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ABSTRACT
We undertook this study to identify DNA methylation signatures of three systemic autoimmune rheumatic
diseases (SARDs), namely rheumatoid arthritis, systemic lupus erythematosus, and systemic sclerosis,
compared to healthy controls. Using a careful design to minimize confounding, we restricted our study to
subjects with incident disease and performed our analyses on purified CD4C T cells, key effector cells in
SARD. We identified differentially methylated (using the Illumina Infinium HumanMethylation450
BeadChip array) and expressed (using the Illumina TruSeq stranded RNA-seq protocol) sites between cases
and controls, and investigated the biological significance of this SARD signature using gene annotation
databases. We recruited 13 seropositive rheumatoid arthritis, 19 systemic sclerosis, 12 systemic lupus
erythematosus subjects, and 8 healthy controls. We identified 33 genes that were both differentially
methylated and expressed (26 over- and 7 under-expressed) in SARD cases versus controls. The most
highly overexpressed gene was CD1C (log fold change in expression D 1.85, adjusted P value D 0.009). In
functional analysis (Ingenuity Pathway Analysis), the top network identified was lipid metabolism,
molecular transport, small molecule biochemistry. The top canonical pathways included the mitochondrial
L-carnitine shuttle pathway (P D 5E-03) and PTEN signaling (P D 8E-03). The top upstream regulator was
HNF4A (P D 3E-05). This novel SARD signature contributes to ongoing work to further our understanding
of the molecular mechanisms underlying SARD and provides novel targets of interest.
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Introduction

Systemic autoimmune rheumatic diseases (SARDs) are chronic,
systemic inflammatory diseases characterized by self-directed
inflammation.1 Individually, SARDs are relatively rare,2-4 but
collectively, SARDs affect up to 5% of the population.2,5 SARDs
are associated with high rates of disability, impaired health-
related quality of life, premature mortality,6-10 and significant
societal costs, both direct and indirect,11-14 in particular because
those affected are people of work-force age. Large gaps in our
understanding of SARDs remain. Defining the molecular
mechanisms of SARDs is essential to improve outcomes in
these chronic diseases.

Rheumatoid arthritis (RA), systemic lupus erythematosus
(SLE), and systemic sclerosis (SSc) are SARDs that share demo-
graphic (the majority of affected individuals are women), clinical
[arthritis, lung, and vascular (i.e., Raynaud’s phenomenon) dis-
ease], serological (antinuclear antibodies4 and anti-Ro52/
TRIM21 antibodies15), immunological (type I interferon signa-
ture16 and complex abnormalities in CD4C T lymphocyte func-
tion, in particular Th17 and Treg cell subsets)17-19] and genetic
similarities (e.g., MHC class II alleles, IRF5, STAT4, PTPN22

loci).17,20,21 This suggests that there may be similar biologic path-
ways that underlie SARDs, and research across diseases has the
potential to identify novel mechanistic commonalities.

Epigenetic regulation governs gene expression and cellular
function. DNA methylation is one such epigenetic mechanism.
It is influenced both by inherited DNA sequences and by envi-
ronmental exposures, thereby providing an important link
between the environment and genetic predisposition to disease.
The prevailing hypothesis for the etiopathogenesis of SARDs is
that the inflammatory cascade is triggered by environmental
factors in genetically susceptible hosts. Thus, dysregulated
DNA methylation is an attractive mechanism by which gene
and environment may interact to contribute to SARD onset.
DNA methylation also represents attractive biomarkers
because, compared to mRNA and most proteins, methylated
DNA is quite stable over time and does not fluctuate in
response to short-term stimuli.22

We undertook this study to identify cross-disease SARD
signatures using a careful design to minimize confounding
and an integrative approach. We restricted our study to
SARD subjects with incident, mostly treatment-na€ıve disease
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and, instead of using mixed cell populations, we performed
our analyses on purified CD4C T cells, key effector cells in
SARD. Then, of the differentially methylated sites between
cases and controls, we identified sites that also demon-
strated differential gene expression. Finally, we investigated
the biological significance of this SARD signature using
gene annotation databases.

Results

Study subjects

We recruited incident seropositive RA (n D 13), SSc (n D 19),
SLE (n D 12), and control subjects (n D 8). Baseline character-
istics are presented in Table 1.

SARD signature

We first looked for differentially methylated (DM) sites.
From a total of 485,577 probes—although none showed
statistically significant differences after using a Bonferroni
correction or a FDR threshold of 0.05—there were 130 CpG
probes showing evidence of deviation from the expected
null distribution in the QQplot (Supplementary Fig. 1A).
Specifically, the QQ-plot showed a point of inflexion at
P < 0.0001. By using the Illumina annotations, we mapped
these 130 CpG probes to 112 genes; these same probes did
not show significant differences in methylation between dis-
ease subgroups (P > 0.2). Of 15,684 RNAseq transcripts,

we identified 4791 differentially expressed (DE) sites [false
discovery rate (FDR) P < 0.05].

In total, there were 33 genes that were both DM and DE (26
over- and 7 under-expressed gene; Table 2 and Fig. 1). The
most highly overexpressed gene in SARD subjects compared to
controls was CD1C (log fold change in expression D 1.85,
adjusted P D 0.009). Another relevant DM and DE gene of
interest was BCL2 (log fold change in expression D 0.63,
adjusted P < 0.00014), which is known to contribute to sys-
temic autoimmune diseases. The role of most of the top hits in
SARD, however, remains unknown.

Functional analysis

For pathway analysis, it was not possible to obtain usable
results based only on the 33 overlapping genes. Therefore,
we decided to run pathway analysis with the 112 most sig-
nificant genes from the differential methylation analysis as
well as 112 genes that were most significant from the gene
expression analysis.

In functional analysis (Ingenuity Pathway Analysis), the
top network identified was lipid metabolism, molecular
transport, small molecule biochemistry (score 28; Table 3).
Other networks of interest included connective tissue disor-
ders, developmental disorder, hereditary disorder (score 26);
cellular assembly and organization, DNA replication,
recombination and repair, cancer (score 23); and cancer,
organismal injury and abnormalities, respiratory diseases
(score 23). Top canonical pathways included mitochondrial
L-carnitine shuttle pathway (P D 5E-03) and PTEN

Table 1. Baseline characteristics of subjects and controls.

RA (ND13) SSc (ND19) SLE (ND12) Controls (ND8)

Mean or % SD or N Mean or % SD or N Mean or % SD or N Mean or % SD or N

Age, years 55.9 10.1 56.9 14.1 37.0 17.0 52.9 14.9
Female, % 50.0% 6 63.1% 12 83.3% 10 75.0% 6
Ethnicity, %
White 66.7% 8 78.9% 15 58.3% 7 87.5% 7
Asian 25.0% 3 5.3% 1 — 0 12.5% 1
Other 8.3% 1 15.8% 3 41.7% 5 — 0

Smoking, %
Current 30.0% 3 10.5% 2 18.2% 2 12.5% 1
Past 30.0% 3 31.6% 6 45.5% 5 — 0
Never 40.0% 4 47.4% 9 36.4% 4 87.5% 7

Disease duration, years 0.4 0.2 2.3 1.3 0.8 0.4
Interstitial lung disease, % 9.1% 1 25.0% 4 — 0
Arthritis, % 100.0% 12 0 0 66.7% 8
Raynaud’s, % — 0 94.7% 18 16.7% 2
Anti-nuclear antibodies
Titer � 1:40, % 100.0% 12 100.0% 19 100.0% 12
Titer � 1:80, % 66.7% 8 95.7% 18 91.7% 11
Titer � 1:160, % 50.0% 6 95.7% 18 91.7% 11

Disease specific auto-antibodies
Cyclic citrullinated peptide (CCP) 81.8% 9
Rheumatoid factor (RF) 91.7% 11
Anti-centromere antibodies (ACA) 26.7% 4
Anti-topoisomerase antibodies (ATA) 26.7% 4
Anti-RNA polymerase III antibody (ARA) 20.0% 1
DNA 75.0% 9
Sm 8.3% 1

Disease specific variables
Limited skin disease 31.6% 6
Diffuse skin disease 68.4% 13
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signaling (P D 8E-03; Table 4). The top upstream regulator
was HNF4A (P D 3E-05; Table 5).

Exploratory analyses

We performed weighted gene co-expression network analysis
(WGCNA) of the methylation data comparing SARD cases to con-
trols using the 20,000 most variable probes. The heatmap in Sup-
plementary Fig. 2 shows correlations between the 17 identified
modules and SARDs. Two modules showed promising correla-
tions: darkorange (P < 4E-06) and orangered4 (P < 3E-04). In
gene ontology (GO) analysis of the gene sets of the individual mod-
ules (Supplementary Table 1), several pathways of interest reached
statistical significance (FDR < 0.05), including signaling pathways
regulating pluripotency of stem cells and proteoglycans in cancer.

We also examined the WGCNA comparing SARD subjects
by the presence or absence of phenotypes of interest (Supple-
mentary Fig. 2). The orange module was negatively correlated
with the presence of interstitial lung disease (P D 0.002). In GO
analysis, the top pathways included fatty acid degradation, cell
adhesion molecules, Epstein-Barr virus infection, and adipocy-
tokine signaling pathway (all FDR < 0.008; Supplementary
Table 2). Similarly, the darkturquoise module was negatively
correlated with Raynaud’s phenomenon (P D 0.006). The top
pathway identified was non-alcoholic fatty liver disease
(FDR < 0.004). Of note, the white module correlated strongly
with age (P < 4E-05) and the top pathway was longevity
regulating pathway (FDR < 0.0003).

Table 2. Top differentially methylated (DM) and expressed (DE) genes in SARD
subjects compared to controls.

Logfold change Average expression P value Adjusted p value

CD1C 1.85 ¡1.57 0.0016 0.0094
CD36 1.06 ¡0.39 0.0107 0.0383
CALHM2 0.89 0.74 0.0083 0.0320
SYNPO2 0.89 ¡0.80 0.0076 0.0296
SCD 0.84 0.75 0.0007 0.0049
DPYSL2 0.84 3.50 9.08E-05 0.0011
SLFN12L 0.81 4.10 2.49E-06 7.68E-05
LIMA1 0.69 2.92 3.42E-05 0.0005
CPT1A 0.68 4.30 0.01384 0.0463
CEP97 0.66 3.62 4.43E-06 0.0001
TNRC6B 0.65 7.31 7.25E-08 6.08E-06
BCL2 0.63 7.32 0.0001 0.0015
ACTR3 0.52 6.98 4.78E-06 0.0001
PCCA 0.44 2.02 0.0002 0.0023
ZNF407 0.43 5.23 0.0007 0.0050
MRPL48 0.43 2.26 0.0016 0.0090
TFDP1 0.34 3.56 0.0011 0.0070
EIF2C1 0.34 4.36 0.0002 0.0022
KIF13B 0.32 4.46 0.0004 0.0031
NPEPPS 0.30 4.46 3.68E-05 0.0006
BAZ2B 0.27 5.18 0.0133 0.0450
HACE1 0.27 3.41 0.0114 0.0404
ZMYM4 0.26 5.21 0.0037 0.0173
CUL4A 0.24 4.99 0.0007 0.0052
ITFG1 0.22 3.84 0.0090 0.0338
STK24 0.19 5.83 0.0091 0.0340
YWHAG ¡0.32 5.10 0.0016 0.0093
WIPI2 ¡0.32 4.58 0.0063 0.0261
ACSL3 ¡0.33 4.84 0.0146 0.0484
ZNF552 ¡0.33 2.47 0.0011 0.0070
ATP5G2 ¡0.43 5.22 0.00021 0.0021
RNMTL1 ¡0.46 3.29 2.40E-05 0.0004
CCDC40 ¡1.22 ¡1.93 2.78E-05 0.0005

Figure 1. Heatmap of gene expression profiles of the top differentially methylated (DM) and expressed (DE) genes in SARD subjects compared to controls. Columns under
the red bar represent SARD subjects and under the blue bar controls.
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Discussion

In this integrative analysis of the DNA methylome and tran-
scriptome of isolated CD4C T cells of carefully phenotyped
SARD subjects, we identified 33 differentially methylated and
expressed genes (27 over- and 7 under-expressed genes). Gene
annotation identified multiple pathways known to be associated
with SARD, thereby providing strong plausibility for the
results. Of particular interest is that, in addition to genes of rel-
evance for immune function in SARDs (e.g., previously known
BCL2 and as yet largely unknown CD1C, NPEPPS, and
SLFN12L), many genes and pathways identified were related to
other biological functions [e.g., SYNOP2, LIMA1, KIF13B, and
ZMYM4, related to the cellular cytoskeleton, and CEP97 (over-
expressed) and CCDC40 (underexpressed), related to cell traf-
ficking], providing novel cellular targets of interest.

To date, there are few studies examining DNA methylation
abnormalities in relation to SARD risk in circulating immune
cells on a genome-wide basis. Early studies were limited by
methodological issues, including heterogeneity of cell samples
studied and low-resolution approaches.23,24 The largest study
reported to date examined whole-blood samples of 354 highly

selected rheumatoid arthritis (RA) patients and 337 controls
using the Illumina HumanMethylation450 BeadChip array.25

Genome-wide genotyping was also performed looking for
genotype-methylation-phenotype relationships using standard
approaches to test for mediation and, thereby, infer causality.
Ten differentially methylated positions (DMPs) that appeared
to mediate the genetic risk for RA were identified. The associa-
tions were replicated in monocytes in an independent cohort of
12 case-control pairs. Three DMPs were found to have methyl-
ation changes in the same direction as in whole-blood at a sig-
nificance of P < 0.05 but with larger effect sizes. The authors
hypothesized that, at least for these sites, monocytes were more
proximal to the pathogenic cell of interest. The other sites iden-
tified in whole-blood but not in monocytes may point to epige-
netic dysregulation in other circulating immune cells, in
particular CD4C T cells, which are known to have key roles in
the pathogenesis of RA. To date, this remains untested.

There have been few cross-SARD analyses of DNA meth-
ylation. Lei et al. studied global DNA methylation of CD4C

T cells from 30 patients with SLE (10), SSc (10), and der-
matomyositis (10), and 12 controls.26 They reported hypo-
methylation of SLE and SSc patients compared to controls,
but not between dermatomyositis and controls. Poor resolu-
tion of the approach to measure DNA methylation may
have limited the findings.

A few studies have examined gene expression patterns
across multiple autoimmune diseases to highlight commonali-
ties and differences.27 Higgs et al. identified a type I IFN gene
signature in the whole-blood of five diseases, namely RA, SLE,
and SSc, as well as dermatomyositis and polymyositis.28 Tuller
et al. reported that commonalities in gene expression patterns
were stronger between closely related diseases (e.g., Crohn’s
disease and ulcerative colitis) but absent between very different
diseases (e.g., juvenile rheumatoid arthritis and type 1 diabe-
tes).29 This study underscores the potential of cross-disease

Table 3. Ingenuity Pathway Analysis network analysis.

Network Score Molecules in network Focus molecules

Lipid metabolism, molecular
transport, small molecule
biochemistry

28 14-3-3, Alp, BCR (complex), CD1C, CD36, CEBPB, CPT1A, Creb, DBH,
DOHH, DPYSL2, ERK1/2, FLI1, IFN Beta, IgG, IgG1, IgG2a, Igm, Ikb,
KLF2, LDL, Nr1h, PCCA, PI3K (family), Pka catalytic subunit, Ppp2c,
RNASEH1, RPS6KA3, Rsk, Rxr, SCD, SLFN12L, STK24, SYNPO2, TCF

16

Endocrine System Disorders,
Organismal Injury and
Abnormalities, Developmental
Disorder

28 ACBD4, ACSL3, APP, C6orf203, C7orf50, CCDC40, DGCR6/LOC102724770,
DNAJB14, DNAJB7, DNAJC4, HES4, HSP90AB1, Hsp84-2, ICT1, LETM2,
MAPK8IP2, ME2, MRPL2, MRPL48, MRPL54, MRPL9, MRPS18A,
MTERF4, MTG1, PIGH, PTAR1, TBX22, THAP4, TSSK2, VAPA, VKORC1,
YIPF5, ZBTB49, ZFPL1, ZNF784

16

Connective Tissue Disorders,
Developmental Disorder,
Hereditary Disorder

26 26s Proteasome, AMPK, ARL6IP5, Akt, Ap1, dpy2, CBL, CD3, CHCHD2,
CSTF2, Cyclin A, FRAT1, GSK3B, Hsp27, Hsp90, MID1IP1, Mek, NFAT
(complex), Nfat (family), PDGF BB, PIK3IP1, PP2A, PRKAA, PRKAG1,
Pdgf (complex), SLC16A3, SOS1, STAT5a/b, Sos, TAOK1, TCR, TFDP1,
VAV, ZC3HAV1, caspase

15

Cellular Assembly and Organization,
DNA Replication, Recombination,
and Repair, Cancer

23 ASH1L, ATP5G2, BAZ1B, CK1, CRY2, CSNK1G1, CUL4A, Collagen(s),
DHRS12, Growth hormone, Gsk3, H3F3A/H3F3B, HDL-cholesterol,
HISTONE, Histone h3, Histone h4, Hsp70, IL1, IL12 (complex), IL12
(family), Immunoglobulin, Insulin, Interferon alpha, Jnk, KIF13B,
KMT5C, MRM3, NFkB (complex), P38 MAPK, PI3K (complex), RNA
polymerase II, RNF25, TSG101, Tgf beta, ZNF407

14

Cancer, Organismal Injury and
Abnormalities, Respiratory Disease

23 ABLIM, ACTR3, AGO1, AHCYL1, CEP97, CFAP20, Cg, Ck2, EIF2B2, ERK,
ETV2, FSH, Focal adhesion kinase, GTPase, HACE1, LIMA1, LOC81691,
Lh, MT1X, Mapk, PAQR3, PIP4K2A, Pka, Pkc(s), Proinsulin, RASA2, Ras,
SP1, SRC (family), SRPK1, TNRC6B, Vegf, YWHAG, estrogen receptor,
p85 (pik3r)

14

Table 4. Ingenuity Pathway Analysis canonical pathways.

Pathway P value Overlap
Target molecules

in data set

Insulin receptor signaling 2.25E-03 3.5% (5/141) CBL, SOS1, GSK3B,
EIF2B2, PRKAG1

Prostate cancer signaling 3.26E-03 4.3% (4/94) TFDP1, SOS1, GSK3B,
BCL2

Melanocyte development
and pigmentation
signaling

3.38E-03 4.2% (4/95) SOS1, RPS6KA3,
PRKAG1, BCL2

Mitochondrial L-carnitine
shuttle pathway

5.30E-03 11.8% (2/17) ACSL3, CPT1A

PTEN signaling 7.50E-03 3.4% (4/119) CBL, SOS1, GSK3B,
BCL2
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research, but also the pitfalls of studying diseases that are too
different from each other.

A recent meta-analysis of 4 publicly available gene expres-
sion data sets including 277 SARD samples (54 SLE, 33 RA,
and 190 Sjogren syndrome) and 94 controls identified a gene
expression signature composed of 371 differentially expressed
genes in SARD compared to controls (184 overexpressed and
187 underexpressed genes).30 Functional analysis showed that
overexpressed genes were involved mainly in immune and
inflammatory responses, mitotic cell cycles, cytokine-mediated
signaling pathways, apoptotic processes, type I interferon-
mediated signaling pathways, and responses to viruses. Under-
expressed genes were involved primarily in inhibition of pro-
tein synthesis. The authors concluded that, in addition to
validating genes previously reported as significant biomarkers
for individual diseases, their study identified novel genes and
provided new clues to the shared pathological state underlying
SARD. However, their data was not without limitations, in par-
ticular, the fact that the data was derived from subjects with
established disease, on various treatment modalities, and from
mixed cell populations, thereby possibly confounding the
results.

In Ingenuity Pathway Analysis, HNF4A was identified as
the top upstream regulator. HNF4A encodes the hepatocyte
nuclear factor 4 alpha (HNF4a) protein, a nuclear tran-
scription factor that binds DNA as a homodimer. HNF4A is
part of a complex regulatory network in the liver and pan-
creas for glucose homeostasis. The encoded protein also
controls the expression of several genes, including hepato-
cyte nuclear factor 1 alpha, a transcription factor that regu-
lates the expression of several hepatic genes. Mutations in
this gene have been associated with monogenic autosomal
dominant non-insulin-dependent diabetes mellitus.31 Inter-
estingly, single nucleotide polymorphisms in the HNF4A
loci have been found to be associated with C-reactive

protein levels at a genome-wide significance.32 HNF4a was
also previously identified as a regulatory hub in a protein-
protein interaction map in a genome-wide DNA methyla-
tion study of CD4C T cells from patients with SLE.33

Mitochondrial L-carnitine shuttle pathway was identified as
a top canonical pathway. Mitochondrial dysfunction is one of
the hallmarks of aging and age-related diseases,34 which include
autoimmune diseases. In addition, mitochondrial ‘damage’-
associated molecular patterns (DAMPs) have been shown to be
capable of activating innate immunity.35 The role of DAMPs
and mitochondrial-associated molecular patterns in the patho-
genesis of SARD is increasingly being recognized.36,37

We recognize that our top results did not meet thresholds
for statistical significance controlling the family-wise error rate
in this study. However, the QQ-plot of the differential methyla-
tion analysis was strongly indicative of a set of probes deviating
from the null hypothesis (Supplementary Fig. 1). For gene
expression, we implemented the commonly used false discovery
rate (FDR) threshold to select genes of interest. Nevertheless,
given the uniqueness of these data, these results will require
replication. We note also that, among our probes showing dif-
ferential methylation, there are 5 that may map to multiple
genomic locations (probes in the genes STMN3, ZNF552,
SLFN12L, CUL4A, and NPEPPS) and, hence, these results
would also need to be replicated carefully.

This study is not without limitations, in particular, the small
sample size. In addition, 6/12 SLE subjects were on corticoste-
roids and/or immunosuppressants. However, that represents a
small proportion of the overall sample and a sensitivity analysis
adjusting for treatment exposure yielded results highly consis-
tent with the primary results (data not shown). The strengths
of the study include the study design (selection of subjects with
new onset disease, use of cell-sorted CD4C T cells, and integra-
tive methylome/transcriptome analysis). Although we acknowl-
edge that the results need to be replicated in a larger
independent data set and that functional studies will be
required to understand underlying mechanisms, this study
makes a meaningful contribution to ongoing work to further
our understanding of the molecular mechanisms underlying
SARD.

Patients and methods

Study subjects and ethical considerations

Study subjects were recruited from ongoing RA, SSc, and SLE
research cohorts based at McGill University, Montreal, Canada.
Ethics approval for this study was obtained from McGill Uni-
versity and every study subject signed an informed consent. All
subjects had new onset disease, defined as less than 1 year since
diagnosis. All RA and SSc subjects were treatment na€ıve. Of the
12 SLE subjects included, 6 were either on corticosteroids and/
or immunosuppressants (4 on corticosteroids, 1 on methotrex-
ate, and 5 on mycophenolate) at the time of sampling.

Cell purification

Forty milliliters of blood were obtained from each study subject
and processed fresh within 4 hours of being drawn. CD4C T

Table 5. Ingenuity Pathway Analysis upstream regulators.

Upstream
regulator Molecule type P value

Target molecules
in data set

HNF4A Transcription
regulator

2.77E-05 ACTR3, BAZ1B, C2orf47,
CEBPB, CFAP20,
CHCHD2, COMMD5,
COQ6, CPT1A,
GSK3B, LCMT2,
MID1IP1, MRM3,
MRPL2, MRPL57,
MT1X, PRPF4, QTRT2,
SCD, SSSCA1, STK24,
TM9SF2, TMEM208,
TOE1, TRMT6,
TSG101, UBP1,
ZSCAN18

Maslinic acid Chemical -
endogenous
non-
mammalian

1.44E-04 BCL2, CEBPB, GSK3B,
SOS1, YWHAG

CYB5R4 Enzyme 2.32E-04 ACSL3, CD36, SCD
SCD Enzyme 4.29E-04 BCL2, CD36, CEBPB,

CPT1A
Fructus xanhii

aqueous
extract

Chemical -
endogenous
non-
mammalian

5.41E-04 CD36, SCD
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cells were positively selected [anti-CD4 microbeads (Miltenyi
Biotec) and auto-MACS] and their purity assessed with flow
cytometric analysis. Only samples with a purity >95% were
used for sequencing.

Sequencing

Genome-wide DNA methylation of CD4C T cells was assessed
using the Illumina Infinium HumanMethylation450 BeadChip
array. Genome-wide gene expression was carried out using Illu-
mina TruSeq stranded RNA-seq protocol, allowing strand-spe-
cific analyses of the gene expression levels.

Data processing, normalization, filtering, clustering,
and heatmap

The methylation data from the Illumina HumanMethyla-
tion450 BeadChip were normalized with funtooNorm,38 which
was specifically designed to normalize data from the Human-
Methylation450 array while retaining important inter-cell-type
differences. Since the samples were cell-sorted, we did not apply
an explicit correction for cell-type mixture. However, we did
adjust the methylation data for age and sex, then calculated the
first 2 principal components of the residuals, and adjusted the
data for these factors to account for additional confounding
not captured by funtooNorm. Given the sample size, we decided
to include only the first two principal components. These data
were then used for all analyses of DNA methylation.

Gene expression raw read count values were obtained using
htseq-count v. 0.5.3p9. We used the Bioconductor package
edgeR to calculate normalization factors to scale the raw library
sizes. We them applied the voom transformation from the Bio-
conductor package limma, which transforms count data to
log2-counts per million and estimates the mean-variance rela-
tionship to compute appropriate observation-level weights.39

We removed 7689 genes where the total raw count was below
10 in all samples.

Analysis of differentially methylated and differentially
expressed sites

Analysis of variance was used to explore differences between
the SARDs methylation profiles and controls. Methylation val-
ues were transformed using a logit transformation. We con-
structed 3 orthogonal contrasts, one comparing SARDs to
controls, as well as two additional orthogonal contrasts between
disease subgroups, and tested against residual variation. Statis-
tical significance was assessed with several definitions including
a Bonferroni corrected threshold, FDR < 0.05, and whether the
P values were smaller than a point of inflexion in the QQ-plots
of the P values.

Using limma and the variance stabilization function, eBayes,
we tested for DE RNAseq transcripts between SARD cases and
controls at 15,684 genes retained for analysis after removing
those with very low expression.40 Significance was assessed
with Bonferroni corrections and FDR < 0.05. Illumina annota-
tion data were used to identify which genes are close to the
methylation probes, so that we could then identify genes with
interesting results for both expression and methylation.

Functional analysis

In order to derive biological significance from the list of DM
and DE genes, we performed functional analysis using Ingenu-
ity Pathway Analysis and GO. Since there were relatively few
genes that were both DM and DE, we expanded the gene list to
include the genes above the point of inflexion of the DM QQ
plot (Supplementary Fig. 1), of which there were 112, and a
similar number of the top DE genes.

Exploratory analyses

In order to explore the full potential of our data set and the
potential of cross-disease research, we undertook weighted
gene co-expression network analysis (WGCNA)41 of the meth-
ylation data. WCGNA is an unsupervised clustering method
that identifies modules or clusters in a way that favors a scale-
free network clustering pattern (that is, an uneven distribution
of connectedness where some hub elements are highly con-
nected and others are linked to only a small number of other
elements). We first compared all SARD cases vs. controls.
Thereafter, we compared subjects by selected disease pheno-
types (arthritis, interstitial lung disease, and Raynaud’s phe-
nomenon). We removed probes with multiple mappings and
probes located on the X chromosome, leaving 340,236 probes.
The data were further filtered for this analysis by selecting the
20,000 most variable probes. GO analysis was conducted to
identify relevant biological processes represented in the mod-
ules of interest.
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