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HOP3 a new regulator of the ER stress response in Arabidopsis with possible
implications in plant development and response to biotic and abiotic stresses
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ABSTRACT
HOPs (heat shock protein 70 (HSP70)-heat shock protein 90 (HSP90) organizing proteins) are a highly
conserved family of cytosolic cochaperones. In a recent study we showed that HOP3, a member of the
HOP family in Arabidopsis, plays an essential role during endoplasmic reticulum (ER) stress in plants.
Interestingly, we also demonstrated that AtHOP3 interacts with binding immunoglobulin protein (BiP), a
major ER-resident chaperone. All these data suggest that HOP3 could assist BiP in protein folding in the
ER. These findings open the exciting possibility that HOP3, through its role in the alleviation of ER stress,
could play an important function during different developmental processes and in response to different
biotic and abiotic stresses.
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HOPs, HSP70-HSP90 organizing proteins, are a family of
cochaperones with representative members in different
eukaryotes including diverse plant species.1 At the structural
level HOP proteins are defined by the presence of 3 tetratri-
copeptide repeat (TPR) domains (called TPR1, TPR2A and
TPR2B) that mediate the interaction with the molecular
chaperones HSP70 and HSP90.2 Due to its involvement in
the folding and maturation of important proteins, as the glu-
cocorticoid receptor,3 the sequences and domains involved
in HOP interaction with HSP70 and HSP90 have been
deeply studied in mammals.4-6

We have recently demonstrated that HOP3, one of the 3
member of the HOP family in Arabidopsis, interacts in vivo
with cytosolic HSP90 and HSP70, indicating that it is a func-
tional member of the HOP family in Arabidopsis. Interestingly,
we have shown that HOP3 interacts specifically with BiP, a
major endoplasmic reticulum (ER) chaperone that belongs to
the HSP70 family, through a non-canonical interaction that
involves BiP�s ATPase domain.7 This observation opened the
possibility that HOP could have a prominent role in protein
folding at the ER, an aspect unexplored before in other eukar-
yotes, but with potential implications in important develop-
mental and adaptation processes.

The ER hosts the synthesis and folding of membrane and
secreted proteins by a complex orchestra of ER-located foldases
and chaperones (being BiP one of the major representatives).8

ER protein folding capacity is limited and, when exceeded, the
strong accumulation of misfolded or unfolded proteins in the

ER causes the so called ER stress. ER stress promotes a strong
protein imbalance that leads to cell death when the system is
overwhelmed.9,10

In addition to HOP3 interaction with BiP, we have demon-
strated that Arabidopsis hop3 loss-of-function mutants show a
hypersensitive phenotype in the presence of the ER stress
inducer agents dithiothreitol (DTT) and tunicamycin (TM)
and that this phenotype is reverted by the addition of taurour-
sodeoxycholic acid (TUDCA), a compound that relieves ER
stress in plants. These data, along with its partial localization at
the ER and HOP3 induction by ER stress inducer agents, high-
light the prominent role of HOP3 in the ER stress response.7

Besides its major role as the gateway to the secretory path-
way, the ER is also a central regulator of plant adaptation to
abiotic and biotic stresses.11-13 Probably the best illustrative
example of the role of the ER in environmental stresses is the
response to pathogen attack, since this response is mainly
based on the production of pattern recognition receptors
(PRRs) and resistance (R) proteins that mostly are folded and
matured in the ER.14,15 In the same sense, it has been specu-
lated that, under other environmental stresses, the strong
demand for folding of proteins involved in the stress response
exceeds the folding capacity of the ER, which jeopardizes ER
homeostasis and cell viability.16,17 Despite it is not completely
clear, the involvement of ER stress in the response to environ-
mental challenges is supported by the observation that the
unfolded protein response (UPR) is activated under different
stress conditions and that mutants in different components of
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the ER stress (sensors, chaperones and cochaperones) have an
altered response under different abiotic and biotic threats
as heat, drought, salt, osmotic stresses and pathogen
defense.17,16,13 Previous data from our laboratory de-
monstrated that HOP3 is highly induced under high tem-
peratures18,19 and a closer view to the microarray available
data points out that AtHOP3 could be also induced in a wide
range of stresses (http://jsp.weigelworld.org/expviz/expviz.jsp).
These observations suggest that HOP3, through its prominent
function in the ER stress response, could play a major role in
the response to a wide range of environmental conditions
(Fig. 1). In line with this possibility, HOP was recently involved
in blast fungus immunity in rice, promoting the efficient trans-
port of the chitin elicitor receptor kinase 1 (CERK1) to the
plasma membrane.20 In addition, HOP was proposed as a cell-
intrinsic virus restriction factor of the mitochondrial Carnation
Italian ringspot tombusvirus (CIRV) in N. benthamiana.21

Despite the emerging function of HOP in these two quite diver-
gent plant defense responses, the role of HOP3 or of the differ-
ent members of the HOP family in response to other biotic or
abiotic stresses remains largely unknown constituting an excit-
ing field of study in plants.

Our data also revealed that hop3–1 mutant shows a reduc-
tion in pollen germination,7 a developmental process especially
vulnerable to disturbances in ER protein homeostasis.22 In line
with this evidence, it is tempting to speculate that HOP3 could
have a major impact on other developmental processes with
special demand in protein folding or secretion, as it is the case
of seed maturation23 (Fig. 1). This speculation seems to be sup-
ported by the high induction of HOP3 in seeds (http://jspweigel
world.org/expviz/expviz.jsp). The study of the possible role of
HOP3 or of the other members of the family in developmental
processes constitutes a new avenue for exploring HOP function
in plants.

Remarkably, the ER stress response is highly conserved in
eukaryotes, and so are HOP and BiP (known as GRP78 in
mammals). Therefore, we are confident that the description
of BiP and HOP3 interaction could be also relevant, not only
for plants, but for other eukaryotes including yeast, insects or
mammals. In mammals, GRP78 plays a main role in tumor

proliferation, metastasis and resistance to a wide variety
of anticancer therapies.24 In addition, neurodegenerative dis-
orders including Parkinson and Alzheimer diseases and pro-
gressive retinal degeneration are characterized by activation
of ER stress and altered expression of GRP78.25 Indeed, the
alleviation of the ER stress by GRP78 upregulation has been
proven a successful therapeutic target for the treatments of
some of these disorders in animal models of neurodegenera-
tion.26-30 In line with these data, mammaliam HOP shows an
altered expression in cancer cells and a protective effect
against the progression of prion and neurodegenerative disea-
ses.1Therefore, this study opens an exciting field of research
in which the HOP interaction with BiP could be also
explored in relation to the occurrence of these disorders and
the development of novel therapies to tackle these important
human diseases.
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