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Identifying interactions between genetics and the environment (GxE) remains challenging. We 

have developed EAGLE, a hierarchical Bayesian model for identifying GxE interactions based on 

association between environment and allele-specific expression (ASE). Combining RNA-

sequencing of whole blood and extensive environmental annotations collected from 922 human 

individuals, we identified 35 GxE interactions, compared to only four using standard GxE testing. 

EAGLE provides new opportunities to identify GxE interactions using functional genomic data.

Phenotypic variation results from the combined effect of environment and individual genetic 

background. Many environmental and behavioral influences have been shown to 

substantially affect human disease risk, and in model organisms gene-by-environment (GxE) 

interactions have been shown to be pervasive2. However, the prevalence and importance of 

GxE in human health is not well characterized, and identifying associations on a large scale 

in human populations has been both statistically and experimentally challenging3. Targeted 

experimental approaches are not always practical, and detection of GxE from genome-wide 

data faces considerations including small genetic effect sizes for most complex traits and 

high multiple hypothesis-testing burden.

In this study, we analyzed GxE in the context of transcriptomic phenotypes; these traits can 

mediate disease risk, and the effects of genetic variation on gene expression are large enough 

for well-powered, reproducible, genome-wide detection of expression quantitative trait loci 

(eQTLs) even in modestly-sized cohorts4,5. Gene expression can also reveal the impact of 

environmental factors6,7, and recently, in vitro immune stimulation has been used to detect 

hundreds of GxE effects in human monocytes8 and dendritic cells9,10. Further, agnostic to 

the specific environment involved, the presence of extensive GxE interactions affecting the 

transcriptome is supported by variance eQTLs11 and allele specific expression12 in mono- 

and dizygotic twins.

To improve power to discover GxE interactions, we developed EAGLE (Environment-ASE 

through Generalized LinEar modeling), a novel method to test for GxE interactions using 

allele specific expression (ASE). Intuitively, observing that allelic imbalance of a gene 

associates with a particular environmental factor suggests that there is a cis-regulatory effect 

whose impact on expression is modulated by that environment. For example, an 

environmentally responsive transcription factor that binds to one allele better than the other 

allele (Figure 1A) would result in allelic imbalance of the target gene in that environmental 

context. By comparing two alleles within the same sample, ASE provides an “internally 

matched” measure that inherently provides improved control for batch effects and other 

forms of confounding technical variation (Supplementary Figure S1). EAGLE uses a 

binomial generalized linear mixed model (GLMM, Supplementary Note 1), predicting the 

relative number of RNA-seq reads from each allele at exonic, heterozygous loci under 

different environmental conditions. EAGLE directly models allelic read counts, which we, 

and others13,14, have found display extra-binomial variation. EAGLE estimates a per-locus 

overdispersion parameter (random effect variance) that accounts for both technical 

overdispersion (e.g. from PCR amplification) and extrinsic variation between individuals. 

Statistical power is shared across loci by learning a genome-wide prior on these variance 

parameters. We controlled for known cis-eQTL by including heterozygosity of the lead 
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eSNP as a covariate. EAGLE can additionally be used to identify associations with other 

factors, such as genetic variants (Supplementary Figure S2).

A naïve approach to associate an environmental factor with ASE is to calculate Spearman 

correlation with a standard definition of allelic imbalance, , where y and n are the 

alternative and total counts respectively. However, we have shown using a simulation study 

(Supplementary Note 2) that by accounting for binomial sampling variance, EAGLE’s direct 

modeling of allelic read counts improved power (Supplementary Figure S3) and reduced 

false positives (Supplementary Figure S4). A binomial generalized linear model also failed 

to account for overdispersion, leading to overinflated p-values and excessive false positives 

especially at higher read depths (Supplementary Figure S5). In contrast, by using a mixed 

model, EAGLE effectively accounted for overdispersion and remained conservative 

(Supplementary Figures S5–7). EAGLE is computationally efficient: testing 19,050 exonic 

SNPs across one environmental factor in 922 samples takes under one hour on a modern 

workstation (Intel Core i5 Quad-Core 3.30GHz, 16Gb).

We applied EAGLE to a large, well-annotated, publicly-available cohort of 922 individuals 

with RNA-seq from the Depression Genes and Networks study4. The samples come from a 

primary tissue, enabling accurate analysis of environmental influences on the transcriptome; 

indeed, we detected thousands of environmentally responsive genes (Supplementary Figure 

S8).

We tested for EAGLE associations between 30 environmental factors (Supplementary Table 

S1) and ASE of 8795 genes (Online Methods). We found 35 significant associations (10% 

FDR, Supplementary Table S2). Among these, we detected a novel GxE interaction between 

exercise before blood draw and DYSF a skeletal muscle repair protein. Mutations in DYSF 
cause the recessive muscular dystrophy dysferlinopathy, with progression of the disease 

being exercise level dependent15. We also detected a GxE interaction for blood pressure 

medication with NPRL3, part of the NPR3 protein family involved in homeostasis of fluid 

volume (Figure 2a). Additionally, we observed that higher BMI is associated with increased 

allelic imbalance of VNN1, which is associated with high-density lipoprotein cholesterol16 

and is predicted to be causally related to omental fat pad mass17. We found enrichment of 

EAGLE associations in relevant pathways, transcription factor target sets and trans-eQTL 

networks (Supplementary Notes 3–5, Supplementary Figure S9).

As a baseline, we mapped GxE interactions on total expression using a standard linear 

model interaction test (Online Methods). EAGLE showed much greater power to detect GxE 

interactions than standard interaction QTL testing (Figure 1B). In addition, using Bonferroni 

correction across the SNPs tested per gene (since there is no appropriate permutation 

strategy for interaction testing18) followed by controlling the FDR at 10%, we find only four 

associations across all 30 environmental factors compared to 35 discovered with EAGLE on 

the same set of tested genes.

We investigated the validity of EAGLE associations by analyzing replication both within 

DGN and between independent studies. First, we split the DGN cohort into equal-sized 
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discovery and replication sets, while approximately matching sex and age. The proportion of 

EAGLE associations replicating (p<0.05) increases with the stringency of the discovery p-

value threshold, which is not the case for standard interaction QTL associations 

(Supplementary Figure 10a). Despite halving the sample size, 50% of the associations 

discovered at  replicate (corresponding approximately to 10% FDR). Second, we 

checked for replication of EAGLE associations from DGN in 723 native French-Canadians 

from the CARTaGENE whole blood cohort19,20. Despite differences in population, 

recruitment and recording of environmental factors, we observed replication (Supplementary 

Figure 10b), with the strongest pattern observed for BMI, a measurement with a quantitative 

definition and thus likely to be consistent between the two studies. Ten EAGLE hits from 

DGN corresponded to environmental factors recorded in both cohorts. Of these, six 

replicated in CARTaGENE (p<0.05).

EAGLE’s improved power over standard interaction QTL testing may derive from multiple 

sources, including the controlled, within-individual nature of our ASE-based test 

(Supplementary Figures S1), along with the direct modeling of read counts (Supplementary 

Figure S3). Supported by a simulation study where we varied the level of confounding 

(Supplementary Note 6, Supplementary Figure S11) we hypothesize that confounders, such 

as cell-type portion, are a key reason standard interaction QTL testing is underpowered. 

Further, EAGLE implicitly integrates over the entire cis-regulatory landscape of a gene 

rather than explicitly testing a specific candidate SNP, reducing the multiple hypothesis-

testing burden and potentially capturing the contribution of multiple regulatory variants.

Since EAGLE does not directly test individual candidate SNPs responsible for the 

association between environment and ASE, we applied a two-step procedure to find 

candidate variants driving GxE associations. In step one, EAGLE was used with a lenient 

FDR of 20% to give a shortlist of 57 GxE associations. In step two, we looked for candidate 

variants within 1Mb of the TSS, using meta-analysis to combine EAGLE with standard 

interaction testing (Online Methods). SNPs with too few double heterozygous individuals 

were not testable using EAGLE, in which case we used standard interaction testing alone. 

For 15 out of 57 associations we found a cis-SNP with a nominally significant interaction 

QTL after Bonferroni correction across tested SNPs (p<0.05; Supplementary Table S3). The 

proportion of initial EAGLE hits with a significant cis-SNP is reasonably robust to the 

choice of FDR threshold and cis-window size (Supplementary Figure S12). Those with no 

candidate variant hit may arise from variants outside of the 1MB window, rare variants, or 

non-genetic factors. For the association between smoked same day and IL10RA (Figure 2b) 

the top candidate variant ( ) is rs685419, which lies 4Mb from the TSS of 

IL10RA (interleukin 10 receptor-α) in a conserved CD14 primary cell enhancer (Figure 2c–

e). Polymorphisms in IL10 itself have been associated with the rate of lung function decline 

in firefighters21. In addition, since many diseases result from the combined effects of 

genetics and environment we investigated whether any of our candidate GxE variants, or 

variants in linkage disequilibrium (LD), are known genetic risk factors for disease using the 

NHGRI-EBI GWAS (accessed 6/17/2015) and Immunobase (www.immunobase.org; 

accessed 6/21/2015) catalogs. We identified eight disease-associated variants 

(Supplementary Table S4). For example, we found that rs1538257, which is the top 
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candidate variant to modulate BMI’s association with LGALS3 expression, is in LD 

(R2=0.55) with rs2274273, which is associated with LGALS3 protein levels 

( ). Interestingly, in mice, LGALS3 has been shown to have a protective role 

in obesity induced inflammation and diabetes22.

We investigated the degree to which EAGLE analyses, conducted within a large cohort, 

recapitulate GxE interactions discovered in vitro. The interplay of immune stimulation, gene 

expression and genetics has been characterized in several recent in vitro studies8–10. We 

focused on Fairfax et al.8 due to its large sample size, genome wide transcriptomic profiling 

and choice of interferon-γ (IFN-γ) and LPS immune stimulation (likely to be relevant in a 

population sample). Direct measurements of infection are not available for DGN, so we used 

the expression levels of differentially expressed genes for each stimulus as environmental 

“proxies”. We used 25, 16, and 26 genes, for LPS at 2h, LPS at 24h and IFN-γ respectively, 

identified to have an absolute log-fold change greater than 4 in the Fairfax et al. data. We 

then applied EAGLE genome-wide to find association between ASE and gene expression 

levels for each proxy gene. We excluded tests for interactions between proxy genes and 

allelic balance of genes on the same chromosome since these associations could represent 

direct cis-regulation rather than interaction. At 10% FDR (accounting for testing multiple 

proxy genes per condition), we found 26, 6 and 14 GxE interactions across the proxy genes 

for LPS at 2h, LPS at 24h and IFN-γ respectively. Evaluating t-statistics for the lead eQTL 

(Supplementary Note 7, Supplementary Figure S13), 11/26, 3/6 and 6/14 interactions 

replicated (p <10−4) for the three stimuli respectively in Fairfax et al. (Figure 3a). We used 

random sets of non-differentially expressed proxy genes to generate an empirical null 

distribution, providing empirical p-values for the observed replication rates of 0.048, 0.06, 

and 0.029 respectively, or 0.0017 for the overall replication frequency.

While we developed EAGLE in the context of an observational population-scale RNA-seq 

cohort, it is equally applicable to direct perturbation experiments. We applied EAGLE to 

RNA-seq data from male Rattus norvegicus livers following exposure to seven different 

classes of small molecules23. Since genotypes were unavailable we called exonic SNPs from 

RNA-seq (Online Methods). Despite moderate sample sizes (30 controls and 8–18 treated 

samples), we detected 442 associations (10% FDR) across the seven classes (Supplementary 

Figure S14a). This power likely derives from controlled laboratory conditions, large effects 

of direct perturbations, and large haplotype blocks in the outbred rats used, where the exonic 

variant being tested will frequently co-segregate with the causal variant. EAGLE identified 

117 associations (10% FDR) for agonists of PPARα, a well-characterized transcription 

factor. Examples include the known targets Ces1f (Supplementary Note 8) and Acot1. Acot1 

is significantly upregulated by PPARα (Supplementary Figure S14b), but only for 

haplotypes with the reference allele at Chr6:108042464 (Figure 3b). PPARα associated 

genes showed enrichment of the binding motifs for both PPARα/γ and the heterodimer with 

RXR around their TSS (p<0.05, Figure 3c, Supplementary Note 9). Out of 85 known targets 

of PPARα24 testable by EAGLE, 37 (44%, compared to 10% for other genes, 

hypergeometric ) showed evidence of allele-specific response (10% FDR, 

Supplementary Figure S14c).
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The associations detected by EAGLE indicate that common environmental risk factors, 

including substance use, exercise, and BMI interact with individual genetic variation in 

regulation of gene expression. EAGLE provided a substantial increase in power over 

standard methods, yet the overall number of associations remained modest, indicating that 

GxE effects on gene expression are not prevalent with large effect sizes compared with 

additive effects, or are obscured by confounders. Additionally, there are allele-specific, cis-

regulatory mechanisms other than genetic effects that could potentially explain some of the 

discovered associations, for example epigenetic regulation of expression. As RNA-seq 

becomes increasingly prevalent in human cohort studies, EAGLE will be appropriate to 

obtain additional power to detect individual differences in response to diverse environmental 

conditions. More generally, EAGLE is a useful, extensible tool for understanding the 

combined effects of external stimuli, genetic variation, and cellular networks on regulation 

of gene expression.

Online Methods

Interaction QTL testing

Total expression for the DGN cohort was quantified as previously described4, including 

controlling for known and latent confounders using HCP25. We quantile normalize each 

gene to a standard normal distribution to remove outliers, and perform standard interaction 

testing to find GxE effects for the 8795 genes testable using ASE. For a specific combination 

of SNP, gene and environment consider the null model  and alternative model ,

where  is normalized total expression for individual i,  is the genotype of the SNP 

encoded as ,  is the environmental factor,  are genetic, environment 

and interaction effect sizes respectively and  is an intercept. Under the null the likelihood 

ratio  is -distributed with one degree of freedom, which 

allows us to obtain a well calibrated p-value. We test all SNPs within 200kb of the TSS 

(obtained from GENCODE, release 20). Since there is no appropriate permutation strategy 

for testing interaction terms18, we were constrained to using Bonferroni correction to obtain 

an approximate gene level p-value. The gene level p-values for a particular environment are 

then adjusted using the Benjamini-Hochberg procedure to control the FDR at a pre-specified 

level.

Replication cohort

The replication cohort included 723 native French-Canadians from the CARTaGENE cohort, 

consisting of 346 men and 377 women from Montreal (n=369), Quebec (n=221), and 

Saguenay (n=133). Whole-blood samples from these individuals were used to perform 

genotyping on Illumina’s Omni2.5M array and RNA sequencing using paired-end libraries 
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on the Illumina HiSeq 2000 platform as previously described20. Heterozygous sites were 

filtered to include only exonic sites that have not been shown to exhibit mapping bias26. 

Read counts for both alleles were generated using a custom Perl script. Cis-eQTLs within 

1Mb were called for 15,632 genes in a subset of the CARTaGENE cohort (n=689) using the 

R package MatrixEQTL. EAGLE was then run on this data as for the DGN cohort.

Allele specific expression quantification

Tophat227 (v2.1.0) with default settings was used to map reads to hg19 (for DGN) or rn5 

(Ensembl RGSC3.4). Samtools28 mpileup (v1.3) was used to obtain reference and 

alternative allele counts at known common SNPs. For the rat data genotype data is not 

available, so we determine which individuals are heterozygous at each exonic SNP by 

requiring: a) two reads mapping to both the reference and alterative allele, b) that the 

alternate base observed in the RNA-seq reads matches the known allele.

EAGLE model

Existing approaches for calling allelic imbalance29,30, or leveraging allelic signal in 

molecular QTL mapping13,31, are unable to test for association between an environmental 

factor and allelic imbalance. We first present the EAGLE model itself and then motivate the 

various modeling choices. The null model  is

and the alternative model  is

where  is the alternative read count for individual i at locus s,  is the total read count, 

 is the logistic function,  denotes whether the top cis-eQTL is 

heterozygous,  is an intercept term to take into account unexplained allelic imbalance 

unrelated to the environment (e.g. due to reference mapping bias13,30) and 

is a per individual per locus random effect modeling overdispersion. This model can be 

derived by assuming the log expression of each allele is linear in the environment and SNP 

genotype (Supplementary Note 1). The variance itself is given an inverse gamma prior 

. We learn the hyperparameters  across all genes.

We expect that environmental effects on ASE are usually mediated by one or more causal 

cis-regulatory genetic variants, which would often be in linkage disequilibrium with the 

locus where ASE is measured. However, some responsive individuals may have different 

causal sites and therefore may exhibit opposite direction of allelic effect. EAGLE gains 

power by testing just a single association statistic per gene, rather than modeling each 

possible causal site and incurring a large multiple testing burden, but therefore cannot 

assume a consistent direction of allelic effect across the cohort. Additionally, linkage 

disequilibrium may be weak, especially for more distal elements. The EAGLE model is 

applicable in settings where causal sites vary between individual and also handles unphased 
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data. We model the absolute deviation from allelic balance by considering 

 rather than the minor allele count  itself. This is analogous to using 

 as a quantitative measure of allelic imbalance, but maintains the count nature of 

the data. We also experimented with introducing explicit auxiliary “flipping” variables to 

provide implicit phasing, but found this was susceptible to over-fitting.

Accounting for cis-regulation

Standard cis-eQTL analysis allowed us to identify proximal genetic variants associated to 

the expression of each gene. These variants often explain a significant proportion of 

observed ASE. To account for this, we add a dependence on , an indicator of whether the 

top cis-eQTL for the gene containing locus s is heterozygous in individual i. Additionally, in 

some cases one of the known cis-eQTLs could be the variant through which the environment 

influences the observed ASE, which we model by including an interaction term hiseis 

(Supplementary Note 10). We approximately integrate over the random effects  and per 

locus variance  using non-conjugate variational message passing32 while optimizing the 

coefficients  and hyperparameters  (Supplementary Note 11).

Parameter estimation and inference

Holding the overdispersion hyperparameters  fixed we fit both the alternative and null 

models at each locus and use the variational lower bound as an approximation to the true 

marginal likelihood for each model, allowing us to calculate an approximate likelihood ratio. 

It is not obvious that the usual asymptotic theory should hold here since a) our data is not 

normally distributed, b) we only have an approximation of the true likelihood, and c) our 

model incorporates random effects terms. To investigate this we performed permutation 

experiments, using the conveniently valid strategy of separately permuting the individuals 

heterozygous or homozygous for the top cis-SNP18. These experiments show that our 

approximate likelihood ratios do in fact follow the asymptotic  distribution quite closely, 

while being slightly conservative (Supplementary Figure S8). Therefore we choose to use 

the nominal likelihood ratio test p-values, avoiding having to run computationally expensive 

permutation analysis for every tested association.

Software

EAGLE was developed in C++ and R 3.1.2 using RcppEigen and is available as an R 

package at https://github.com/davidaknowles/eagle.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
EAGLE associates allelic specific expression (ASE) with environmental covariates to detect 

GxE interactions. (a) Allelic imbalance can be driven by allele specific binding of an 

environmentally responsive transcription factor. (b) Relative to interaction QTL testing, 

using ASE increases power in the DGN cohort across 30 environmental variables. 

Interaction testing was performed on SNP within 200kb of each gene, followed by 

Bonferroni correction. EAGLE provides an internally controlled test and integrates across 

the cis-regulatory landscape of a gene.

Knowles et al. Page 10

Nat Methods. Author manuscript; available in PMC 2017 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
EAGLE detects GxE interactions missed by standard interaction QTL testing. (a) Blood 

pressure medication modulates regulation of NPRL3, involved in fluid homeostasis. (b) 

Smoking interacts with regulation of IL10RA. (c–e) Using standard interaction QTL testing 

as a second phase within EAGLE hits, we detect rs685419 as a promising candidate variant 

for smoking’s association with IL10RA, lying 4Mb from the TSS in a conserved region 

corresponding to an enhancer in CD14+ primary cells.
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Figure 3. 
EAGLE detects allele-specific effects of environments measured by “proxy” genes and of 

direct perturbations. (a) EAGLE recapitulates GxE interactions discovered using immune 

stimulation of monocytes in vitro8. We used genes differentially expressed under immune 

stimulation in vitro as proxies for the environment (stimulus). The genes detected by 

EAGLE as being modulated by these environmental proxies replicate in the in vitro data: i.e. 

they have detectable response QTLs. Network depicts all EAGLE predictions for each 

stimulus, with replicating interactions highlighted in yellow; each edge is annotated with the 

tested proxy gene for reference. (b) EAGLE detects allele-specific responses to treatment of 

rat livers with various toxicants. The strongest association for agonists of the PPARα 
transcription factor is a known target, Acot1. While total Acot1 expression is up-regulated, 

we find that rats with the alternative C allele at exonic SNP Chr6:108042464 show no 

response. (c) Genes associated with PPARα by EAGLE show enrichment of relevant TF 

binding motifs within 5kb of the TSS.
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