR] < 0.1). The 

significant negative correlations may arise due to regulatory feedback loops. The median 

Spearman rank correlation (Rs) across the 250 mRNA–protein pairs is ∼0.45, which is 

higher than that previously observed on patient samples (Akbani et al., 2014), potentially 

due to the ease of handling cell lines and preserving RNA and protein levels as well as the 

increased purity of cell line samples relative to clinical samples (Figure 2A). After filtering 

proteins with lower variations, the median correlations across lineages were further 

improved. Among the 11 lineage groups, the blood cell line group showed the lowest median 

correlation (Rs = 0.3, blood vs. other p = 1.12 ×10-6) because many of the protein markers, 

which were enriched for proteins of interest from solid tumors, are expressed at low levels in 

hematopoietic cell lines. Importantly, the mRNA–protein correlation varied greatly from 

protein to protein (especially for phosphorylated proteins), as noted in earlier studies (Gygi 

et al., 1999), which is presumably related to the complexity of the regulation of individual 

protein levels by microRNA and posttranscriptional processes such as degradation. We 

further examined the correlation of individual protein markers with mRNA expression across 

different cell line lineages. Based on the number of lineages in which the mRNA–protein 

pair showed a positive correlation (Rs > 0.5), protein markers were classified into three 

groups: proteins in group 1 showed no correlation in any lineage, those in group 2 showed a 

positive correlation in 1∼5 lineages, and proteins in group 3 showed a correlation in >5 

lineages surveyed (Figure 2B, Table S2). The proportion of phosphoproteins was 51%, 22% 

and 6% in these groups (chi-squared test, p = 5.68 ×10-9), indicating that phosphoproteins 

tend to have lower correlations with their corresponding mRNAs (Tables S3, S4) and further 

that mRNA is not able to accurately reflect phosphoprotein levels.

To obtain a view beyond individual proteins, we constructed a protein–protein co-expression 

network and assessed whether the same protein–protein connections could be identified at 

the mRNA level (Figure 2C). In total, we identified 72 strongly co-expressed protein pairs (|

Rs| > 0.6, FDR < 0.01), among which 16 pairs represented total and phosphorylated proteins 

from the same gene and 56 pairs were from two genes. Among the co-expressed protein 

pairs, 41% also showed a significant mRNA expression correlation in the same direction (|

Rs| > 0.2) including a small group of proteins related to the cell cycle (i.e., CDK1/
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CDK1_pY15/CRM1). When both proteins involved in an interaction were total proteins, 

nearly 60% of them were correlated at the mRNA level, which was significantly higher than 

that (24%) when at least one protein involved in an interaction was a phosphoprotein (chi-

squared test, p = 0.031). Intriguingly, 4 pairs showed an mRNA co-expression correlation 

pattern opposite to that observed at the protein level, all of which involved the 

phosphorylated protein EPHA2_pT594, suggesting that phosphorylation of EPHA2 at T594 

is regulated at a posttranslational level by complex mechanisms including negative (i.e., 

compensatory) feedback loops. We also performed a similar analysis based on mRNA co-

expression networks and found that 40% of strongly correlated mRNA pairs are not 

correlated at the protein level (Figure S2). These results indicate that a protein and the 

corresponding mRNA contain considerably distinct information content in terms of 

expression and interrelationships with the expression levels of other proteins. Importantly, 

protein activity reflected by phosphoprotein levels could not be accurately inferred from 

mRNA expression data, supporting the importance of a comprehensive cell line proteomic 

resource.

Clustering pattern of cancer cell lines by protein expression

To understand the global protein expression patterns of cancer cell lines, we performed 

unsupervised clustering analysis on the 651 unique cancer cell lines based on proteins most 

commonly assessed across cell lines. Using a robust unsupervised consensus clustering 

algorithm (Monti et al., 2003), we identified 10 distinct cell line clusters (Figure 3A, Table 

S5). (An interactive, high-resolution, next generation clustered heat map is included in the 

web portal described below to allow exploration of specific proteins and cell lines.) These 

clusters showed significant correlations with mutated cancer genes, including PTEN (FDR = 

0.027), KRAS (FDR= 7.7×10-4), ARID1A (FDR = 1.4×10-3), and PIK3CA (FDR = 

4.6×10-6), suggesting that these aberrations contribute to alterations in total and 

phosphoprotein levels in a sufficient number of cell lines. For a set of cell lines with both 

mRNA and protein expression data, we performed unsupervised clustering analysis in 

parallel. We found that the resulting RPPA clusters showed more significant correlations 

with key mutated genes than the mRNA clusters (FDR < 0.1, 5 vs. 3, Figure S3A and B), 

suggesting that protein expression captures more signals from key genetic alterations than 

mRNA.

Among the RPPA clusters, four clusters were dominated by one lineage (i.e., >50% cell lines 

in the cluster came from the lineage) and we therefore named them by the major lineage in 

that cluster; while the other six clusters contained mixtures of cell lines and were therefore 

named by the lineage compositions or by key protein markers (Figure 3B). The epithelial–

mesenchymal transition (EMT) cluster consisted of multiple lineages and was clearly 

defined by increased levels of EMT protein markers such as caveolin1 and PAI-1 and 

decreased levels of epithelial markers such as E-cadherin and claudin 7. Almost all the 

members (98%) of the blood cluster were composed of hematopoietic cell lines, which 

represented the most differential cluster, and was defined by lower expression of epithelial 

markers such as beta-catenin, phospho-YAP and EGFR and higher expression of LCK and 

SYK as expected based on the dominantly hematopoietic cell lineage. The head and neck 

cluster was dominated by head and neck cell lines plus a few lung and breast cancer lines, 
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and was associated with high expression of annexin1, caveolin1 and EGFR. The skin cluster 

was dominated by melanoma and was associated with high levels of GAB2 and low levels of 

SYK. The sarcoma cluster was mainly composed of sarcoma and bone cell lines, and was 

associated with the higher levels of TP53 and c-KIT. The breast cluster consisted of breast 

cancer cell lines only, with increased AR and HER2 protein levels and represented primarily 

luminal breast cancer lines. The lung cancer cell lines were separated into four major 

clusters: lung/pancreas/ovary, lung/ovary, lung/colon, and lung/gyne. The “lung/gyne” 

cluster consisted of breast, ovarian and uterine cancer cell lines, and was marked by the 

activation of the PI3K/AKT pathway. The lung/colon cluster was a cross-lineage group that 

included the majority of the colon cancer cell lines. We further focused on a set of breast cell 

lines with known subtypes, and found a significant correlation between well-established 

breast cancer subtypes and RPPA clusters (p = 5.6×10-10, Figure 3C). Almost all cell lines of 

the claudin-low subtype were located in the EMT cluster; while luminal and basal cell lines 

were enriched in the breast and lung/gyne clusters, respectively. These results indicate that 

the RPPA pattern not only reflects the lineage/tissue information but also tumor subtype 

distinctions.

Given the clustering patterns, we further calculated pathway scores as previously described 

(Akbani et al., 2014) and found that these clusters showed distinct pathway associations 

(Figures 3D, S3C). In particular, the EMT cluster was clearly associated with an increased 

EMT score (p = 8.1×10-114, Figure S3C); the breast cluster was marked by high hormone 

pathway scores (hormone_a, p = 2.0×10-45, and hormone_b, p = 9.6×10-64, Figure S3C); 

and the sarcoma cluster was associated with an increased DNA damage response score (p = 

8.3 ×10-32, Figure S3C).

Effects of mutations on protein expression patterns

TCGA studies have systematically identified genes and pathways frequently mutated in 

different cancer types. Understanding the effects of mutated genes on cancer signaling 

pathways is essential for developing cancer therapy. As commonly used cellular models, a 

key question is to what extent cancer cell lines capture the clinically relevant mutation 

patterns observed in cancer patient cohorts. Among our MCLP cell lines, single nucleotide 

variations of 250 cell lines have been characterized by CCLE with targeted sequencing; and 

five lineage groups (breast, ovary, colon, lung and uterus) had more than 10 cell lines, with 

respectively matched TCGA cancer types (BRCA, OV, COAD, LUAD/LUSC and UCEC). 

Due to the relatively small number of cell lines in each lineage, we focused on the four most 

frequently mutated pathways (or sub-networks), p53, PI3K, NOTCH and SWI/SNF complex 

signaling, each of which exhibited >10% mutation frequency in at least one of the five 

patient cohorts from a recent TCGA pan-cancer study (Leiserson et al., 2015) (Tables S6 and 

S7). We observed an overall strong concordance between TCGA patient cohorts and MCLP 

cell line lineages for these pathways in terms of the top mutated genes and their mutation 

frequencies (Figure 4A-4B, Tables S6 and S7).

We then examined the effects of the selected mutated pathways (Leiserson et al., 2015) on 

the expression of individual proteins. Given a mutated signaling pathway and a cell line 

lineage described above, we first identified proteins that were significantly differentially 
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expressed between wild-type (WT) and mutated groups (t-test, FDR < 0.05, Tables S6 and 

S7). Only 5 lineages showed sufficient differential expression signals (>10 differentially 

expressed proteins in WT and mutated samples), so we focused on these lineages and 

assessed whether TCGA patient samples and MCLP cell lines showed similar patterns of 

dysregulated proteins (i.e., up- or down- regulated fold changes across the differential 

proteins). We found that 4 of the 5 comparisons showed overall similar mutation–protein 

patterns: mutations in PI3K signaling in breast cancer (Spearman rank Rs = 0.41, p < 0.001), 

lung cancer (Rs = 0.36, p = 0.36) and colon cancer (Rs = 0.83, p = 0.005); and mutations in 

p53 signaling pathway in breast cancer (Rs = 0.34, p < 0.001) (Figure 4C, Figure S4 and 

Tables S6, S7). The only exception was the effect of mutated p53 signaling pathway in lung 

cancer, where a weak negative correlation was detected. Thus, given a mutated pathway, 

individual proteins generally showed the similar patterns between the WT and mutant 

groups in both patient and cell line cohorts (Figure 4D).

The predictive power of protein markers in drug sensitivity

Our MCLP proteomic dataset is able to link protein and particular protein phosphorylation 

levels to drug sensitivity, which offers an opportunity to complement the assessment of 

genomic and transcriptomic activity as potential predictive biomarkers. Using the CTRPv2 

drug sensitivity data for the cell lines with both protein and mRNA expression data, we 

performed a global comparison of protein markers and corresponding mRNA markers from 

the same genes in predicting drug sensitivity. Since quantitative drug sensitivity data tends to 

be noisy and less consistent (Haibe-Kains et al., 2013), we first employed a robust method to 

classify the cell lines into sensitive or resistant groups for a given drug (Cancer Cell Line 

Encyclopedia and Genomics of Drug Sensitivity in Cancer, 2015) and assessed whether a 

protein was significantly differentially expressed between the two cell line groups 

(Experimental Procedures). Then, given a drug and the mRNA and protein (total and 

phosphoproteins) from the same gene, drug sensitivity could be either associated with 

protein only, mRNA only, or both mRNA and protein levels (t-test, FDR < 0.1). We found 

that the relative abundance of these three types of markers varied across different drug 

families, suggesting complementary predictive power of RNA and protein analysis (Figure 

5A). We next focused on the predictive powers of protein or mRNA levels of specific drug 

targets (e.g., EGFR family members and EGFR targeted drugs), the most important 

relationships in the clinic. We found that protein markers showed more significant 

associations than those of corresponding mRNAs (Figure 5B, Figure S5A-S5C). The 

predictive power of phosphoHER2 and phosphoEGFR was particularly apparent for EGFR 

pathway targeted drugs (Figure 5B). Furthermore, baseline phosphorylation level of AKT 

was a negative predictor of response to a subset of EGFR family inhibitors as expected. In 

terms of BRAF inhibitors, phosphoCRAF and to a degree phosphoARAF and VEGFR2 

were predictors of resistance, observations that were not captured at RNA levels (Figure 

S5A). Similarly, total phosphoMEK levels were predictors of response to MEK inhibitors 

(Figure S5B). In addition to individual proteins, using the CTRPv2 drug data as the training 

set and the GDSC drug data as the test set, we compared the drug- sensitivity predictive 

power of protein or mRNA combinations and found that the protein-based classifiers showed 

better predictive power (based on the area under the curve [AUC] score in the receiver 

operating characteristic [ROC] curve) than the mRNA-based classifiers for a greater number 
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of drugs (Experimental Procedures, Figure 5C). Taken together, these comparisons 

demonstrate that protein markers provide an improved ability to predict response to drugs 

and thus have the potential to function as predictive markers in the clinic.

We next explored the relationship for drugs that target the EGFR family of receptors since 

these showed the strongest associations (Figure 5B). In both CTRPv2 and GDSC data, 

phosphoEGFR_Y1068 and phosphoHER2_Y1248 were strongly associated with response to 

drugs that targeted members of the EGFR family, as expected (Figures 5D, S5D-S5F). The 

associations were particularly clear for pan-inhibitors such as afatinib, canertinib, neratinib, 

and lapatinib, with weaker associations with EGFR selective drugs such as WZ-1-84, 

gefitinib and PD153035. Intriguingly, we observed marked sensitivity to saracatinib 

(SRC/Abl inhibitor) and ibrutinib, a BTK inhibitor. SRC is a downstream mediator for 

EGFR, and saracatinib has shown activity in a number of EGFR-activated tumor models 

(Formisano et al., 2014; Nam et al., 2013). The strong association between the ac tivation of 

EGFR and HER2 and saracatinib activity suggests that saracatinib (Figure S5G, S5H) 

should be considered for evaluation in patients whose tumors exhibit EGFR and HER2 

activation (due to EGFR mutations or HER2 amplification). In terms of predicting ibrutinib 

activity (Figure S5I), phospho-HER2 showed the strongest correlation to sensitivity. 

Strikingly, ibrutinib, which is under evaluation in B-cell tumors as a BTK inhibitor, 

demonstrates cross-reactivity with EGFR and in particular mutant EGFR (Gao et al., 2014; 

Haura and Rix, 2014; Wu et al., 2015). Indeed, ibrutinib is being evaluated in a clinical trial 

for patients with EGFR-mutant lung tumors (NCT02321540).

Interestingly, the volcano plots for lapatinib and other EGFR family inhibitors demonstrate a 

marked sensitivity in cells with high levels of markers associated with epithelial 

differentiation (Figures S5J-S5M). This is compatible with several studies reporting that 

EMT is associated with a stem cell-like phenotype and resistance to multiple therapeutic 

modalities, including targeted therapies (Byers et al., 2013; Mani et al., 2008; Singh and 

Settleman, 2010). We thus used our EMT pathway predictor (Akbani et al., 2014) to classify 

cell lines to identify drugs may have increased activity in the cells that had undergone EMT 

(Figure 5E). As predicted, cell lines that had a strong EMT signature were resistant to 

targeted therapies including saracatinib and drugs targeting the EGFR family. However, the 

EMT cell lines were markedly sensitive to fluvastatin and lovastatin that target HMGCR and 

were moderately sensitive to a number of drugs that target BRAF, MAPK or NFκB 

signaling.

One interesting example is the MDM2 inhibitor Nutlin3 (Figures S5N, S5O). The analysis 

on both the CTRPv2 and GDSC sets showed that elevated p53 proteins levels predicted 

resistance to Nultin3. This likely represents the resistance being due to elevated p53 levels 

associated with stabilizing p53 mutations. Indeed, the association of Nutlin3 activity with 

BAX levels (CTRPv2, p = 6.3×10-7, GDSC, p = 7.8 ×10-5, both FDR < 0.05) and p21 levels 

(CTRPv2, p = 2.1×10-5, FDR < 0.01; and GDSC, p = 0.0056), which are downstream targets 

for p53 and indicative of wild type p53, supports this contention.

Another example of particular interest is the relationship between ARID1A protein 

expression and the sensitivity to MEK inhibitor trametinib, which is an FDA-approved drug 
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for the treatment of patients with metastatic melanoma and currently under intensive clinical 

investigation (Flaherty et al., 2012). Based on the volcano plots, ARID1A was one top 

predictor for trametinib across different protein markers; reciprocally, trametinib showed the 

strongest negative correlation with the ARID1A protein level across different drugs (Figure 

S5P, Q). Indeed, the ARID1A expression was significantly higher in sensitive cell lines than 

resistant cell lines (CTRPv2, p = 0.01, Figure S5R). We performed independent drug 

sensitivity assays in a set of in-house cell lines and validated this pattern (p = 1.59×10-5, 

Figure S5S). In contrast, both mRNA expression and mutational status and of ARID1A were 

not correlated with trametinib sensitivity (Figure S5T, S5U). This example further 

demonstrates a unique value of RPPA protein markers over DNA mutation or mRNA 

expression data. This result also suggests that a retrospective analysis of patient samples 

treated with MEK inhibitors is warranted and if the association with ARID1A protein levels 

is validated, a prospective study of ARID1A as a biomarker for MEK inhibitor response 

could be implemented. Taken together, these observations support the power of RPPA 

analysis for predicting responses to different therapeutic modalities.

A protein-centered web platform for exploring cancer cell line data

To facilitate the utilization of the proteomic data contained in our cell line set to a broad 

biomedical community, we developed a user-friendly, interactive web platform, MCLP, for 

fluent data exploration and analysis, which can be accessed at http://

bioinformatics.mdanderson.org/main/MCLP:Overview. The MCLP platform provides four 

interactive modules: “My Protein,” “Analysis,” “Visualization” and “Data Sets” (Figure 6A). 

To illustrate how users can quickly obtain useful information about a specific protein, we use 

PDL1, a key immunotherapy target as an example in this section. “My Protein” shows 

detailed information for each RPPA protein, including protein name, corresponding gene 

names, antibody source and validation status. This module also provides the global 

expression pattern of a protein across different cell line lineages in boxplots. For example, 

the PDL1 protein expression is much higher in head and neck and lung cancer cell lines 

which are associated with tobacco and have a high mutational load than in uterine cell lines 

(Figure 6B). This may also correlate with the response to PDL1 and PD1 inhibitors in these 

lineages. The “Analysis” module provides three common analyses through which users can 

explore the function and underlying associations of proteins in each cell line lineage. (i) 

Protein–Protein Correlation: with this module, users can identify pairwise protein 

correlations for each cell line lineage, such as a positive correlation between PDL1 and 

CD49B in uterine cell lines (Figure 6C); (ii) Protein–Mutation Correlation: given a mutated 

gene of interest, users can identify proteins differentially expressed between the WT and 

mutant cell lines such as the higher PDL1 expression in CCDC50 mutant cell lines than WT 

cell lines (Figure 6D); and (iii) Protein–Drug Correlation: users can explore the correlations 

between protein expression and drug sensitivity through volcano plots such as the 

correlations of PDL1 with pyrazolanthrone (Figure 6E). The module “Visualization” 

provides two ways to examine the global patterns of protein expression: (i) Protein–Protein 

Network shows the correlations of a protein expression with its interacting partners in 

protein interaction networks derived from databases such as HPRD and STRING (Stelzl et 

al., 2005; Szklarczyk et al., 2015) (the interacting neighbors of PDL1 is shown in Figure 

6F); and (ii) Dynamic Heatmap allows users to navigate, magnify and explore the clustering 
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patterns of cell lines or proteins in an interactive heatmap as well as to identify proteins 

expressed in particular cell lines (Figure 6G). The “Data sets” module describes in detail the 

datasets curated in MCLP. Each dataset can be easily downloaded through a tree-view 

interface. Collectively, MCLP provides a protein-centered web platform that enables 

researchers to explore, analyze and visualize RPPA data and other associated data on MCLP 

cell lines in an intuitive and efficient manner.

Discussion

Recent large cancer genome projects such as TCGA have revealed great molecular diversity 

among tumors across and within cancer types. Understanding the functional consequence of 

this diversity on treatment response is a central task for implementing precision cancer 

medicine. It is therefore essential to characterize the comprehensive molecular profiles of a 

large number of human cancer cell lines in order to capture the diversity observed in patient 

tumors and elucidate the complex relationships between molecular aberrations, cancer 

phenotypes and therapeutic response. Using the same RPPA platform employed for TCGA, 

we generated protein expression profiles of 651 independent cell lines, a comprehensive cell 

line protein expression dataset. This study greatly expands our understanding of cancer cell 

lines by adding information on protein expression, including total and posttranslationally 

modified proteins, which are arguably the most crucial molecules in the cell and, 

importantly, the target of most drugs. Together with recent efforts that have systematically 

characterized cancer cell lines at the DNA and RNA levels as well as drug responses, our 

study provides a rich resource for the research community to use to investigate tumor 

behaviors in a quantitative and efficient way.

As major model systems, cell lines allow us to investigate cancer mechanisms and drug 

response in a simplified, well-controlled environment, thereby identifying the most 

compelling candidates or hypotheses for further investigation. Through straightforward, 

side-by-side comparisons, we showed that our MCLP data could largely recapitulate the 

protein expression patterns associated with frequently mutated pathways that are observed in 

TCGA patient cohorts; and that RPPA-based protein markers are powerful predictors of drug 

response providing information that cannot be obtained solely from analysis of 

corresponding mRNAs. Although many of the predicted drug responses were expected, 

others were not initially but could be justified by literature review. We further validated 

some cases through training-and-test approaches across different data sets or independent 

experiments in our laboratory. This suggests that the protein-drug sensitivity analysis 

resource can be used to discover associations and therapeutic markers, and highlights the 

potential clinical utility of our MCLP project.

Our RPPA platform also has some limitations. First, compared with recent mass 

spectrometry studies of cell lines or patient samples (∼10,000 detectable proteins)(Mertins et 

al., 2016; Tyanova et al., 2016; Zhang et al., 2014; Zhang et al., 2016), the number of RPPA 

protein markers (including phosphorylated proteins) that can be effectively monitored by the 

RPPA technology is much smaller. However, the increased sensitivity (particularly for some 

key proteins and phosphoproteins) and cost make RPPA a practical platform for the analysis 

of the large number of cell lines available. Second, the RPPA readout of a protein is largely 
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dependent on the antibody availability and quality. Further, as other high-throughput 

technologies, there is relatively high technical measurement error on individual samples, so 

that interesting observations from the RPPA platform should be confirmed by further in-

depth investigations.

To help the broader research community to capitalize on our protein expression data as well 

as other associated data on MCLP cell lines, we have provided an interactive, user-friendly 

web platform through which biomedical researchers can explore, visualize, and analyze 

these data in an intuitive and convenient way. We expect this tool to greatly reduce the 

barriers researchers face in mining complex genomic and proteomic data, directly 

facilitating the translation of these data into clinical knowledge and utility.

Experimental Procedures

Cell line source and RPPA profiling

We collected cancer cell lines or proteins through the CCSG supported Cell Line 

Characterization Core facility (Houston, TX) and from a number of outside collaborations. 

All lines prepared at the MD Anderson Cancer Center (MDACC) were confirmed by short 

tandem repeat (STR) analysis in the core per institutional policy. The cell lines and STR are 

routinely “cleaned” by comparison with the “Database of Cross-Contaminated or 

Misidentified Cell Lines” (http://iclac.org/databases/cross-contaminations/). The outside 

collaborators also routinely confirm cell lines by STR analysis. In the most cases we were 

able to confirm the identity of proteins or lines from outside collaborators by comparing 

RPPA results from multiple runs of the same cell line from several groups. For RPPA 

experiments, cell line samples were prepared and antibodies were validated as previously 

described (Hennessy et al., 2010; Nishizuka et al., 2003; Tibes et al., 2006). RPPA data were 

generated by the RPPA core facility at MDACC, the same platform used for TCGA patient 

samples. RPPA slides were first quantified using ArrayPro (Meda Cybernetics) to generate 

signal intensities, then processed by SuperCurve (Hu et al., 2007) to estimate the relative 

protein expression level, and were normalized by median polish. RPPA slide quality was 

assessed by a quality control classifier (Ju et al., 2015) and only those slides above 0.8 

(range: 0-1) were retained for further analysis. The cell line samples were run in a total of 

seven batches, and merged using a replicate-based normalization method (Akbani et al., 

2014), in which replicate samples profiled across multiple batches are used to adjust the data 

for potential batch effects. In total, we generated RPPA data of 706 cell lines and after 

removing closely related cell derivatives, 651 independent cell lines were used in subsequent 

analysis (Table S1). See more details in Supplemental Experimental Procedures and Figure 

S1.

Genomic, gene expression and drug sensitivity data collection

We collected single nucleotide variation, copy number alteration, and gene expression data 

from four major cell line resources: CCLE (http://www.broadinstitute.org/ccle), COSMIC 

Cell Line Project (http://cancer.sanger.ac.uk/cell_lines), J.W. Gray Breast Cancer Cell Line 

Panel (Synapse: syn2346643), and a recent cell line resource generated by Genentech (Klijn 

et al., 2015). We obtained drug sensitivity data from two pharmacogenomic resources: 
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GDSC (http://www.cancerrxgene.org/) and CTRPv2 (http://www.broadinstitute.org/

ctrp.v2/). Annotations of compounds were extracted from previous studies (Garnett et al., 

2012; Seashore-Ludlow et al., 2015).

Protein and mRNA expression analysis

For protein and mRNA correlation analysis, we used the CCLE mRNA expression data 

(Affymetrix microarrays) since it shares the largest number of cell lines with our MCLP 

dataset. For the 369 cell lines with both protein and mRNA expression data, we analyzed 

250 proteins that were measured in >30% of the cell lines. These proteins had matched 

mRNA expression data from 201 unique genes. We calculated Spearman's rank correlations 

between the matched protein– mRNA pairs for each of 11 lineages and across all the cell 

lines, and repeated the analyses after filtering the 20% of protein markers with the lowest 

coefficient of variation for each lineage. FDR was used to adjust for multiple comparisons. 

Based on the number of comparisons in which an mRNA and protein pair (n) showed a 

significant correlation (Rs > 0.5), we classified the proteins into three groups: n = 0, group 1, 

no correlation; n = 1∼5, group 2, low correlation; and n >5, group 3, high correlation. Based 

on Spearman's rank correlations of each protein–protein pair across all the cell lines, we 

constructed a protein co-expression network with |Rs| > 0.6, FDR < 0.001. Then for each 

protein–protein interaction, we assessed whether the corresponding mRNAs showed a 

significant co-expression pattern (|Rs| > 0.2). We used the chi-squared test to assess whether 

phosphoproteins were enriched in a specific protein or interaction group. We performed a 

similar analysis for the mRNA co-expression network.

Protein expression clustering analysis

We performed consensus clustering analysis on 651 cell lines based on >200 most 

commonly shared proteins across cell lines, and used the chi-squared test to assess the 

correlations of the resulting cell line clusters with cell line lineages or mutated cancer genes 

or breast cancer subtypes. We calculated the RPPA-based pathway scores (Akbani et al., 

2014) and used the analysis of variance to assess the correlations of the resulting cell line 

clusters with the pathway scores.

Mutation–protein analysis

We performed mutation–protein analysis on our MCLP cell lines and TCGA patient sample 

tumors. For the cell lines with available mutation data from CCLE, we focused on the 6 

lineages with >10 cell lines available. Since the RPPA data of acute myeloid leukemia were 

not available in TCGA, blood cell lines were removed from the comparison. For patient 

cohorts, we retrieved level-3 mutation data and replicate-based normalized RPPA data from 

the corresponding 5 TCGA cancer types (BRCA, COAD, LUSC/LUAD, OV, and UCEC) 

from synapse (syn4924181) and The Cancer Proteome Atlas (Li et al., 2013). To identify 

frequently mutated pathways (or subnetwork), we obtained 16 frequently mutated pathways 

(Leiserson et al., 2015), among which only 4 pathways had >10% mutation frequencies in at 

least one of the five cancer types. Given a pathway of interest, we used Student's t-test to 

assess whether a protein was differentially expressed between the WT and mutated groups. 

To assess global similarity, for the cell line lineages with >10 differentially expressed 
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proteins (FDR < 0.05), we used Spearman's rank correlation to assess the similarity of fold 

changes across different proteins between MCLP cell lines and TCGA patient samples.

Drug sensitivity data analysis

We analyzed the drug sensitivity data over MCLP cell lines using two approaches. First, we 

implemented the waterfall method to categorize sensitive and resistant cell lines as 

previously described (Barretina et al., 2012; Haibe-Kains et al., 2013), and applied Student's 

t-test to identify individual protein and mRNA markers significantly associated with a 

specific drug. We identified individual features (total/phospho-proteins or mRNAs) at FDR 

= 0.1 between the two sensitive and resistant groups. To compare the power of the classifiers 

of differentially expressed proteins or mRNAs, we first employed an elastic net to construct 

multiple-marker classifiers to predict sensitive/resistant cell lines using the CTRPv2 data as 

the training set and optimized the parameters through cross-validation. Then we applied the 

classifiers to the corresponding drugs in the GDSC datasets (the test set), and assessed the 

classifier performance based on the AUC score in the ROC. Second, to examine the 

relationships of individual proteins with a drug, we visualized their patterns by volcano 

plots.

Drug sensitivity assays

Trametinib was 3-fold serial diluted for 7 dilutions in DMSO at 1,000× concentration stocks. 

Aliquots of the diluted stocks were stored in -20°C. The cancer cell lines involved in this 

assay were verified by the STR analysis at MD Anderson Core. They were maintained in 

their optimal growth medium (with 5% FBS) and seeded in 96-well plate at 2,500 cells/

100ul/well for 24 hr incubation prior to being changed into the medium containing 2% FBS 

for overnight incubation (for serum deprivation). Serial diluted drug stocks were added to 

each well to make 1/1,000 final concentration for additional 72 hr incubation. DMSO at 

0.1% without any drugs was used as controls (basal level). Triplicates were performed for 

each concentration. Cell viability was determined at the end-point by Cell Titer Blue Cell 

Viability Assay (5uL of the reagent/well) based on the ability of living cells to convert redox 

dye (resazurin) into a fluorescent product (resorufin) to be measured at 530Ex / 604Em. 

Cellular responsibility was defined by GI50 and EC50 concentration calculated according to 

the cell viability curve.

Web platform development

All RPPA, genomic, mRNA expression and drug sensitivity data accompanying the pre-

calculated analytic results were stored in a CouchDB database. We generated all the analytic 

results in R before loading them into the database. We implemented a user-friendly and 

interactive web interface in JavaScript. Specifically, tabular results were generated by 

DataTables; box and scatter plots were generated by HighCharts; and interactive network 

views were implemented by Cytoscape.js library.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Significance

Protein expression profiling offers a powerful approach for investigating cancer 

mechanisms and therapies. Using reverse-phase protein arrays, we systematically 

characterized the expression levels of key cancer-related total and phosphorylated 

proteins in a large set of human cancer cell lines, many of which are linked to high-

quality DNA, RNA and drug screening data. These proteins can recapitulate mutational 

patterns relevant to cancer patients and show robust ability to predict drug sensitivity. We 

developed an integrated web platform for community-based investigation of proteomic 

data.
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Figure 1. Overview of the MCLP cell line dataset and associated molecular and drug data
(A) Venn diagram of the MCLP cell line set with other large public cell line resources, 

including CCLE, COSMIC Cell Lines Project, and Genentech Cell Lines Project. (B) 

Distribution of MCLP cell lines in various lineages. (C) Heatmaps summarizing the 

publically available mRNA expression, copy number alteration, single nucleotide variation 

and drug sensitivity data. In the heatmaps, each vertical line in the top row represents a cell 

line in the MCLP set, and each line in other rows indicates the corresponding molecular data 

is available for that specific data type. The CTRPv2 drug sensitivity data were based on 

CCLE cell lines, and the GDSC data were based on COSMIC cell lines. (D) RPPA data 

reproducibility based on replicate samples of NCI60 cell lines. Random pairs were sampled 

from NCI60 cell lines only. (E) Correlations of derivative cell lines relative to random cell 

line pairs that were sampled from all cell lines surveyed. (F) Correlations of total- 

phosphorylated protein pairs relative to random protein pairs. Vertical dotted lines indicate 

the median values. See also Table S1 and Figure S1.
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Figure 2. Comparison of protein and mRNA expression in MCLP cell lines
(A) Box plots of the expression correlations of matched mRNA and protein pairs in different 

lineages. Box boundaries mark the first and third quartiles, with the median in the center, 

and whiskers extending to 1.5 interquartile range from the boundaries. The striped box plots 

were based on the protein sets after excluding the 20% of proteins with the lowest 

coefficient of variation within each lineage. (B) Distribution of the number of lineages in 

which the mRNA and protein pair show a significant correlation. Three protein groups are 

shown in different colors. (C) Co-expression network of protein–protein expression. See also 

Tables S2-4 and Figure S2.
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Figure 3. Clustered heatmap of MCLP cell lines based on RPPA protein expression data
(A) Distribution of different lineages in clusters based on protein expression and a heatmap 

showing clustered patterns of 651 MCLP cell lines based on >200 protein markers. Mutation 

data in key cancer genes are shown in the bars (red, mutation; white, no mutation; and grey, 

NA) above the heatmap, with corrected p values (FDRs) indicating the significance of 

correlations with the clusters. (B) Box plots of key protein markers that distinct a cluster of 

interest from other clusters. (C) The alignment of the RPPA clusters and the tumor subtype 

of breast cancer cell lines. (D) Heatmap showing pathway scores across different protein 

clusters, with corrected p values (FDRs) indicating the significance of correlations with the 

clusters. A high-resolution, interactive clustered heat map is available at the MCLP data 

portal. See also Table S5 and Figure S3.
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Figure 4. Effects of mutated pathways on protein expression
(A) Pattern of frequently mutated pathways in TCGA patient cohorts; red bars indicate 

presence of mutations in a sample. (B) Profiles of frequently mutated pathways in MCLP 

cell line lineages; red bars indicate presence of mutations in a sample. (C) Given the 

mutations of a p53 signaling pathway, a Circos plot showing proteins differentially 

expressed between TCGA WT and mutated breast cancer patient samples (FDR < 0.05) in 

the external layer and those differentially expressed between MCLP WT and mutated breast 

cancer cell lines in the middle layer. Color-coded fold changes: blue indicates 

downregulation relative to WT samples; red indicates upregulation. The inner layer: 

consistently up and down-regulated markers in TCGA and MCLP samples are indicated by 

red and blue respectively; inconsistently regulated markers are indicated by green. (D) 

Examples of individual proteins differentially expressed between WT and mutated samples 

in TCGA patients and MCLP cell lines. Box boundaries mark first and third quartiles, with 

the median in the center, and whiskers extending to 1.5 interquartile range from the 

boundaries. See also Tables S6, S7 and Figure S4.
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Figure 5. Predictive power of protein markers on drug sensitivity
(A) Numbers of only protein, only mRNA and both mRNA and protein markers significantly 

associated with different drug families (FDR < 0.1). (B) A heatmap showing the correlations 

of the sensitivity of EGFR pathway targeted drugs with protein, phosphoprotein and mRNA 

markers of their targeted genes. The color is based on the correlation direction and statistical 

significance, and insignificant correlations are shown in white. (C) Predictive power 

comparison of proteins vs. mRNAs based on multiple-marker classifiers using the AUC 

scores. (D) Volcano plot for EGFR_pY1068. (E) Volcano plot of EMT pathway score. 

Significant nodes (FDR < 0.1) are highlighted with green representing negative correlations 

and red representing positive correlations. See also Figure S5.
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Figure 6. Utility illustration of the MCLP web platform through the example of PDL1
(A) Overview. (B) The PDL1 protein expression across lineages. (C) A positive correlation 

between PDL1 expression and CD49B. (D) The differential expression of PDL1 protein 

between the mutant and wild-type groups based on the mutation status of CCDC50. (E) 

Volcano plot of PDL1. (F) The co-expression pattern of PDL1 and its interacting partners in 

a protein–protein network view. (G) A snapshot of dynamic heatmap of the RPPA dataset.
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