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ABSTRACT
Arsenic exposure may contribute to disease risk in humans through alterations in the epigenome. Previous
studies reported that arsenic exposure is associated with changes in plasma histone concentrations.
Posttranslational histone modifications have been found to differ between the brain tissue of human
embryos with neural tube defects and that of controls. Our objectives were to investigate the relationships
between plasma histone 3 levels, history of having an infant with myelomeningocele, biomarkers of
arsenic exposure, and maternal folate deficiency. These studies took place in Bangladesh, a country with
high environmental arsenic exposure through contaminated drinking water. We performed ELISA assays
to investigate plasma concentration of total histone 3 (H3) and the histone modification H3K27me3. The
plasma samples were collected from 85 adult women as part of a case-control study of arsenic and
myelomeningocele risk in Bangladesh. We found significant associations between plasma %H3K27me3
levels and risk of myelomeningocele (P<0.05). Mothers with higher %H3K27me3 in their plasma had lower
risk of having an infant with myelomeningocele (odds ratio: 0.91, 95% confidence interval: 0.84, 0.98). We
also found that arsenic exposure, as estimated by arsenic concentration in toenails, was associated with
lower total H3 concentrations in plasma, but only among women with folate deficiency (b D ¡9.99,
standard error D 3.91, PD0.02). Our results suggest that %H3K27me3 in maternal plasma differs between
mothers of infants with myelomeningocele and mothers of infants without myelomeningocele, and may
be a marker for myelomeningocele risk. Women with folate deficiency may be more susceptible to the
epigenetic effects of environmental arsenic exposure.
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Introduction

Neural tube defects are debilitating birth defects characterized
by high rates of mortality and lifelong disabilities in surviving
children. Neural tube defects occur when the developing neural
plate fails to elevate and fuse in the first 3 to 4 weeks of gesta-
tion, causing death or permanent damage to the spinal cord.1 It
is increasingly recognized that the majority of human neural
tube defects have a multifactorial and complex etiology, and
that environmental factors, such as maternal diet and exposure
to chemicals, may affect the risk of these disorders.2

Epigenetic mechanisms are suspected to contribute to neural
tube defects, and mutations in a growing number of epigenetic
regulators have been shown to result in neural tube defects in ani-
mal models.3,4 In humans, the role of epigenetics in neural tube
defects is supported by the success of folic acid supplementation
programs in the prevention of many cases. One of many potential
mechanisms that may explain folic acid beneficial effects is that

folate plays an important role in epigenetic regulation through its
effect on DNA methylation. In addition to DNA methylation,
posttranslational histone modifications have been investigated as
epigenetic mechanisms leading to neural tube defects.

Histone modifications play a fundamental role in the regula-
tion of chromatin structure, gene and noncoding RNA tran-
scription, and nuclear architecture.5,6 Enrichment in the
acetylation of histone tails in promoters is typically associated
with transcriptional activation; however, the functional conse-
quences of methylation depend on the number of methyl
groups, the residue itself, and its location within the histone
tail.7 Supporting this hypothesis is the observation that the anti-
convulsant medication valproic acid, a well-recognized terato-
gen associated with neural tube defects, is also an inhibitor of
enzymes involved in the acetylation of histones, suggesting that
histone modification may play a role in the expression of genes
important for normal neural tube development.3,8,9
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It has been reported that exposure to arsenic is associated
with changes in epigenetic regulation, and recent reviews have
summarized the evidence supporting the hypothesis that arse-
nic alters methylation of gene promoters; histone acetylation,
methylation, and phosphorylation; and microRNA expres-
sion.10-14 Arsenic induces neural tube defects in animal models,
and our recent studies in humans suggest that arsenic exposure
influences the risk of neural tube defects.15 Whether arsenic
affects neural tube defect risk through changes in the epige-
nome is unknown.

Our study aimed, therefore, to investigate whether environ-
mental arsenic exposure was associated with histone levels as
well as with levels of a particular posttranslational histone mod-
ification. We also investigated whether these epigenetic markers
in mothers were associated with folate state in mothers or
higher risk of neural tube defects in offspring. Our samples
were drawn from women in Bangladesh, a country experienc-
ing high arsenic exposure related to contaminated drinking
water and also high rates of folate deficiency.

Posttranslational histone modifications have been found in a
variety of bodily fluids, including plasma, and are hypothesized
to play a role in cell-to-cell communication and disease patho-
genesis, most notably diseases related to inflammation16 and
coagulation.17 Recent studies demonstrate that exposure to
environmental chemicals are associated with these epigenetic
markers in plasma; for example, a recent study has shown that
specific posttranslational histone modifications are associated
with markers of environmental exposure to particulate mat-
ter.18 Plasma is an easily accessible tissue, and identification of
epigenetic markers in plasma that are related to both environ-
mental exposures and disease risk may aid in estimating an
individual risk, as well as in surveillance efforts. To our knowl-
edge, no previous study has used plasma samples to investigate
environmental arsenic exposure and its associations with histo-
nes and posttranslational histone modifications.

Methods

Study population

Between April and November 2013, we conducted a case-con-
trol study in communities served by Dhaka Community Hospi-
tal (DCH) in Bangladesh. Details of the case ascertainment and
control selection strategies have been reported previously.15,19

Briefly, eligible cases were children under the age of 1 y with
myelomeningocele, a common and severe form of neural tube
defect, in which the membranes and the spinal cord protrude
at birth. In cases of myelomeningocele, the spinal cord and
meninges (the tissues covering the spinal cord) protrude from
the back. An experienced pediatrician (Dr. Ibne Hasan) con-
firmed cases of myelomeningocele. Controls were matched
(1:1) by sex and age from pregnancy registries from DCH-affili-
ated health centers using the following method: potential con-
trols were separated into groups corresponding to sex and birth
quarter, and placement on the list of potential controls was
assigned by random digit assignment. Once a case was enrolled,
potential controls were approached in order of assignment on
this list. Fifty-seven cases and 55 controls, along with their
mothers, were enrolled. Participation was 98% among potential

cases and 83% among potential controls. Informed consent was
obtained from all participants. The Human Research Commit-
tees at Boston Children’s Hospital and DCH approved this
study.

Questionnaires and medical history

Trained interviewers asked parents regarding their medical his-
tories and environmental exposures, including the use of medi-
cations during pregnancy, family history, water consumption,
other potential environmental and occupational exposures, as
well as reproductive history. Periconceptional folic acid supple-
mentation use was defined as reporting any intake of a folic
acid-containing supplement within the 2 months before the
awareness of pregnancy.

Arsenic exposure

Drinking Water
Drinking water samples were obtained from the tube well each
mother identified as her primary source of drinking water at
the time she became aware of her pregnancy. Water samples
were collected in 50 ml polypropylene tubes (BD Falcon, BD
Bioscience, Bedford, MA, USA), preserved with reagent grade
nitric acid (Merck, Germany) to a pH < 2, and stored at room
temperature. Arsenic concentration in water was analyzed
using inductively coupled plasma mass spectrometry (ICP-MS)
according to US Environmental Protection Agency method
200.8 (Spectrum Analytical, Inc., Agawam, MA, USA). For
quality control, instrument performance was validated by a
spiked laboratory control sample (ICP, Analytical Mixture 12
Solution A, High Purity Standards, Charleston, SC, USA) with
percent recoveries ranging from 98 to 107%. Samples below the
0.15 mg/L limit of detection (LOD) were reassigned a value of
half the LOD for statistical analyses. Families found to have
drinking water inorganic arsenic concentrations � 50 mg/L
(Bangladesh standard) were advised to seek alternative sources
of drinking water.

Toenails
Toenail samples were collected from mothers and were placed
in individual sealed envelopes, digested, and analyzed at the
Harvard T.H. Chan School of Public Health (HSPH) metals
laboratory using ICP-MS, following methods described by
Chen et al.20 A method blank and a human certified reference
material GBW070601 (Institute for Geophysical and Geochem-
ical Exploration, Langfang, China) were included with each
batch of toenails during the digestion process. Toenail arsenic
concentrations were blank-corrected and further corrected for
systemic errors by normalizing the sample concentration
against the measured concentration of the batch-specific refer-
ence material, and this corrected value was used in all statistical
analyses. National Institute of Standards and Technology
(NIST) 1640d was analyzed for arsenic concentration after
every 10 samples. The average recovery of the NIST standard
was 105%. The average LOD for the samples was 0.14 mg/g.
Samples below the 0.14 mg/g LOD were reassigned a value of
half the LOD for statistical analyses.
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Plasma folate analysis

Whole blood was collected from mothers via venipuncture into
EDTA tubes. Samples were centrifuged at 2,000 rpm for
12 min. Plasma was collected in 5 ml cryovials and stored at
¡20�C. Plasma samples were shipped to HSPH on dry ice.
Folate analyses were performed at the Vitamin Metabolism
Laboratory at the United States Department of Agriculture -
Human Nutrition Research Center at Tufts University (Jean
Mayer laboratory). We measured total folate concentration of
the plasma samples by microbial assay with the use of Lactoba-
cillus casei.21 We serially diluted 5 mL of each plasma sample
and plated the samples in triplicate onto a 96-microtiter well
plate with 150 mL of L. casei growth medium.21 We incubated
the plates overnight in a 37�C humid incubator and measured
the absorbance, which indicated microbial growth, with the use
of a 96-well plate reader (PowerWave HT; BioTek Instruments,
Inc., Winooski, VT, USA) at 595 nm. To test if any arsenic in
plasma affected the microbial assay, we spiked 3 random sam-
ples with 5 ng/ml folic acid, and detected no inhibitory compo-
nents in the plasma. The coefficients of variation (CVs) for the
assay using one plasma sample with high folate concentration
and one sample with low folate concentration were 6.78% and
4.73%, respectively.

Plasma histone concentration

The concentrations of total histone 3 (H3) and H3K27me3 in
plasma were measured using sandwich ELISA.22 Polystyrene
microplates (96-well; Fisher Scientific, Pittsburgh, PA, USA)
were coated with 100 mL of H3 antibody (Abcam ab16061,
Cambridge, MA, USA) at a concentration of 1:20,000 diluted in
phosphate-buffered saline (PBS) and incubated overnight at
4�C. Plates were washed in PBS with TWEEN-20 (PBST) (1X
PBS, 0.05% TWEEN-20) and blocked with 3% milk in PBST
for 1.5 h at room temperature with agitation on an orbital
shaker at 450 rpm. The standard curve for the histones [total
H3 (Active Motif 31207) and H3K27me3 (Active Motif
31216)] were made by diluting appropriate amount of recombi-
nant protein (Active Motif, Carlsbad, CA, USA) in MQ water.
Two quality control plasma samples were prepared by pooling
10 mL of plasma from the first 50 samples and the next 50 sam-
ples, respectively.23

Each plasma sample (5 mL) was diluted in 95 mL of Milli-Q
water before analysis. After coating incubation, plates were
washed with PBST. Case and control samples (100 mL each)
were added in triplicate to the plate and incubated at room
temperature with agitation for 1.5 h. Following incubation, the
plates were washed with PBST. We diluted antibodies to total
H3 at 1:40,000 (Sigma H0164, St. Louis, MO, USA), and
H3K27me3 at 1:4,000 (Active Motif 39155) in 1% PBST milk.
We added 100 mL of diluted primary antibody to each well and
incubated for 1 h at room temperature with agitation. Plates
were then washed with TBST. Secondary goat anti-rabbit IgG-
HRP antibody (100 mL; Santa Cruz Biotechnology sc-2004,
Santa Cruz, CA, USA) at 1:2,000 in TBST was added to each
well and incubated for 1 h without agitation. Following incuba-
tion with secondary antibody, wells were washed 4 times with
TBST. We then added 3,30 5,50– tetramethylbenzidine

(TMB; 100 mL) (Fisher Scientific, Pittsburgh, PA, USA) to each
well and incubated at room temperature. The reaction was
stopped after 30 min by adding 100 mL of 2 M H2SO4. The
absorbance was read at 450 nm using the Infinite M200 PRO
spectrophotometer (TECAN, Mannedorf, Switzerland).

For the quality control samples, the within-assay CVs
ranged from 1.83 to 5.53% for total H3 and 1.63 to 8.00% for
H3K27me3. For the study samples, the between-assay CVs
were 11.37 and 22.55% for total H3 and 5.13 and 6.72% for
H3K27me3. Twenty-seven plasma samples (24%) with CVs
greater than 10% were excluded from the analysis.

Statistical analysis

Because water arsenic concentration, maternal toenail arsenic
concentration, and maternal plasma folate concentration were
skewed, these values were log-transformed for analysis to
approximate a normal distribution. %H3K27me3 was calcu-
lated by dividing H3K27me3 concentration by the total H3
concentration and was used as the measure of this histone sub-
type in analyses to be consistent with prior studies.23 Maternal
plasma folate concentration was used as a continuous variable,
and was also used as a dichotomous variable in tests of effect
modification. When used as a dichotomous variable, low
plasma folate concentration was defined as <4 ng/ml, consis-
tent with the current World Health Organization (WHO) defi-
nition of folate deficiency.24

We assessed the associations between histone concentrations
and case status of offspring using unconditional logistic regres-
sion models. We did not use conditional models due to the
uneven numbers of cases and controls, but instead forced the
matching variables, including age and sex into all models, as sug-
gested by Rothman and Greenland.25 Other variables (maternal
age, paternal age, receiving an ultrasound during pregnancy,
medication use, maternal plasma folate concentration, and folate
deficiency) were evaluated as potential confounders. Variables
that were significant at the P<0.05 level were chosen as potential
confounders, and kept in models if they changed the estimate by
10%. Separate models were constructed for each exposure (total
H3 concentration or %H3K27me3) and outcome (case status of
offspring). Logistic regression models were constructed for each
analysis as follows: the first model was adjusted for infant age
and sex while additional models were also adjusted for maternal
plasma folate concentration (Model 2); plasma folate concentra-
tion and maternal toenail arsenic (Model 3); and plasma folate
concentration, and maternal toenail and water arsenic concentra-
tions (Model 4). We conducted linear regression analyses to
assess the association between arsenic exposure with total H3
concentration and %H3K27me3.

In our linear regression models, we adjusted for case status
of offspring to minimize the potential bias associated with the
unequal sampling probabilities of mothers of cases and mothers
of controls. As with the previous analyses, we evaluated poten-
tial confounding by maternal age, paternal age, receiving an
ultrasound during pregnancy, medication use, maternal plasma
folate concentration, and folate deficiency. Variables that were
significant at the P < 0.05 level were chosen as potential con-
founders, and kept in models if they changed the estimate by
10%. We were not able to weight observations by sampling
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probabilities, as the prevalence of myelomeningocele in Bangla-
desh is unknown. For all analyses, statistical significance was
considered at the 2-tailed P<0.05 level. All statistical analyses
were conducted using SAS version 9.4 (SAS Institute Inc., Cary,
NC, USA).

Results

A total of 85 plasma samples (45 from mothers of cases, 40
from mothers of controls) passed quality control criteria for
histone concentration, and were included in the current analyt-
ical data set. Table 1 shows the characteristics of the study pop-
ulation based on case-control status of offspring. Mothers of
infants with myelomeningocele were slightly older than moth-
ers of controls (P D 0.046). We did not observe differences in
maternal plasma folate concentration, use of ultrasound during
pregnancy, or reported folic acid supplementation based on sta-
tus of offspring, though differences in reported folic acid use
between mothers of cases and mothers of controls were
observed in previous reports using the data from the full study
population.15 Comparisons between the included (n D 40) and
excluded (n D 15) mothers of controls, and between the
included (n D 45) and excluded (n D 12) mothers of infants
with myelomeningocele, showed no significant differences
between the included and excluded groups with respect to
maternal age, infant age, and infant sex. However, the included
mothers of both controls and cases were more likely to have
reported use of folic acid supplements during pregnancy (data
not shown).

Table 2 displays the arsenic concentrations in water and
toenails observed in our study. Twenty-seven water samples
(31.8%) and 2 toenail samples (2.4%) had arsenic concen-
trations below the level of detection (LOD). While most of
the study population were exposed to water arsenic concen-
trations below the current US and WHO standard of
10 mg/L, over 25% had levels higher than this standard, and
some had exposure to water that had arsenic concentrations
greater than 50 times that standard. Toenail arsenic and
water arsenic concentrations were highly correlated (r D
0.78, P<0.0001).

We did not find a significant association between plasma
folate concentration and either total H3 concentration or
%H3K27me3, nor did we find any significant association
between covariates (potential confounders) and histone con-
centrations in univariate models (all P>0.05, data not shown).

We found a significant association between %H3K27me3
and case status such that women with higher levels of
%H3K27me3 had lower odds of having an infant with myelo-
meningocele [odds ratio (OR): 0.91, 95% confidence interval
(CI): 0.84, 0.98]. This association did not change after adjust-
ment for maternal plasma folate concentration, maternal toe-
nail arsenic concentration, and maternal water arsenic
concentration (Table 3).

We found that among women with folate deficiency
(< 4 ng/ml), toenail arsenic concentration was inversely associ-
ated with total H3 levels [b (standard error) D ¡9.99 (3.91),
P D 0.02] (Table 4). No significant association was observed
between toenail arsenic concentration and %H3K27me3. This

Table 1. Characteristics of study population.

Characteristics
Controls
(n D 40)

Cases
(n D 45) P-value

Maternal Characteristics
Age at Delivery (years) 22.3 (4.4) 24.5 (5.4) 0.046
Ultrasound During Pregnancy (%) 87.5 88.9 0.84
Reported Folic Acid Use During
Pregnancy (%)

60.0 44.4 0.15

Folate Deficiency (%)� 32.5 33.3 0.94
Plasma Folate (ng/ml) 3.5 (2.6) 4.2 (4.9) 0.39

Infant Characteristics
Sex, Male (%) 60.0 57.8 0.84
Age (Months) 8.4 (5.2) 6.4 (5.7) 0.10

Data are shown as means (standard deviations) for continuous variables or propor-
tions for categorical variables.

�Defined as maternal plasma folate concentration < 4 ng/ml.

Table 2. Distribution of Maternal Arsenic Exposure Levels and Plasma Histone Levels.

Variable Mean Standard Deviation Minimum 25th Percentile Median 75th Percentile Maximum

Maternal Arsenic Exposure
Drinking Water Arsenic (mg/L) 35.7 85.8 < LOD� < LOD� 1.73 36.3 506
Maternal Toenail Arsenic (mg/g) 2.19 3.96 < LOD�� 0.38 0.69 2.29 27.7

Plasma Histones
Total H3 (ng/mL) 160 43.2 108 129 158 177 455
H3K27me3 (ng/mL) 31.8 12.0 10.7 24.1 29.2 37.4 71.7
%H3K27me3# 20.2 6.55 5.92 15.5 19.8 23.7 44.3

�Average LOD for water arsenic samples was 0.15 mg/L.
��Average LOD for toenail arsenic samples was 0.14 mg/g.
#Calculated by the percentage of the plasma H3K27me3 level divided by the total histone 3 concentration.
LOD, limit of detection.

Table 3. Associations between Plasma Histone Levels and Case Status of Offspring.

Variables Models� OR (95%CI)#

Total H3 Concentration Model 1 1.00 (0.99, 1.01)
Model 2 0.997 (0.99, 1.01)
Model 3 0.994 (0.98, 1.01)
Model 4 0.994 (0.98, 1.01)

%H3K27me3 Model 1 0.91 (0.84, 0.98)
Model 2 0.91 (0.84, 0.98)
Model 3 0.89 (0.82, 0.98)
Model 4 0.89 (0.82, 0.98)

�Model 1 was adjusted for infant sex and infant age. Model 2 was adjusted for
infant sex, infant age, and ln (maternal plasma folate concentration). Model 3 was
adjusted for infant sex, infant age, ln (maternal plasma folate concentration), and
ln (maternal toenail arsenic). Model 4 was adjusted for infant sex, infant age, ln
(maternal plasma folate concentration), ln (maternal toenail arsenic), and ln
(maternal water arsenic).

#OR: odd ratio; 95%CI: 95% Confidence Interval
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pattern was also seen when water arsenic concentration was
used as the measure of environmental arsenic exposure
(Table 4).

Discussion

Using samples from a recently completed case control study in
Bangladesh, we observed that plasma levels of the epigenetic
histone modification H3K27me3 in mothers were significantly
associated with myelomeningocele risk in offspring.
H3K27me3 was selected because it has been associated with
neural tube defects in vitro,26 and in the amniotic fluid of neu-
ral tube-affected pregnancies.27 We further found that arsenic
exposure was associated with plasma total histone concentra-
tions, but only among women who had concurrent folate
deficiency.

Epigenetic mechanisms have an important role in gene regu-
lation during fetal development and are suspected to contribute
to neural tube defects. Mutations in genes that affect histone
modification, in particular acetylation, result in neural tube
defects in mice.28 In humans, histone modification patterns dif-
fered between brains from fetuses with spina bifida and those
from fetuses that were electively terminated.29 The hypothesis
that histone modifications in the mother may influence neural
tube defect risk in children is supported by the observation that
the antiepileptic drug valproate, which is an inhibitor of
enzymes involved in deacetylation of histones,8 is a well-known
risk factor for neural tube defects in humans.30,31

Our study found that increasing levels of H3K27me3 in
maternal plasma was associated with lower risk of myelome-
ningocele (OR: 0.91, 95%CI: 0.84, 0.98). Ours is the first study
in humans to link maternal plasma levels of %H3K27me3 to
myelomeningocele in offspring, and to suggest that epigenetic
modifications in mothers as well as embryos may play a role in
these disorders. Studies in experimental models support an
important role of H3K27 in neural tube development. In cell
culture, histone methylation at K27 is associated with repressed
expression of several developmental genes,32 and animal studies
in Sp¡/¡ mice show that increased H3K27 methylation is a
marker of increased risk of lumbar neural tube defects.33 In
experiments performed in zebrafish, a family of H3K27 deme-
thylases was found to be important in anterior-posterior devel-
opment.34 In humans, amniotic fluid stem cells cultured from
myelomeningocele-affected pregnancies have demonstrated
high levels of H3K27me3,27 and the H3K27me3 mark in
human embryonic stem cells is associated with regulation of
dorsal patterning in the developing neural tube.26 Our study
suggests that %H3K27me3 in mothers may contribute to

expression of genes important in neural tube closure in
embryos. Future studies that incorporate gene expression data
from embryos may better elucidate mechanisms by which this
and other histone modifications affect myelomeningocele risk.

Our study took place in a setting of high environmental
arsenic exposure, enabling a robust investigation of the associa-
tions between arsenic exposure and histone modifications. The
majority of studies in arsenic and histone post-translational
modifications have been conducted in vitro;2,35-47 however, as
recently reviewed by Howe and Gamble,11 there is a growing
body of literature from human populations that supports a link
between arsenic exposure and post translational histone modi-
fications.23,47-50 For instance, a recent study by Pournara et al.
(2016)47 documented the inverse relationship between arsenic
exposure via drinking water and decreases in global H3K9me3
in CD4C cells, and H3K9me3 has been linked to metabolic dis-
order,51 neurologic disorders,52 and cancer.53,54 Among the
healthy population in Bangladesh, associations between higher
drinking water and urinary arsenic exposures with alteration in
various histone modifications were reported in a sex-dependent
manner, suggesting the potential effects of arsenic exposure on
epigenetics.49 Furthermore, histone modification on H3K18ac
and H3K36me3, which are particularly associated with higher
arsenic concentrations in their biomarkers of urine and hair,
were notably pronounced in the oxidative stress response gene
promoters.50 These findings corroborate histone modification
as a potential mediator in the association between arsenic expo-
sure and transcriptional regulation of oxidative stress response
genes.50 Most relevant to this study are recent investigations in
Bangladesh that have shown that arsenic exposure among Ban-
gladeshi adults was associated with %H3K36me2, a particular
histone modification selected because of its association with
cancer.23 In that study, urinary arsenic was positively associated
with %H3K36me2 in peripheral blood mononuclear cells in
men but negatively associated with %H3K36me2 in women,
suggesting a sex-specific effect of arsenic on this epigenetic
marker.23 The authors of these studies in Bangladesh did not
report whether they evaluated potential folate deficiency to
modify the effect of arsenic exposure on epigenetic markers.

We found that women’s arsenic exposure as measured by
toenail arsenic concentration was significantly associated with
plasma H3 concentration, but this association was observed
only among women with folate deficiency, suggesting that
folate deficiency is a state in which the epigenetic effects of arse-
nic may be more prominent. It has been well-established that
arsenic metabolism is dependent on folate, which facilitates
methylation of arsenic into species that are more easily
excreted.55 Our studies provide further evidence that the role of

Table 4. Associations between Maternal Arsenic with Plasma Histone Levels Stratified by Maternal Folate Status

Total H3 Concentration %H3K27me3

Plasma Folate � 4 ng/ml Plasma Folate< 4 ng/ml Plasma Folate � 4 ng/ml Plasma Folate< 4 ng/ml

Variables b (SE) P-value b (SE) P-value b (SE) P-value b (SE) P-value

Ln (Maternal Toenail Arsenic) ¡5.24 (5.84) 0.37 ¡9.99 (3.91) 0.02 ¡0.51 (0.71) 0.48 ¡0.27 (1.26) 0.83
Ln (Maternal Water Arsenic) ¡3.36 (2.22) 0.14 ¡2.09 (2.00) 0.31 ¡0.004 (0.28) 0.99 ¡0.29 (0.58) 0.62

All models were adjusted for infant sex, infant age, and case status of offspring.
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folate is not limited to carrying one-carbon units in metabolic
pathways but may have an epigenetic role in disease as well, a
finding consistent with animal studies.56 We did not find an
association between arsenic exposure and plasma %H3K27me3,
suggesting that a different modification contributes to the
change in plasma H3 in the presence of arsenic.

Our study has many important limitations, most signifi-
cantly in its small sample size. Additionally, our associations
between histone modification levels and myelomeningocele
risk are limited by the case-control design because plasma sam-
ples were collected at the time of study visit, which was after
the infant was born, and previous studies have shown that
some histone modification levels change with variation of envi-
ronmental exposures.57,58 However, measures of histone con-
centration, arsenic, and folate were concurrent, and so our
observations of arsenic’s relationships with histone concentra-
tions differing by folate status are not limited by time of
collection.

Conclusions

Our results suggest that %H3K27me3 in maternal plasma dif-
fers between mothers of infants with myelomeningocele and
mothers of infants without myelomeningocele, and may be a
marker for myelomeningocele risk. Women with folate defi-
ciency may be more susceptible to the epigenetic effects of envi-
ronmental arsenic exposure.
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