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ABSTRACT
DNA methylation (DNAm) is an important epigenetic process involved in the regulation of gene
expression. While many studies have identified thousands of loci associated with age, few have
differentiated between linear and non-linear DNAm trends with age. Non-linear trends could indicate
early- or late-life gene regulatory processes. Using data from the Illumina 450K array on 336 human
peripheral blood samples, we identified 21 CpG sites that associated with age (P<1.03E-7) and exhibited
changing rates of DNAm change with age (P<1.94E-6). For 2 of these CpG sites (cg07955995 and
cg22285878), DNAm increased with age at an increasing rate, indicating that differential DNAm was
greatest among elderly individuals. We observed significant replication for both CpG sites (P<5.0E-8) in a
second set of peripheral blood samples. In 8 of 9 additional data sets comprising samples of monocytes, T
cell subtypes, and brain tissue, we observed a pattern directionally consistent with DNAm increasing with
age at an increasing rate, which was nominally significant in the 3 largest data sets (4.3E-15<P<0.039).
cg07955995 and cg22285878 reside in the promoter region of KLF14, which encodes a protein involved in
immune cell differentiation via the repression of FOXP3. These findings may suggest a possible role for
cg07955995 and cg22285878 in immunosenescence.
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Introduction

Gene expression is regulated via highly coordinated epigenetic
changes, of which the most studied is DNA methylation
(DNAm). DNAm is the binding of a methyl group (¡CH3) to
DNA, which, in mammals, occurs most commonly at a cytosine
nucleotide that resides 50 to a guanine nucleotide, referred to as
a CpG site.1 Clusters of CpG-rich regions, known as CpG islands
(CGIs), are often found in gene promoters and are typically
hypomethylated.2 The position of the CpG site within the tran-
scription unit has a substantial influence on how DNAm impacts
expression of the downstream gene,3 and evidence suggests that
DNAm in gene promoters can result in gene silencing.4

While patterns of DNAm across the genome vary according
to tissue type and environmental exposure, many studies have
shown that age explains a substantial portion of the variation
in human DNAm.5-13 DNAm has been observed to decrease
genome-wide with age,14 although at a regional level the rela-
tionship between DNAm and age is much more nuanced. For
example, CGIs are associated with an increasing rate of DNAm
with age, whereas non-CGIs are associated with a decreasing
rate of DNAm with age.7 Furthermore, postnatal DNA is hypo-
methylated and undergoes a rapid increase in DNAm in early
life before stabilizing in adulthood, followed by a gradual
decrease later in life.15

While linear trends can provide a useful summary of
age-related DNAm patterns, deviations from linearity can
provide insight into the relationship between DNAm and
senescence. Heretofore, studies investigating non-linear pat-
terns in age-related DNAm have uncovered patterns of
rapid DNAm changes in early life, followed by stabilization
in later life. For example, differences in the rates of DNAm
have been observed between pediatric and adult subjects,13

with many CpG sites showing a decreasing rate of change
with age. Such patterns may reflect early-life developmental
processes. Perhaps more pertinent to the study of senes-
cence and age-related diseases is an investigation of the
reverse pattern: stable DNAm levels in early life followed by
rapid methylation/demethylation in late life. To our knowl-
edge, this work is the first to investigate the reverse pattern.
Here, we analyze genome-wide DNAm data in a set of
peripheral blood samples with the goal of identifying loci
for which DNAm increases or decreases at an increasing
rate with age. We follow up this analysis in 10 additional
data sets comprising distinct tissue types including periph-
eral blood, dorsolateral prefrontal cortex (dlPFC) tissue,
neurons isolated from PFC tissue, glial cells isolated from
PFC tissue, and purified blood cell types isolated from

CONTACT Nicholas D. Johnson NDJOHN3@emory.edu 615 Michael St, Suite 301 Atlanta, GA 30322, USA.
Supplemental data for this article can be accessed on the publisher’s website.

© 2017 Taylor & Francis Group, LLC

EPIGENETICS
2017, VOL. 12, NO. 6, 492–503
https://doi.org/10.1080/15592294.2017.1314419

https://crossmark.crossref.org/dialog/?doi=10.1080/15592294.2017.1314419&domain=pdf&date_stamp=2017-06-09
mailto:NDJOHN3@emory.edu
https://doi.org/10.1080/15592294.2017.1314419
https://doi.org/10.1080/15592294.2017.1314419


peripheral blood, including monocytes, CD4C T cells, and
CD8C T cells.

Results

Using DNAm data obtained from peripheral blood samples
from 336 individuals aged 15–78 from the Grady Trauma
Project (GTP, Table 1), we performed separate linear regres-
sions for each of 483,399 CpG sites to model DNAm
as a function of age and other covariates, including estimated
cell type proportions (Methods). A total of 25,723 CpG
sites were significantly associated with age (P<1.03E-7). Sub-
sequently, we tested for non-linear trends in these 25,723
CpG sites by fitting quadrilinear models that included a term
for age2. For the subsequent analysis, 21 CpG sites had a
Bonferroni-significant age2 term (P<1.94E-6D0.05/25,723).
Among these 21 CpG sites (Table S1 and Figure S1), we
observed 3 general patterns:

Pattern 1
Two of the 21 CpG sites (cg07955995 and cg22285878 in
KLF14) exhibited a low level of DNAm (� 0.04) and a low rate
of change (slope or DDNAm proportion per year D ¡8.7E-4
and ¡5.7E-4) at the minimum age of the GTP age range
(ageminD 15.9 years) that positively accelerated as age
increased (slope at age 70 D 3.1E-3 and 1.7E-3; first row of
Tables 2 and 3).

Pattern 2
One CpG site (cg14293223 in GFI1B) exhibited high DNAm at
agemin and a small slope that became increasingly negative with
age (Table S1, Figure S1). It appeared that the oldest individual,
who also had the lowest level of DNAm, was driving the quad-
rilinear effect between DNAm and age: when the oldest
individual was removed from the model, both the age term and
the age2 term were no longer significant.

Pattern 3
The remaining 18 CpG sites that were modeled exhibited a pos-
itive relationship between DNAm and age at agemin, whose
slope decreased with age, becoming negative among older indi-
viduals (Table S1, Figure S1).

Patterns 1 and 2 are of particular interest because they indi-
cate stable DNAm in early life, and a more rapidly changing
rate of DNAm late in life. To follow up on the 2 CpG sites
(cg07955995 and cg22285878) exhibiting Pattern 1 and the one
CpG site (cg14293223) exhibiting Pattern 2 in the GTP, we
attempted replication in a second set of samples derived from
peripheral whole blood from the Take Off Pounds Sensibly
(TOPS) Family Study of Epigenetics, whose subjects were
members of the TOPS Club. We observed strong replication at
cg07955995 (P D 4.3E-15) and cg22285878 (P D 5.0E-8), with
extremely similar effect sizes in TOPS and GTP (gage2 in
Tables 2–3). We did not find a significant quadrilinear relation-

Table 1. Reference information regarding each of the 11 data sets analyzed.

Gene series Study Abbrev. Tissue type Publication

GSE72680 Grady Trauma Project GTP Peripheral blood Zannas, Arloth, Carrillo-Roa, Iurato, R€oh,
Ressler, Nemeroff, Smith, Bradley,
Heim, Menke, Lange, Br€uckl, Ising,
Wray, Erhardt, Binder and Mehta53

GSE60132 TOPS Family Study of
Epigenetics

TOPS Peripheral blood Ali, Cerjak, Kent, James, Blangero, Carless
and Zhang54

GSE56581 MESA Epigenomics and
Transcriptomics Study
(human T cells)

MESA-T Purified CD4C T
cells

Reynolds, Taylor, Ding, Lohman,
Johnson, Siscovick, Burke, Post, Shea,
Jacobs, Stunnenberg, Kritchevsky,
Hoeschele, McCall, Herrington, Tracy
and Liu56

GSE56046 MESA Epigenomics and
Transcriptomics Study
(human monocytes)

MESA-M Purified monocytes Reynolds, Taylor, Ding, Lohman,
Johnson, Siscovick, Burke, Post, Shea,
Jacobs, Stunnenberg, Kritchevsky,
Hoeschele, McCall, Herrington, Tracy
and Liu56

GSE59065 Estonian Genome Center
Investigation of Age-
related epigenetics
and immune system
function in PBL, CD4C
and CD8C T cells

EGC-PBL Peripheral blood
leukocytes
(PBL), CD4C
and CD8C T
cells

Tserel, Kolde, Limbach, Tretyakov,
Kasela, Kisand, Saare, Vilo, Metspalu,
Milani and Peterson40

EGC-CD4
EGC-CD8

phs000741.v1.p1 Genetics Of Lipid
Lowering Drugs and
Diet Network

GOLDN Purified CD4C T
cells

Irvin, Zhi, Joehanes, Mendelson,
Aslibekyan, Claas, Thibeault, Patel,
Day, Jones, Liang, Chen, Yao, Tiwari,
Ordovas, Levy, Absher and Arnett63

GSE74193 Schizophrenia-related
DNAm and gene
expression

CTX Dorsolateral
prefrontal
cortex (dlPFC)

Jaffe, Gao, Deep-Soboslay, Tao, Hyde,
Weinberger and Kleinman57

GSE41826 National Institute of Child
Health and Human
Development (NICHD)
Brain Bank of
Developmental
Disorders – Cell
Heterogeneity

NICHD-G Prefrontal cortex
(PFC) Glial cells

Guintivano, Aryee and Kaminsky58

NICHD-N Prefrontal cortex
neurons
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ship between DNAm and age at the CpG site exhibiting Pattern
2 (cg14111928; P D 0.16).

To investigate whether the quadrilinear patterns observed
for cg07955995 and cg22285878 were specific to whole blood,
we fit a similar model in 9 additional data sets that were derived
from whole blood, subtypes of whole blood cells (monocytes,
CD8C T cells, and CD4C T cells), and brain [tissue samples
from dorsolateral prefrontal cortex (dlPFC) and samples of glial
cells and neurons, both isolated from the prefrontal cortex tis-
sue] (Table 1). All data sets exhibited increasing DNAm with
age at cg07955995 and cg22285878 (Table S2 and S3). In the
quadrilinear model, the increasing rate of increase in DNAm
with age that was observed in the GTP and TOPS analyses was
observed in 7 of 9 data sets for cg07955995 and 8 of 9 data sets
for cg22285878 (Tables 2 and 3, Fig. 1). The age2 terms were
significant in MESA-M (samples of isolated monocytes),
GOLDN (CD4C T-cells), and CTX (dlPFC) for both CpG sites
(4.3E-15<P<0.039; Tables 2 and 3). The coefficient on age2

had a positive sign with comparable effect sizes for nearly all
data sets, with the exceptions of EGC-PBL at cg07955995 and
NICHD-G at both cg07955995 and cg22285878. These excep-
tions could potentially be attributable to a lack of older individ-
uals in NICHD-G, and a lack of individuals of ages 23–72 years
in the EGC study, given the difficulty of identifying non-linear
patterns using just 2 extreme endpoints. However, the pattern
is consistent overall and the comparable effect sizes suggest
that the main difference between data sets with a significant vs.

non-significant age2 term is statistical power due to differences
in both age range and sample size.

These results show a consistent pattern in age-related
DNAm at these 2 CpG sites across white blood cell subtypes. In
particular, MESA-M (samples of isolated monocytes) and
GOLDN (samples of isolated CD4C T cells) exhibited evidence
of an age-quadratic relationship with DNAm. However, it is
well-known that peripheral blood is a heterogeneous tissue,
and cell type proportions may vary across samples.16 Analyses
of peripheral blood were adjusted for cell type proportion (see
Methods), but to further investigate the possible role of cell
type in the observed relationships, we examined correlations
between age and estimated cell type proportions in the GTP.
Of the 6 cell types considered, only CD8C T cells showed a
small but significant correlation with age (rD¡0.188, PD0.005;
Figure S2). Notably, the 2 oldest individuals (who are also the 2
individuals with the highest DNAm) had similar proportions
of CD8C T cells compared with the remaining individuals
(Figure S2). For MESA-M, we investigated whether age associ-
ated with the cell type contamination proportions estimated by
Reynolds et al. (Figure S3).56 We found small but significant
correlations with age with proportions of B cells (r D 0.0584,
PD0.0428), natural killer cells (r D 0.1034, P D 0.0003), and T
cells (rD¡0.0703, PD0.0148). We also plotted cell type contam-
ination proportion against DNAm at both cg07955995 and
cg22285878 (Figures S4 and S5). At cg07955995, we observed a
small but significant correlation between DNAm and estimated

Table 2. Statistics corresponding to the age2 term of the regression model fitted separately to each of the 11 data sets for the CpG site, cg07955995 (Equation 1). The
regression model includes covariates. Columns 1–3 include abbreviations of the data set, cell/tissue type, and the sample size. Columns 4–6 include the estimated rate of
change in DNAm proportion per year at 50, 60, and 70 years of age. Columns 7–10 include the coefficient, standard error, T-statistic, and P-value on the age2 term.

Dataset Cell/tissue type n gage D 50 gage D 60 gage D 70 gage2 SEage2 Tage2 Page2

GTP Whole blood 336 1.6E-03 2.4E-03 3.1E-03 3.7E-05 4.1E-06 9.1 1.6E-17
TOPS Whole blood 192 2.0E-03 2.7E-03 3.4E-03 3.4E-05 3.9E-06 8.6 4.3E-15
EGC-PBL Whole blood 97 1.3E-03 1.1E-03 8.1E-04 ¡1.3E-05 2.3E-05 ¡0.57 0.57
MESA-M Monocyte 1202 1.1E-03 1.6E-03 2.0E-03 2.2E-05 1.0E-05 2.2 0.030
EGC-CD8 CD8C T cell 100 1.2E-03 1.8E-03 2.4E-03 2.8E-05 2.6E-05 1.1 0.29
MESA-T CD4C T cell 214 7.7E-04 1.2E-03 1.6E-03 2.0E-05 1.6E-05 1.2 0.22
EGC-CD4 CD4C T cell 99 9.5E-04 1.0E-03 1.1E-03 3.6E-06 1.7E-05 0.21 0.83
GOLDN CD4C T cell 991 4.3E-03 4.9E-03 5.5E-03 4.0E-06 7.7E-07 5.2 2.0E-07
CTX dlPFC 346 1.7E-03 1.8E-03 1.9E-03 5.3E-06 2.6E-06 2.1 0.038
NICHD-G Glial cell (FC) 50 1.3E-03 1.3E-03 1.2E-03 ¡2.9E-06 8.7E-06 ¡0.33 0.74
NICHD-N Neuron (FC) 50 2.0E-03 2.3E-03 2.5E-03 1.3E-05 1.0E-05 1.2 0.23

The regression model includes covariates. Columns 1–3 include abbreviations of the data set, cell/tissue type, and the sample size. Columns 4–6 include the estimated rate
of change in DNAm proportion per year at 50, 60, and 70 years of age. Columns 7–10 include the coefficient, standard error, T-statistic, and P-value on the age2 term.

Table 3. Statistics corresponding to the age2 term of the regression model fitted separately to each of the 11 data sets for the CpG site, cg22285878 (Equation 1).

Dataset Cell/tissue type n gage D 50 gage D 60 gage D 70 gage2 SEage2 Tage2 Page2

GTP Whole blood 336 8.8E-04 1.3E-03 1.7E-03 2.1E-05 3.3E-06 6.4 5.3E-10
TOPS Whole blood 192 9.8E-04 1.3E-03 1.6E-03 1.5E-05 2.7E-06 5.7 5.0E-08
EGC-PBL Whole blood 97 6.0E-04 7.7E-04 9.5E-04 8.6E-06 1.4E-05 0.62 0.54
MESA-M Monocytes 1202 5.4E-04 8.7E-04 1.2E-03 1.6E-05 6.3E-06 2.6 0.010
EGC-CD8 CD8C T cells 100 6.3E-04 1.4E-03 2.1E-03 3.7E-05 1.7E-05 2.2 0.033
MESA-T CD4C T cells 214 6.2E-04 7.7E-04 9.2E-04 7.5E-06 1.2E-05 0.64 0.52
EGC-CD4 CD4C T cells 99 7.8E-04 8.2E-04 8.5E-04 1.7E-06 2.1E-05 0.082 0.93
GOLDN CD4C T cells 991 1.2E-03 1.3E-03 1.3E-03 3.9E-06 8.5E-07 4.6 4.2E-06
CTX dlPFC 346 1.3E-03 1.5E-03 1.6E-03 6.9E-06 2.2E-06 3.1 0.0018
NICHD-G Glial cell (FC) 50 1.5E-03 1.5E-03 1.4E-03 ¡1.9E-06 8.3E-06 ¡0.22 0.82
NICHD-N Neuron (FC) 50 1.1E-03 1.2E-03 1.4E-03 7.9E-06 8.3E-06 0.95 0.35

The regression model includes covariates. Columns 1–3 include abbreviations of the data set, cell/tissue type, and the sample size. Columns 4–6 include the estimated
rate of change in DNAm proportion per year at 50, 60, and 70 years of age. Columns 7–10 include the coefficient, standard error, T-statistic, and P-value on the age2

term.
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B cell contamination (rD¡0.0906, P D 0.0017). At cg22285878,
we observed small but significant correlations with estimated
proportions of B cells (rD¡0.0689, P D 0.0169) and natural
killer cells (r D 0.0645, PD0.0254).

Because an increased variation in DNAm among older sub-
jects appeared to be driving the quadrilinear relationship
between DNAm and age in GTP, TOPS, MESA-M, and
GOLDN, we investigated whether the variance in DNAm

Figure 1. Scatterplots of DNAm (y-axis) vs. age (x-axis) with fitted quadratic regression lines for each of the 11 data sets, holding covariates constant at their mean values.
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differed significantly between younger and older individuals in
each data set. The EGC data set consisted solely of 2 age groups:
a young age group (� 34 years) and an old age group (�
73 years). For comparability, we split the GTP, TOPS, CTX,
and GOLDN data sets into young (� 34 years) and old
� 73 years) age groups. MESA-M and MESA-T have age ranges
of 45–79 and 44–83, so we could not split these data sets in the
same age groups; similarly, NICHD-G and NICHD-N only
included 2 individuals � 73 years. For these data sets, we
instead used the median values (58 for MESA-M, 60 for
MESA-T, and 23 for both NICHD-G and NICHD-N) to split
the data sets into younger (�median) and older (>median) age
groups. We then computed the variance of DNAm at
cg07955995 and cg22285878 separately for the 2 age groups.
Fig. 2A and 2B plot the deviation of these variances from the y
D x line for all data sets. When comparing all data sets GTP
and TOPS had the highest variances among the old age groups
at cg07955995. GTP also had the highest variance among the
old age group at cg22285878, followed by CTX. When compar-
ing EGC-CD4, EGC-CD8, and EGC-PBL (derived from the
same set of subjects) EGC-CD8 exhibited the highest variance
in the old age group at cg07955995 while EGC-CD4 exhibited
the lowest variance. At cg22285878, EGC-CD4 exhibited the
highest variance of the 3 in the old age group whereas PBL
exhibited the lowest variance. Across all data sets, variance was

significantly greater in the old age groups compared with the
young age groups (Fig. 2A and 2B; Table 4), suggesting that the
quadrilinear pattern is in part driven by increased variability in
DNAm across older subjects.

Although many of the studies described above had limited
numbers of older individuals, this pattern was also observed
in an additional blood-based data set (peripheral blood mono-
nuclear cells) that included 122 nonagenarians and 21 younger
controls aged 19–30 from the Vitality 90C Study (Gene
Expression Omnibus accession number GSE58888);17 this
data set was not analyzed with the others because individual
ages were unavailable. Figure S6 shows that for both CpG
sites, the nonagenarians in the study had greater mean
DNAm levels (P<6E-13) and variance of DNAm (PD8.7e-6
for cg07955995 and 0.0014 for cg22285878) than the younger
controls, supporting the results observed in the other data sets.

To test the robustness of the quadrilinear model and ensure
we did not miss other interesting non-linear patterns, we also
performed a secondary analysis in which we fit spline regres-
sions for the 25,723 age-associated CpG sites in GTP (see
Methods for details). Results were similar to those of the quad-
rilinear model: 20 CpG sites were significant for the spline-
based model, whereas 21 CpG sites were significant for the
quadrilinear model. Among these, 15 were significant for both
models (Figure S7).

Figure 2. Plot of the variance of methylation across subjects at cg07955995 (left) and cg22285878 (right) for the older age group (73 years or older) against the younger
age group for each data set. MESA-M, MESA-T, NICHD-G, and NICHD-N appear with different symbols because the age groups were calculated differently than the other
data sets. For these 4 data sets, the median ages (in years) were used (58 for MESA-M, 60 for MESA-T, and 23 for both NICHD-G and NICHD-N) to create young groups
(�median) and old groups (>median) because MESA-M and MESA-T had no individuals less than 34 years of age and NICHD-G and NICHD-N only had 2 individuals older
than 73 years.

Table 4. Variances of the young age group, variances of the old age group, and P-values corresponding to the F-statistic calculated as the ratio of variances of the young
and old age groups for each of the 11 data sets.

cg07955995 cg22285878

Dataset Varyoung Varold PVar Varyoung Varold PVar

GTP 8.3E-05 2.7E-03 1.4E-11 6.6E-05 2.0E-03 5.6E-11
TOPS 6.5E-05 3.0E-03 2.8E-26 6.6E-05 6.0E-04 2.0E-08
EGC-PBL 1.8E-04 1.5E-03 3.8E-05 1.5E-04 4.3E-04 9.7E-03
MESA-M 4.2E-04 1.6E-03 6.4E-56 1.8E-04 7.3E-04 1.9E-62
EGC-CD8 3.9E-04 1.9E-03 1.0E-11 3.6E-04 8.0E-04 1.4E-04
MESA-T 1.9E-04 4.2E-04 2.1E-03 1.4E-04 2.1E-04 1.0E-09
EGC-CD4 2.9E-04 6.6E-04 4.4E-08 1.9E-04 1.2E-03 3.0E-03
GOLDN 7.5E-05 3.8E-04 2.1E-03 7.8E-05 2.7E-04 1.1E-03
CTX 4.3E-04 1.2E-03 6.7E-19 4.5E-04 1.4E-03 9.8E-12
NICHD-G 3.4E-04 9.2E-05 0.76 3.0E-04 1.9E-04 0.54
NICHD-N 4.4E-04 1.2E-07 0.9997 4.3E-04 1.9E-04 0.65

Columns 2–4 correspond to cg07955995 and columns 5–7 correspond to cg22285878.
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As technical validation of the array-based results for
cg07955995 and cg22285878, we used the Sequenom EpiTyper
technology to interrogate a section of the promoter region that
included cg07955995 and cg22285878 for the 2 oldest and 2 of
the youngest GTP individuals in the GTP data set (subject ages
D 21, 21, 75, and 78). Standard curve analysis based on com-
mercially available methylation standards (Figure S8) suggested
that the assay underestimates DNAm at these 2 sites. For
cg07955995, DNAm levels from the targeted assay of young vs.
old subjects were consistent with the original array-based
results, though the difference between older and younger sub-
jects was somewhat compressed (Figure S9). For cg22285878,
the EpiTyper DNAm levels show little difference between the
older and younger subjects; this may be due to a combination
of the smaller differences observed in GTP and other data sets
for cg22285878 and the underestimation of DNAm indicated
in Figure S8. Notably, increased DNAm for the older subjects
was observed at many of the 22 CpG sites in the region,
displaying more striking differences at some of the 20 flanking
CpG sites than at cg07955995 and cg22285878 (Figure S10).

The 2 CpG sites (cg07955995 and cg22285878) exhibiting
Pattern 1 are located 14 base pairs apart in the promoter region
of the gene KLF14, and show high pairwise correlation in all
data sets (0.70 < r < 0.87; Figure S11). KLF14 is an imprinted,
maternally expressed gene with a hypomethylated CpG
island.18 Previous work has found associations between DNAm
at KLF14 and age in pancreatic islets, adipose tissue, and whole
blood.19-22 In addition, KLF14 has been suggested to be
involved in the regulation of inflammation.23 To investigate a
possible relationship between DNAm and inflammation, we
compared interleukin 6 (IL-6) and C-reactive protein (CRP)
across GTP subjects (Figure S12 and S13). The 2 oldest individ-
uals, who also exhibited the highest b-values at both
cg07955995 and cg22285878, did not have plasma levels of
inflammatory markers that differed from the rest of the GTP
subjects. There was also no association between levels of either
inflammatory marker and DNAm levels at cg07955995 or
cg22285878 (0.4972 � P � 0.9780). We also investigated CRP
and IL-6 in GOLDN, along with 3 additional inflammatory
markers (TNFa, MCP1, and sIL2Ra). No significant associa-
tions were found between DNAm and these 5 markers at either
CpG site.

Discussion

Many studies have investigated the relationship between
DNAm and human age. While significantly different rates of
DNAm have been observed between pediatric and adult popu-
lations,13 we are unaware of studies investigating changing rates
of DNAm with age in the same cohort. Such investigations are
important to unravel the complex relationship between DNAm
and senescence. In particular, CpG sites demonstrating an
increasing rate of DNAm change with age may be involved in
processes relevant to aging. To understand the importance of
these results, we discuss the tissue and cell type specific patterns
we observe, and we outline a possible pathway whereby sup-
pression of KLF14 via DNAm at cg07955995 and cg22285878
may play a role in immunosenescence. In light of previous find-
ings linking KLF14 to metabolic outcomes, we discuss whether

our results are consistent with aging-related onset of metabolic
disorders, immunosenescence, or both. Finally, we discuss limi-
tations of our study and implications for future research.

While an increased rate of change in DNAm with age sug-
gests relevance to aging-specific processes, it remains unclear
what biologic phenomenon might be responsible for such age-
related DNAm. Many studies have found not only tissue-spe-
cific but also cell type-specific DNAm patterns.24,25 Further-
more, such tissue- and cell type-specific DNAm patterns could
be involved in cell lineage differentiation.16 We investigated
age-related DNAm patterns among data sets of different tissue
and cell types to explore the possibility that the changing rate
of DNAm that we observed was specific to a tissue, a cell type,
or group of cell types. We found that CpG sites cg07955995
and cg22285878 had DNAm that increased at an increasing
rate with age across nearly all of the 11 data sets we investi-
gated. While our investigation is not exhaustive, the patterns so
far suggest that our findings generalize across several sub-types
of whole blood. It remains to be seen whether this pattern will
generalize to other tissues. In PFC tissue (CTX, NICHD-N),
the 2 CpG sites exhibited a pattern consistent with the analyses
in blood (an increasing rate of increase and larger variance in
older subjects). While this pattern was significant in dlPFC tis-
sue (CTX), it was insignificant in PFC neurons (NICHD-N),
and was not observed in PFC glial cells (NICHD-G). Future
studies should investigate these patterns in additional tissues as
additional data sets become available.

The analyses of peripheral whole-blood data (GTP and
TOPS) revealed a significant quadrilinear relationship between
b-values and age that was consistent with an increasing rate of
DNAm change with age. In subsequent analyses, we investi-
gated whether this finding replicated in blood cell subtypes
(Tables 2 and 3). Isolated monocytes (MESA-M) also showed a
significant quadrilinear relationship between b and age at both
cg07955995 and cg22285878. In isolated CD8C T cells (EGC-
CD8), the relationship was not significant, but the coefficient
for the age2 term was comparable to those observed in mono-
cytes, suggesting that the age range (no individuals between the
ages of 23 and 72 years) and small sample sizes (n D 100) hin-
dered our ability to detect a quadrilinear association. However,
the older subjects exhibited significantly greater variance than
the younger subjects, consistent with what was observed for
other cell subtypes. In isolated CD4C T cells (EGC-CD4,
MESA-T, and GOLDN), we observed quadrilinear associations
the same direction with one exception (EGC-CD4 for
cg22285878) but the associations were significant in GOLDN
only. Like EGC-CD8, EGC-CD4 had a small sample size
(n D 99) and was limited to individuals at the endpoints of the
age distribution; MESA-T also had a small sample size
(n D 214). Effect sizes were comparable across the 3 CD4C T
cell data sets: the coefficients on the quadratic terms were actu-
ally larger in MESA-T than in GOLDN for both CpG sites, and
the coefficients for EGC-CD4 and GOLDN were similar in
magnitude for cg07955995.

Given the patterns observed in T cell subtypes, it is notable
that cg07955995 and cg22285878 reside in the promoter region
of a gene called KLF14, which is involved in immune cell differ-
entiation, particularly the conversion of CD4CCD25¡ na€ıve T
cells to CD4CCD25C regulatory T cells. KLF14 belongs to a
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family of 17 proteins known as Kruppel-like factor (KLF) pro-
teins, which are involved in immune cell differentiation. KLF
proteins exert their effect via the binding to gene promoters and
enhancers.23 A recent study found that KLF14 represses FOXP3
via epigenetic regulation at the Treg-specific demethylated
region (TSDR) of FOXP3 in vitro and in vivo using a mouse
model.23 Previous work has shown that FOXP3 induces and is
required for the conversion of CD4CCD25¡ na€ıve T cells to
CD4CCD25C regulatory T cells via the joint stimulation of TCR
and TGF-b.26-28 A study of CD25-deficient mice found that the
overexpression of proinflammatory cytokines, including IL-2
and IFN-g, in response to bacterial superantigen stimulation,
particularly staphylococcal enterotoxin B, was curbed by injec-
tion of CD4CCD25C, suggesting that CD4CCD25C plays a role
in regulating antigen-induced inflammatory responses.29 More-
over, evidence suggests a relationship between immunosenes-
cence (the general deterioration of the immune system over the
course of the lifespan) and CD4CCD25C regulatory T cell levels
and function.30,31 In consideration of the aforementioned studies
and our findings, we outline one possible biologic pathway
whereby late-life DNAm at cg07955995 and cg22285878 in
CD4C T cells could be a response to immunosenescence
(Figure S14): (1) Age-related DNAm in the promoter region of
KLF14 downregulates expression of KLF14; (2) In the absence
of normal levels of KLF14, which otherwise inhibits FOXP3,
FOXP3 expression is upregulated; (3) Higher levels of FOXP3
induces a greater number of na€ıve CD4C25¡ T cells to convert
to CD4C25C T cells (sometimes referred to as Treg cells); and
(4) CD4C25C T cells regulate the heightened inflammation
observed in immunosenescent individuals. To investigate the
conjectured pathway outlined above, we assessed correlation
between DNAm at cg07955995 and cg22285878 and levels of
inflammatory markers in GTP and GOLDN individuals. How-
ever, there was no association between inflammatory markers
and DNAm at cg07955995 and cg22285878 in either GTP
(Figures S12 and S13) or GOLDN, and the 2 oldest individuals
in the GTP data set, who also exhibited the highest b-values at
both cg07955995 and cg22285878, were well within the normal
range for plasma levels of IL-6 and CRP. Nevertheless, Pontoux
et al. investigated levels of IL-2 and IFN-g in response to injec-
tion of CD4CCD25C.29 Thus, it is possible that we were unable
to find any indication of immunosenescence because this partic-
ular pathway affects inflammatory markers that we did not
investigate. Future studies should collect additional inflamma-
tory markers, including IL-2 and IFN-g, on a larger subset of
elderly individuals to further investigate this putative pathway
and its relationship to immunosenescence.

While we suggest that DNAm at cg22285878 and
cg07955995 could regulate KLF14 expression and possibly con-
tribute to an immunosenescent phenotype in older adults, we
did not investigate expression of KLF14 because it did not show
sufficient expression to pass standard quality control proce-
dures in the available blood-based expression data sets (GTP,
MESA-M, MESA-T, and a small subset of GOLDN). Because
KLF14 did not show expression in these data sets, it is unlikely
KLF14 is expressed over long periods of time. Data from the
Common Fund (CF) Genotype-Tissue Expression Project
(GTEx) indicates that KLF14 expression in whole blood exhib-
its a very low mean gene expression level with a large upward

skew relative to other tissue types (Figure S15), which is what
one would expect if a gene is transiently expressed in a tissue.32

Many genes have been found to undergo transient stints of
expression.33-35 In fact, one study found transient expression of
cell surface proteins in monocytes in response to inflammatory
cytokines.36 If KLF14 regulates T cell conversion via intermit-
tent expression followed by long periods of inactivity, then it is
unlikely that we would be able to detect KLF14 gene expression
in our samples. If this is the case, it is possible that KLF14 is
activated in the blood to decrease excessive levels of
CD4CCD25C regulatory T cells. If heightened DNAm at
cg22285878 and cg07955995 in immunosenescent individuals
regulates KLF14 expression by blocking or partially blocking
brief and intermittent periods of KLF14 expression in some
CD4C T cells, then we would expect Treg cells to accumulate in
the blood of immunosenescent individuals. Interestingly, previ-
ous research has found that Treg cells accumulate with age.30,31

Another possible explanation for lack of detectable levels of
KLF14 gene expression is a technical failure of the Illumina
probe, which has been suggested in a previous study.44

While aging affects all aspects of the immune system, T cells
are the most severely affected.37 While many factors may con-
tribute to an immunosenescent phenotype, one such factor,
namely, cytomegalovirus (CMV), infects an estimated 50–80%
of North Americans by age 40 and is most commonly symp-
tomatic among immunodeficient individuals, such as the
elderly.38 CMV has been observed to induce CD8C T cell prolif-
eration,39 which has been hypothesized to play a role in age-
related DNAm change.40 Moreover, a substantial portion of
peripheral blood CD4C T cell and CD8C T cell responses has
been observed in CMV-seropositive individuals comprising
approximately 10% of T cell memory compartments.41 Our
investigation found a significant quadrilinear effect between
DNAm and age at cg07955995 and cg22285878 in peripheral
whole-blood (GTP and TOPS), isolated CD4C T cells, and, to a
lesser (but still significant) extent, in isolated monocytes
(MESA-M). These findings suggest that CD4C T cells could be
partially driving the quadrilinear effect, which is consistent
with the putative pathway outlined above. In GTP (at
cg07955995 and cg22285878) and TOPS (at cg07955995), the
oldest individuals had the highest DNAm levels, and in several
of the remaining data sets (MESA-M, EGC-PBL, EGC-CD8,
EGC-CD4; Fig. 1), we observed the highest DNAm levels
among a subset of the older individuals, which could indicate a
possible immunosenescent phenotype in these individuals.

In addition to the possible role for KLF14 in immune cell
differentiation and inflammation, previous studies have linked
it to metabolic outcomes. Genetic variants in the promoter
region of KLF14 associate robustly with risk for type II diabetes
(T2D) and high-density lipoprotein cholesterol.42,43 It has also
been reported that DNAm of cg22285878 in pancreatic islets
associates both with aging and with measures of insulin secre-
tion independent of age.19 GTEx data indicate that KLF14 is
expressed in the adrenal gland as well as in both visceral and
subcutaneous adipose tissue (Figure S15), and it has been
reported that KLF14 acts as a master regulator in adipose tissue,
regulating a set of genes correlated with metabolic traits.44 A
growing body of literature suggests that inflammation is
involved in insulin resistance and chronic metabolic disorders,
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such as T2D,45-49 so it is possible that the roles of KLF14 in
inflammation and in chronic metabolic disorders represent 2
sides of the same coin. The high levels of DNAm at
cg07955995 and cg22285878 that we observed among elderly
individuals may reflect immunosenescence, onset of a chronic
metabolic disorder, or both.

To further our understanding of the role of age-related
DNAm at cg07955995 and cg22285878 and its possible rela-
tionship with metabolic disorders and immunosenescence,
future research should focus on cell type specific data with large
sample size and a wide age range. Moreover, our study suggests
a possible role of T cell subtypes, specifically, Treg cells
(CD4CCD25C T cells), which are difficult to isolated from
other CD4CCD25C T cells. As we overcome challenges involv-
ing the isolation of cell subtypes, particularly T cell subtypes,
future studies should investigate DNAm of T cell subtypes to
further investigate the biologic pathway conjectured here. In
addition, research should pay particular attention to DNAm
data on T2D, obese, and immunosenescent individuals, includ-
ing those who are CMV-seropositive.

Several limitations of this study are worth noting. First, all
11 data sets are cross-sectional, so it is not possible to infer that
an increase in age yields an increase in DNAm, merely that
there is an association. Ideally, longitudinal data could better
assess the relationship in question. Second, the primary analysis
was conducted on a data set with a small sample size (n D 336)
and few older individuals, as were some of the follow-up analy-
ses (NICHD-N and NICHD-G). These data sets may have
lacked the statistical power to detect all CpG sites that exhibit a
non-linear trend. A related concern is that the small number of
older individuals in these samples could potentially exert undue
influence as outliers, which could lead to false positive results.
However, the consistency of our initial result in 9 of 11 data
sets derived from diverse tissues and the corroboration of
observed patterns in a larger data set of nonagenarians suggest
that the patterns observed for these 2 CpG sites reflect replica-
ble and generalizable biologic differences and are robust rather
than outlier-driven. Third, it is possible that unobserved envi-
ronmental factors, such as pollutants, accumulate in the body
over time and help drive the age-related relationship at these
2 CpG sites. Finally, we were unable to detect KLF14 expression
in the available data sets, which limited the possible follow-up
analyses. While it is possible that KLF14 is generally not
expressed in blood or its subtypes, it is also possible that it is
expressed only transiently, since it is unlikely that transient
expression of KLF14 would be detected in a small cross-sec-
tional sample. Future studies in other tissues, such as adipose
tissue, will be necessary to assess the possible role of these CpG
sites in KLF14 expression, though it is notable that a large
genome-wide study of methylation and expression in adipose
tissue did not report significant associations (FDR<0.01)
involving cg07955995, cg22285878, or KLF14.50

Overall, our study is the first to utilize methylome-wide asso-
ciation studies across data sets derived from diverse cell and tis-
sue types to investigate a quadratic relationship between DNAm
and age. We found 2 CpG sites that exhibit stable DNAm early
in life followed by a rapid increase in DNAm in late life in
peripheral whole blood, monocytes, and isolated CD4C T cells.
These CpG sites reside in the promoter region of KLF14, which

has recently been shown to be involved in CD4C T cell differen-
tiation via the suppression of FOXP3. These findings highlight
the importance of DNAm as a means to further our understand-
ing of aging, immunology, and biologic pathways.

Methods

Samples

A total of 11 data sets were analyzed (Table 1). The primary
discovery analysis was performed in data from the Grady
Trauma project, and the remaining data sets were analyzed to
replicate or follow up findings of the primary analysis.

Grady Trauma Project (GTP)

The primary analysis was performed using a subset of 336
African-American individuals ranging in age from 16 to 78 from
data collected as part of the GTP, a study investigating the effects
of genetic and environmental factors on individuals’ response to
stressful life events. Participants were recruited from waiting
rooms at Grady Memorial Hospital in Atlanta, GA between 2005
and 2008. The Institutional Review Boards of Emory University
School of Medicine and Grady Memorial Hospital approved all
procedures of the Grady Trauma Project.51-53

Take Off Pounds Sensibly family study (TOPS)

The TOPS Family Study of Epigenetics included methylation
data collected from peripheral blood of 192 individuals. Individ-
ual ages ranged from 6 to 85 and each individual belonged to 1
of 7 extended families of Northern European descent. To be
included in the study, each nuclear family was required to have
2 obese siblings and at least one parent or sibling who was never
obese. The NCBI Gene Expression Omnibus accession number
corresponding to the TOPS Family Study is GSE60132.54

Multi-Ethnic Study of Atherosclerosis (MESA)

The Multi-Ethnic Study of Atherosclerosis (MESA) collected
methylation data for samples of CD4C T cells (MESA-CD4; 214
subjects) and monocytes (MESA-M; 1,202 subjects) isolated
from peripheral blood. The age range was 45–79 for MESA-
CD4 subjects and 44–83 for MESA-M subjects. TheMESA study
was conducted to collect population-based information on the
prevalence and progression of subclinical cardiovascular disease.
Subjects were recruited from 6 sites: Baltimore City and Balti-
more County, Maryland; Chicago, Illinois; Forsyth County,
North Carolina; Los Angeles County, California; New York,
New York; and St. Paul, Minnesota. The NCBI Gene Expression
Omnibus accession number corresponding to MESA-CD4 and
MESA-M are GSE56581 and GSE56046, respectively.55,56

Estonian genome center investigation of age-related
epigenetics and immune system function in PBL, CD4C,
and CD8C T cells (EGC-PBL, EGC-CD4, EGC-CD8)

Peripheral blood leukocytes (EGC-PBL) were collected, in addi-
tion to CD4C T cells (EGC-CD4) and CD8C T cells (EGC-
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CD8), which were isolated from peripheral blood from healthy
donors of the Estonian Genome Center of the University of
Tartu. A total of 101 subjects were in the study, and were
divided into a young age group and an old age group whose
ranges were 22–34 and 73–84, respectively. After quality con-
trol, a total of 296 samples were collected from the 101 subjects:
99 CD4C T cell samples, 100 CD8C T cell samples, and 97 PBL
samples. The NCBI Gene Expression Omnibus accession num-
ber corresponding to the Estonian Genome Center Investiga-
tion of Age-related epigenetics and immune system function in
PBL, CD4C, and CD8C T cells is GSE59065.40

Schizophrenia-related DNAm and gene expression (CTX)

Samples of dlPFC tissue were surgically removed from post-
mortem brain samples donated to the NIMH Brain Tissue Col-
lection at the National Institute of Health in Bethesda, Mary-
land. Our investigation focused on 346 samples from the
control group with an age range of 2–85. The NCBI Gene
Expression Omnibus accession number corresponding to the
Schizophrenia-related DNAm and gene expression data are
GSE74193.57

Genetics Of Lipid Lowering Drugs andDiet Network (GOLDN)

The GOLDN study recruited families that had at least 2 siblings
from the National Heart, Lung, and Blood Institute Family
Heart Study from Minneapolis and Salt Lake City. The study
collected methylation data from CD4C T cells isolated from
peripheral blood samples. After quality control, 991 individuals
remained in the analysis. All individuals self-identified as Euro-
pean American and provided written informed consent, and
the study protocol was approved by Institutional Review
Boards at the University of Minnesota, University of Utah,
Tufts University/New England Medical Center, and University
of Alabama at Birmingham.

National Institute of Child Health and Human Development
(NICHD) brain bank of developmental disorders – cell
heterogeneity study (NICHD-G, NICHD-N)

The NICHD study included post-mortem samples from
subjects diagnosed with major depressive disorder (MDD)
and matched controls. The study collected methylation data
from glial cells (n D 50) isolated from prefrontal cortex tis-
sue, in addition to methylation data collected from neurons
(n D 50) isolated from prefrontal cortex tissue. The NCBI
Gene Expression Omnibus accession number corresponding
to NICHD is GSE4182658.

Analysis

For each of the studies described above, DNA was collected
from tissue samples and was bisulfite-treated for cytosine to
thymine conversion and hybridized to the Illumina Infinium
HumanMethylation450 (450K) BeadChip and processed
according to the instructions of the manufacturer. For GTP
and GOLDN, the methylated signal (M) and unmethylated sig-
nal (U) as well as detection P-values were obtained from

GenomeStudio after processing. For all other studies, data were
downloaded from the NCBI Gene Expression Omnibus (GEO).

For all data sets except GOLDN, the cpg.qc function within
the R package CpGassoc59 was used to perform quality control.
Quality control included the removal of probes with missing
data for >5% of samples, removal of samples with >5% miss-
ing probe sites, and the removal of samples with a detection P-
value > 0.001. Methylated and unmethylated signals were then
quantile normalized for each data set separately. A b-value was
then computed from the methylated signal (M) and unmethy-
lated signal (U) as follows: b D M

U CM . In GOLDN, quality
control was performed in R to exclude samples with >1.5%
missing data, b-values with a detection P-value >0.01, CpG
sites where probe sequences mapped multiple loci or to a loca-
tion that did not match the annotation file, and CpG sites
where >10% of samples had inadequate intensity. In data sets
derived from whole-blood samples (GTP and TOPS), cell type
proportions were estimated using the Houseman method as
implemented in the R package minfi,60,61 which utilizes Illu-
mina 450K methylation data from 6 isolated cell types as refer-
ence data.16

For our initial discovery analysis in GTP, the R function cpg.
assoc within the CpGassoc package59 was used to perform a
separate linear regression for each CpG site where b was
regressed on age, age2, sex, and estimated cell type proportions,
and an indicator for row on chip as fixed effects. Chip ID was
included as a random effect to absorb potential batch effects.
The quadratic term for age was included to allow identification
of CpG sites demonstrating an increasing or decreasing rate of
change with age. The model used for each of the 11 data sets
appears below:

bi Da0 C gage AGEið ÞC gage2 AGE2
i

� �C
Xk

j D 1

gjcovij Cmi C ei

(Equation1)

bi: proportion of cells methylated at a CpG site of the ith indi-
viduals
a0: intercept
gj: slope coefficient corresponding to the jth independent
variable
k: number of covariates in the model. Covariates differ between
data sets (Table S4).
mi: between-chip error of the ith individual
ei: within-chip error of the ith individual

CpG sites were considered to have a significantly increasing
rate of methylation change if ĝ age2 had the same sign as ĝ age

and the P-value corresponding to the t-statistic on ĝ age2 was
smaller than the Bonferroni-adjusted level of significance (a D
1.03E-07).

In addition to the quadrilinear model described in the pre-
ceding paragraph, we also performed a spline analysis. We
chose 19 knots corresponding to 19 quantiles across the age-
distribution and fit a model using the same fixed effects and
random effects in the above paragraph, with the exclusion of
the age-quadratic term and the inclusion of an age-knot inter-
action term. A separate model was fit for each of the 19 knots
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across each of the 25,723 CpG sites found to be linearly associ-
ated with age in the primary analysis. To compare with our
quadrilinear results, we plotted the t-statistics corresponding to
the knot that maximized the absolute value of the t-statistic on
the age-knot interaction term among the 19 knots across each
of 25,723 CpG sites against the t-statistics on the age-quadratic
term from the quadrilinear model (Figure S7). The minimum
P-value was selected among the 19 P-values corresponding to
the age-knot interaction term for each of the 25,723 CpG sites
in the spline model, and tested against a Bonferroni threshold
of aD 0:05

19�25;723 D 9.5E-8 to determine significance while
adjusting for both the 19 knots considered and the 25,723 CpG
sites tested.

For CpG sites demonstrating an increasing rate of change
with age in GTP, follow-up analyses were performed on the
remaining data sets. Only CpG sites with a significant quadratic
term were included in the subsequent analyses, which were per-
formed using the R function lme if random effects were
included and lm if no random effects were included (with the
exception of GOLDN, where the model was fit using SOLAR62

to account for familial relationships between subjects). The
response variable b was regressed on age and age2 using the
model shown in Equation 1. Chip ID was included as a random
effect for GTP, EGC-PBL, MESA-M, EGC-CD8, MESA-T,
EGC-CD4, NICHD-G, NICHD-N. Details on fixed and ran-
dom effect covariates for all data sets are shown in Table S4.
The MESA-T and MESA-M models included estimated meas-
ures of contamination by other cell types, namely, proportions
of B-cells, monocytes, natural killer cells, and neutrophils,
which were provided with GEO data sets GSE56581 and
GSE5604656. Likewise, the CTX model included estimated cell
type proportions (embryonic stem cells, neural progenitor cells,
mature adult neurons, non-neuronal cells, and ES-derived
dopamine neurons), which were provided with the GEO data
set (GSE74193).57

Based on Equation 1, we derived the instantaneous slope
between DNAm and age at ages 50, 60, and 70 y using the fol-
lowing computations (Tables 2 and 3):

gage D 50 : gage C 2gage2£ 50

gage D 60 : gage C 2gage2£ 60

gage D 70 : gage C 2gage2£ 70

For comparisons of variance in DNAm between older and
younger subjects, GTP, TOPS, CTX, EGC-PBL, EGC-CD4,
and EGC-CD8 were each partitioned into an older
(� 73 years) and a younger group (� 34 years). Because the
age ranges of MESA-M and MESA-T were 45–79 and
44–83 years, respectively, the younger group in these data sets
comprised individuals � the median age (58 for MESA-M
and 60 for MESA-T) and the older age group comprised indi-
viduals > the median age. We used the median (23 for both
NICHD-G and NICHD-N) to separate NICHD-N and
NICHD-G into young and old age groups in a similar fashion
as MESA because NICHD-G and NICHD-N both only had 2
individuals aged � 73 years. The variances of DNAm at
cg07955995 and cg22285878 were computed for the young

age group and the old age group and an F statistic was com-
puted as the ratio of these variances (Table 4).

As technical validation to address the possibility that arti-
facts were driving our key results, we performed targeted analy-
sis of samples from the 2 oldest and 2 of the youngest
individuals in the GTP cohort. We designed an assay for the
promoter region of KLF14 that included 20 additional CpG
sites flanking cg07955995 and cg22285878. We used commer-
cially available standards to validate the assay across the range
of possible methylation values (0–100%) and generated
standard curves of observed vs. expected DNAm at key CpG
sites (Figure S8). We then used Sequenom EpiTyper technology
to measure DNAm at 22 CpG sites for the 2 older vs. the 2
younger subjects.
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