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Abstract

Purpose—To review how PET/MR technology could add value for pediatric cancer patients.

Recent Findings—Since many primary tumors in children are evaluated with MRI and 

metastases are detected with PET/CT, integrated PET/MR can be a time-efficient and convenient 

solution for pediatric cancer staging. 18F-FDG PET/MR can assess primary tumors and the whole 

body in one imaging session, avoid repetitive anesthesia and reduce radiation exposure compared 

to 18F-FDG PET/CT. This article lists 10 action points, which might improve the clinical value of 

PET/MR for children with cancer. However, even if PET/MR proves valuable, it cannot enter 

mainstream applications if it is not accessible to the majority of pediatric cancer patients. 

Therefore, innovations are needed to make PET/MR scanners affordable and increase patient 

throughput.

Summary—PET/MR offers opportunities for more efficient, accurate and safe diagnoses of 

pediatric cancer patients. The impact on patient management and outcomes has to be substantiated 

by large-scale prospective clinical trials.
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Introduction

For children with cancer, accurate staging of the primary tumor and whole body is pivotal 

for appropriate patient management and optimized outcomes [1–4]. Currently, children with 

a newly diagnosed solid tumor have to undergo a series of imaging tests, including x-rays, 

ultrasound, magnetic resonance imaging (MRI), computed tomography (CT), positron 

emission tomography (PET), methylene diphosphonate (MDP) scintigraphy and meta-
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iodobenzylguanidine (MIBG) scintigraphy, among others. Decades of experience have 

demonstrated excellent sensitivities and specificities of these imaging modalities. However, 

for children with cancer, undergoing a series of imaging tests is stressful, time consuming, 

can be redundant, expensive and may require repetitive anesthesia. Recent efforts are 

directed towards the development of comprehensive, patient-tailored “one stop” imaging 

tests, which can provide a comprehensive evaluation of the primary tumor and metastases in 

one session. Towards this goal, 18F-FDG PET/CT technologies have been increasingly used 

for pediatric cancer staging, specifically for staging of malignant lymphomas and sarcomas 

[1–5]. Several studies have shown excellent agreement between 18F-FDG PET/CT and 

whole body MR scans for detection of these tumors in children [6–10]. Recently, 18F-FDG 

PET/MR has been added to the repertoire of clinically available staging techniques, which 

allow for simultaneous acquisition of 18F-FDG PET and MRI data [11–15] – an advantage 

for children requiring both tests. Systematic comparisons between these new technologies 

are critically needed in order to understand and utilize their respective advantages and 

limitations.

The Children’s Oncology Group (COG) has united pediatric oncologists from hospitals 

across North America to assess treatment outcomes of specific tumor types. In order to add 

clinical value, pediatric radiologists need to similarly unite and systematically investigate the 

impact of new imaging technologies on clinical management and outcomes. Single center 

investigations of 18F-FDG PET/MR scans for pediatric cancer staging obtained so far cover 

a limited number of patients with a wide range of different pediatric tumors [11, 12]. These 

investigations provide limited, often case-based information on clinical impact. To 

investigate the clinical value of PET/MR in larger and more homogenous pediatric patient 

populations, the American College of Radiology (ACR) Pediatric Imaging Research 

Committee (ACR-PIR) has recently formed a consortium of PET/MR investigators at major 

academic institutions [16]. As these early adopters explore if PET/MR is valuable, a 

transition to use this technology at a majority of pediatric oncology centers can only occur, if 

and when this new technology can be provided in a time- and cost-efficient manner to the 

majority of pediatric cancer patients. Even if PET/MR proves clinically valuable, it cannot 

enter mainstream applications if it is not accessible to the majority of providers and patients. 

Robertson et al reported that the capital investment required for initial purchase and 

infrastructure upgrade, coupled with the lower volume of PET imaging performed in 

pediatric centers, puts procurement of a new PET/MRI scanner outside the financial capacity 

of many pediatric centers [17]. Potential solutions to this problem could entail integrating 

PET technology into 1.5 T MR scanners or the design of MRI coils with integrated PET-

detectors, which could be used in existing MRI systems [18]. In addition, technical 

innovations are needed to accelerate the speed of PET/MR image data acquisition, in order 

to improve patient acceptance and throughput in oncology centers. The goal would be to 

provide widely available “one stop” medical imaging solutions with equal or faster 

acquisition times and improved diagnostic information compared to PET/CT.

1. Focus on Pediatric Patients with Lymphomas and Sarcomas

To date, children and adolescents with cancer are referred to specific staging tests based on 

the organ of origin and histology of the primary tumor. An overview of current clinical 
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practice for pediatric cancer staging and restaging is provided in Table 1, along with a 

summary of important clinical questions that need to be addressed for PET/MR in order to 

impact clinical decisions and and outcomes. Based on the accumulated evidence with 18F-

FDG PET/MR imaging studies thus far [11–15], added value is particularly expected for 

pediatric patients with lymphomas and sarcomas. These patients also represent the main 

pediatric patient population referred to 18F-FDG PET/CT to date [19–21, 5]. In patients with 

lymphomas, a main motivation to consider 18F-FDG PET/MR as a potential alternative to 

PET/CT is a reduction in radiation exposure by 50–70% [11–15]. 18F-FDG PET/MR 

provides excellent soft tissue contrast (Fig. 1) and has shown equivalent or superior 

sensitivity compared to traditional 18F-FDG PET/CT for the detection of malignant lymph 

nodes.[22] Tumor SUV values obtained in the same patients with 18F-FDG PET/MR 

and 18F-FDG PET/CT showed a high correlation, although SUV values obtained with 18F-

FDG PET/MR were systematically lower.[23] In pediatric patients with bone and soft tissue 

sarcomas, MRI is already the clinical standard for local staging and 18F-FDG PET/CT is 

often added for whole body staging [24–26, 11, 27]. Initial experiences testify excellent 

sensitivity of 18F-FDG PET/MR for whole body staging of patients with sarcomas [11, 12]. 

In these patients, integrating MRI and 18F-FDG PET can create value by providing local and 

whole body staging in one session. The label “patient convenience” in this context might be 

underrated. Systematic studies are needed to measure and optimize the time-efficiency of 

diagnostic tests and the whole process of rendering a cancer diagnosis, counting not only the 

time a patient spends in a scanner, but the overall time a patient spends in the Imaging 

Department and Hospital. Results could be used to uncover previously missed opportunities 

to accelerate and integrate medical tests for comprehensive cancer diagnoses.

2. Reduce Radiation Exposure

Radiation exposure is of higher concern for pediatric patients than adults because children 

are more susceptible to radiation effects and they live long enough to encounter secondary 

cancers [28–31]. Cumulative ionizing radiation exposure above 50–100 mSv can increase 

the risk of secondary cancers later in life [28], such as leukemia or brain cancer [32, 33]. 

Improved detector technology and longer acquisition times of PET/MR compared to 

PET/CT, along with replacement of CT by MR for anatomical co-registration, enable 

reduced radiotracer doses. In accordance with others [11–15], we prescribe an 18F-FDG 

dose of 3 MBq/kg for four-minute PET data acquisitions per bed position, with excellent 

tumor-to-background contrast at about 1 hour after 18F-FDG injection (Fig. 1–3). Others 

calculated that the 18F-FDG dose could be further reduced to 1.5 MBq/kg for four-minute 

PET data acquisitions [34]. Current data are based on tumor staging results at baseline, when 

most pediatric tumors show high metabolic activity. Further studies need to clarify, if major 

reductions in 18F-FDG dose would impact the diagnosis of partial versus complete 

metabolic response after therapy. If we administer lower radiotracer doses, would we 

diagnose fewer partial responses and how would this impact patient management and 

outcomes?
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3. Optimize the diagnostic accuracy of MRI scans used for co-registration 

of PET data

Pediatric staging protocols for lymphoma require a iodinated contrast-enhanced diagnostic 

CT scan as part of or in addition to a 18F-FDG PET/CT scan [35]. This is different to 18F-

FDG PET/CT protocols for adults where unenhanced scans are often sufficient. It has not 

been established yet, if the same principle applies to PET/MRI, i.e. if pediatric protocols 

need to include contrast-enhanced scans. A wide variety of T1- and T2-weighted pulse 

sequences have been proposed for anatomical co-registration of 18F-FDG PET data in 

children [11–15]. We found in accordance with others that pediatric tumors can be equally 

well delineated on Gd-enhanced T1-weighted scans and unenhanced T2-weighted scans 

[36]. However, if the faster T1-weighted scans were applied, intravenous contrast improved 

vessel and tumor delineation compared to unenhanced T1-weighted scans (Fig. 2). This was 

particularly useful for accurate tumor measurements and surgical planning.

Similar to the concept of adding “diagnostic” CT scans to low dose CT scans for attenuation 

correction (AC) for a PET/CT, whole body PET/MR scans can utilize AC pulse sequences 

for co-registration of 18F-FDG PET data or use dedicated sequences with increased 

anatomical resolution [37]. We found significant value in using higher resolution scans (Fig. 

3). This currently requires the acquisition of two sequences: a low resolution, dual-echo 

gradient echo sequence for AC correction (with image matrix matched to the matrix of the 

PET scan) plus a higher resolution scan for anatomical co-registration of PET data. In 

principle, it should be possible to acquire one single, high resolution dual-echo gradient echo 

sequence, from which a lower resolution scan could be reconstructed. However, such 

technology has not yet been established. The saved acquisition time might be considered 

negligible for adult patients, but would be valuable for children.

4. Integrate Information about tumor cell density and glucose metabolism

Whole body staging of pediatric cancers can be obtained with classical 18F-FDG PET/CT [4, 

38], whole body diffusion weighted MRI [39, 10] or integrated 18F-FDG PET/MR [12, 11]. 

Whole body MR has been used for screening patients with cancer predisposition syndromes, 

cancer staging of patients with hereditary increased radiosensitivity, staging of benign 

disease such as Langerhans Cell Histiocytosis, staging of non 18F-FDG-avid tumors and 

patients without access to an 18F-FDG PET/CT scan [40, 39, 41]. Since most tumors have a 

higher cell density than normal organs, the diffusional motion of water protons is more 

restricted in tumors and displayed by an increased signal intensity on diffusion weighted MR 

images [8, 42, 43]. Diffusion-weighted MR images can be color-encoded and superimposed 

on anatomical MR images such that they provide a visual tumor depiction similar to a 18F-

FDG PET/MR or 18F-FDG PET/CT scan [10]. Several authors reported comparable 

sensitivities and specificities of 18F-FDG PET/CT and diffusion weighted MR scans for 

staging patients with lymphoma and other solid tumors [44–46, 10]. Large scale prospective 

clinical trials are needed to compare the clinical accuracy and clinical impact of these three 

imaging technologies for specific pediatric tumor types: Who should get which imaging test 

at which time and how often?
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In addition, we need to evaluate, if and when adding metabolic information to diffusion-

weighted MRI or adding diffusion weighted scans to an 18F-FDG PET/MR scan will add 

clinical value. Either scenario will add time and costs to an already advanced imaging test 

and therefore, needs to be considered carefully. 18F-FDG PET can add value to diffusion 

weighted scans by detecting tumor deposits in the spleen and bone marrow. In children, the 

high cellularity of these organs can mask tumor deposits [44, 47, 48], which can confound 

tumor detection and carry a risk for under-staging and under-treatment [49, 50]. In pediatric 

patients who undergo 18F-FDG PET/MR scans, adding diffusion-weighted sequences can be 

particularly useful for differentiating mediastinal lymphoma and normal thymus [35], as 

well as benign and malignant abdominal tumors [51]. In brain gliomas, Cuccarini et. al. 

found that normalized ADC values were directly associated with tumor grade and anaplastic 

progression [52], which could help to prescribe personalized follow up imaging or 

interventions. In sarcomas, the degree of restricted diffusion [53, 54] and metabolic activity 

of the primary tumor at the time of initial diagnosis has been linked to overall survival [55–

57]. Patients with soft tissue sarcomas and tumor SUVmax/SUVliver values above 4.6 had 

significantly decreased survival rates compared to patients with ratios below 4.6 [55]. Since 

both SUV and ADC are related to tumor grade, but represent different biological tumor 

characteristics (glucose metabolism and cell density), some investigators proposed the ratio 

of SUVmax and ADCmin as a combined biomarker for clinical outcomes [58]. Other 

investigators found that the extent rather than degree of tumor FDG hypermetabolism and 

diffusion restriction in soft tissue sarcomas is a more robust predictive and prognostic 

biomarker [59]. This is consistent with the notion that the volume of aggressive tumors is 

linked to clinical outcomes [60, 61]. Future studies have to show if the volume of high 

SUVmax/ADCmin tumor parts in heterogenous tumors such as sarcomas is a better 

predictive biomarker than the overall tumor volume.

5. Increase specificity with nanoparticles

Currently, a wide range of sequences is applied for integrated 18F-FDG PET/MR: T2-

weighted sequences require relatively long acquisition times and Gd-enhanced T1-weighted 

sequences do not provide sufficiently long-lasting vessel enhancement for whole body scans. 

This problem can be solved with iron oxide nanoparticles, such as the FDA-approved iron 

supplement ferumoxytol, which can be used “off-label” as a contrast agent. [62] 

Ferumoxytol is composed of ultrasmall superparamagentic iron oxide nanoparticles, which 

cause a long lasting positive (bright) signal on T1-weighted MR images and negative (dark) 

signal on T2-weighted images [63]. Ferumoxytol is currently evaluated for potential FDA-

approval as an imaging agent, which would facilitate clinical imaging applications. It should 

be noted that in rare cases, ferumoxytol can cause severe adverse events or anaphylactic 

reactions [62]. Therefore, specific FDA guidelines for its administration have to be followed 

[64]. We found ferumoxytol particularly useful for PET/MRI because this blood pool agent 

causes long-lasting vascular T1-enhancement for the entire duration of a whole body scan 

[10]. In addition, ferumoxytol improved the detection of tumors in organs of the 

reticuloendothelial system, i.e. liver, spleen, bone marrow and lymph nodes, in accordance 

with previous experiences with first generation nanoparticles [65, 66]. Ferumoxytol can help 

detect tumors in highly cellular normal marrow in young children and patients after 
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chemotherapy. Reconverted bone marrow is diffusely hypermetabolic on 18F-FDG PET 

scans and shows restricted diffusion on diffusion weighted MR scans. This can mask tumor 

deposits. Ferumoxytol nanoparticles lead to differential T2-enhancement of normal, 

reconverted marrow and tumor (Fig. 4): Macrophages in normal bone marrow phagocytose 

and retain ferumoxytol nanoparticles, while tumors contain much fewer macrophages and 

show less ferumoxytol retention. This leads to hypointense (dark) enhancement of normal 

marrow and relatively hyperintense (bright) signal of tumors on T2-weighted MRI scans [44, 

47]. Prospective clinical trials are needed to evaluate if 18F-FDG PET/MR can replace bone 

marrow biopsies and if the addition of nanoparticles adds clinical value. Do Fe-

enhanced 18F-FDG PET/MR scans upstage cancer patients and do these results impact 

patient management?

6. Improve the delineation of primary tumors and diagnosis of tissue 

infiltration

MR imaging is the modality of choice for local staging of bone and soft tissue sarcomas. 

The extent of bone sarcomas (compartments involved, presence or absence of skip lesions) 

determines the required surgical procedure. On conventional MR images, the delineation of 

tumor and peri-lesional edema can be difficult [67]. Various approaches have been tested to 

solve this problem, such as differential morphological criteria on T2-weighted scans (e.g. 

“feathery” edema versus mass-like tumor core), differential contrast dynamics (earlier 

enhancement of the tumor core compared to delayed and often stronger enhancing edema) or 

differential signal of tumor and edema on diffusion weighted scans (restricted diffusion of 

the tumor core and prolonged diffusion of the tumor center) [68–72]. All of these criteria 

yielded limited specificity. Overestimating tumor size can lead to unnecessary surgical 

resections of too much normal tissue, affect the approach for limb-sparing surgery and lead 

to unsatisfactory long-term outcomes [70, 73]. Conversely, incomplete tumor resection can 

impact prognosis and post-surgical care [74–76]: In Ewing sarcomas, a wide surgical margin 

(R0) with normal tissue around the lesion does not require additional local control while a 

marginal excision (R1), which includes tumor cells at the cut surface, must be treated by 

radiotherapy and/or intensified chemotherapy [77]. Recent evidence shows that 18F-FDG-

PET can help differentiating tumor tissue and peri-lesional edema: The primary tumor shows 

marked 18F-FDG uptake while peri-lesional edema shows little or no 18F-FDG uptake [78] 

(Fig. 5). Prospective clinical trials are needed to evaluate if this information can increase the 

number of limb-sparing surgeries and thereby, improve long-term outcomes.

For soft tissue sarcomas, standard imaging technologies have a low specificity for the 

assessment of tumor infiltration of adjacent organs. Incidental evidence suggests that FDG-

avid tumor areas may indicate locally infiltrating tumor parts (Fig. 3). In addition, soft tissue 

sarcomas frequently present with local lymph nodes, which are associated with poor 

prognosis. The metabolic information from 18F-FDG PET studies is more sensitive (94%–

100%) than lymph node size on anatomical images (75%–94%)[5]. Prospective controlled 

clinical trials are needed to evaluate, if the additional metabolic information up- or 

downstages patients and if this affects patient management and outcomes.
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7. Solve the pulmonary nodule detection dilemma

Recent technological advances have substantially improved the sensitivity of MRI for the 

detection of pulmonary nodules [79, 80]. However, to date, MRI scans, with or without 

integrated FDG-PET information, do not yet reach the sensitivity of a CT scan. This is 

clinically important, because pulmonary disease significantly affects the prognosis and 

management of pediatric cancer patients: In patients with lymphoma, a pulmonary nodule is 

considered extra-lymphatic disease, upstages the patient and requires intensified therapy. In 

patients with sarcomas, pulmonary nodules are usually surgically excised and successful 

excision significantly affects prognosis. Thus, a missed pulmonary nodule could have severe 

consequences for patient survival. Of note, current clinical treatment protocols for most 

pediatric sarcomas suggest surgical management only for one pulmonary nodule above 5 

mm or more than three nodules with diameters of more than 3 mm (e.g. COG trial 

AEWS1221). Most MR imaging sequences have sufficient anatomical resolution to detect 

such nodules [81]. Recent investigations revealed that the reason for missed pulmonary 

nodules on MRI is the inability to differentiate pulmonary vessels from small pulmonary 

nodules (on MRI, vessels can usually not be continuously followed as on a CT scan) [81]. 

Technical innovations to address this challenge are needed, including breath-hold, data 

averaging and retrospective respiratory gating schemes. In addition, advanced techniques are 

needed for improved co-registration of 18F-FDG PET-data and MRI [80]. Clearly, major 

technical advances are needed until a chest CT scan can be safely replaced by an MRI for 

the evaluation of pulmonary nodules. In principle, the multi-parametric information of a 18F-

FDG PET/MR scan should lend itself to much needed improved specificity: Current CT 

technologies cannot differentiate pulmonary metastases, which are surgically excised in 

sarcoma patients, from inflammatory granulomas and intra-pulmonary lymph nodes, which 

are not excised. Technical innovations that can reliably differentiate benign and malignant 

nodes would have major impact on patient management.

8. Improve the Accuracy for the Diagnosis of Treatment Response

If 18F-FDG PET/MR should replace 18F-FDG PET/CT as a new “one stop” staging 

approach with reduced radiation exposure, then this new imaging test would not only have to 

provide sensitive tumor detection at baseline, but also accurate therapy response assessment.

Systematic tumor-type specific comparative analyses have to analyze if technical and 

procedural differences between 18F-FDG PET/CT and PET/MR scans can cause differences 

in tumor therapy response assessments and classifications of responders and non-responders. 

In pediatric patients with lymphoma, SUVs measured from 18F-FDG PET/MRI indicated 

good intra-patient reliability [23] and 18F-FDG PET SUVs were strongly correlated between 

PET/CT and PET/MRI (ρ > 0.72), although PET/MRI showed systematically lower SUV 

measurements [22]. Technical variables, which may lead to differences in SUV values 

between PET/CT and PET/MR studies, include differences in AC correction, different 

radiotracer doses, longer PET acquisition times and more sensitive PET-detectors in some 

PET/MR scanners [23].
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In patients with malignant lymphomas, a decline in tumor glucose metabolism, measured 

on 18F-FDG PET scans, provided additional information to tumor size measurements for 

therapy response assessment, which changed patient management in up to 32% [82–84, 21]. 

Current therapy response assessments of pediatric lymphomas by the St. Jude’s consortium 

evaluate both changes in tumor size and tumor metabolism, while current protocols of the 

Children’s Oncology Group solely rely on semi-quantitative measures of tumor metabolism, 

according to the 5-point Deauville or Lugano criteria [85, 86]. The most frequent 

management change based on imaging findings is avoiding radiotherapy of residual soft 

tissue masses at the end of therapy.

In pediatric patients with sarcomas, therapy response is determined by changes in tumor size 

on imaging studies according to RECIST criteria [85]. The metabolic information from 18F-

FDG-PET scans may improve therapy response assessment, especially for tumors with small 

extraosseous soft tissue components [87, 88]. Due to its high soft tissue contrast, 18F-FDG 

PET/MR can accurately diagnose hypermetabolic brown fat and hypermetabolic reconverted 

hematopoietic marrow after chemotherapy [89–91].

Some investigators found concordant changes in glucose metabolism and tumor cell density 

after chemotherapy in solid tumors of adult patients [85, 53, 54], while other investigators 

found complementary information of diffusion weighted scans and PET scans [92, 93]. 

Thus, combining ADC and SUV data might increase diagnostic accuracy in some tumors. 

[59] It is not clear if chemotherapy-induced normalization of ADC and SUV values occurs 

at the same time in pediatric cancers.

9. Make 18F-FDG PET/MR useful for radiation planning

To date, CT is the clinical standard method for planning radiation therapy of pediatric cancer 

patients. CT provides important information about the location of the primary tumor, 

presence and location of metastases, and linear attenuation coefficients of target tissues for 

radiotherapy. Linear attenuation coefficients correlate directly with the electron density 

needed for radiotherapy and therefore, can be used for dose calculations. Due to its higher 

soft tissue contrast, MRI can add information about the exact delineation and internal 

composition of target tumors, which can be used for individualized radiotherapy schemes 

[94]. 18F-FDG PET information has been useful in detecting metastases and determining 

morphological tumor characteristics, such as internal necrosis and hypoxic areas. A major 

challenge for the use of PET/MR for radiation planning is that it does not contain direct 

information about photon attenuation of target tissues. Several investigators are working on 

solutions to this problem [95, 96]. For example, MR data have been “translated” to pseudo-

CT values using deformable image registration algorithms in combination with pattern 

recognition [96]. In order to make PET/MR data useful for radiation planning, the patient 

needs to be placed on a flat tabletop in a reproducible manner, e.g. by using specific markers 

and/or MRI-compatible patient positioning aids. In addition, local radiofrequency coils have 

to be positioned without deforming the surface of the patient. This can be achieved by using 

specific RF coil holders [95]. If PET/MR images should be used for radiation planning, a 

close collaboration between radiologists/nuclear medicine physicians and radiation 

oncologists is important to ensure clinical value of the acquired scans.
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10. Detect chemotherapy-induced tissue injuries

Continuous improvements in cancer therapies lead to a growing number of cancer survivors, 

with currently more than 14.5 million cancer survivors in the United States.[97] Up to 95% 

of these patients will develop morbidities due to cancer therapy-induced tissue injuries.[98, 

99] While pediatric patients and young adults comprise a minority among cancer survivors, 

cancer therapy can have more severe effects on their growing and developing tissues.[97, 98] 

For example, close to 50% of patients with ALL who are treated with intravenous and 

intrathecal methotrexate (MTX) develop neurological problems, such as chronic headaches, 

seizures, motor problems and cognitive impairment, which severely limit a child’s social re-

integration and academic development. [100–102] In contrast to transient acute toxicities of 

cytotoxic drugs, these late effects develop slowly over time due to an impaired growth and 

regeneration of the affected organ.[98] At the end of cancer therapy, patients typically have 

no or minor clinical symptoms. However, months to years later, they experience debilitating 

functional impairments.[97, 98, 100, 103–106],[107] There is a window of time between 

exposure to cancer therapy and future morbidity, which could be used for corrective actions. 

Unfortunately, once cancer survivors present with clinical symptoms, it is often too late for 

health-preserving interventions. To prevent morbidities, it is important to develop diagnostic 

tools, which can detect early stages of tissue damage that are still reversible. Finding on 

conventional MRI studies showed a poor correlation between white matter abnormalities and 

neurologic deficits in children with ALL.[108] T2 prolongation in the deep cerebral white 

matter, noted in 15–75% of patients, were not consistently associated with neurologic 

deficits.[109, 110] Cheung et al speculated that there is a threshold effect, such that 

differences in neurobehavioral problems do not become apparent until white matter damage 

to the brain is extensive enough to result in clinically detected leukoencephalopathy [111]. 

This might explain the high number of asymptomatic MRI findings in our cohort. 

Accordingly, Bhojwani et al. found asymptomatic leukoencephalopathy in 73 out of 355 

(20.6%) ALL patients [112]. FDG PET can provide additional information about cognitive 

reserve and its modulation.[113–115] Chiaravalloti et al. [116, 117] reported FDG PET brain 

results in a cohort of 74 adult patients with lymphoma before, during and after ABVD 

chemo-therapy. In a groupwise analysis, FDG activity was reduced on the mid-treatment 

PET in Brodmann areas 10, 11, and 32 bilaterally. In addition, Ponto et al. reported long-

term frontal FDG hypometabolism in asymptomatic breast cancer patients undergoing 

cyclophosphamide, MTX, and 5-FU/doxorubicin therapy.[118] Our team found a significant 

reduction in cerebral blood flow in specific brain areas and significantly lower mean SUV 

values in the hippocampus of pediatric cancer survivors compared to normal controls [119]. 

These initial studies suggest potential value of 18F-FDG PET/MR as a biomarker for 

chemotherapy induced brain injury. Larger prospective clinical trials are needed to evaluate, 

if early detection and rescue interventions can improve the long-term health of cancer 

survivors.

In summary, 18F-FDG PET/MR can provide safer, more specific and more efficient cancer 

staging for pediatric patients than currently available. A number of open questions specific 

to the pediatric oncology population have to be elucidated through tumor-type tailored 

prospective clinical trials. Study quality, cost, length of total anesthesia time for young 
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children, and time to complete the entire staging evaluation have to be compared with the 

current clinical standard. This might show that PET/MR is superior in terms of quality, cost, 

anesthesia time, and/or time efficiency. However, even if PET/MR proves valuable, it cannot 

enter mainstream applications if it is not accessible to the majority of pediatric cancer 

patients. Therefore, innovations are needed to make PET/MR scanners affordable and 

increase patient throughput. The availability of novel radiotracers will likely be limited to 

few teritary centers, such as 18F-FDG-DOPA PET/CT for evaluation of persistent 

hyperinsulinaemic hypoglycemic of infancy and detection of insulinomas, 18F-fluoride PET 

for staging of osteosarcoma, 124I PET for iodine-positive thyroid cancer, 18F-FDOPA for 

medullary thyroid carcinoma, 68Ga-DOTATOC for neuroendocrine tumors and 124I MIBG 

for neuroblastoma, among others. PET/MR imaging protocols need to be homogenized 

across centers to facilitate centralized data analyses by the Children’s Oncology Group and 

other stakeholders. Efforts are under way to generate a consensus regarding pediatric 18F-

FDG PET/MR procedures at major academic institutions in North America and Europe.
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Figure 1. Whole Body 18F-FDG PET/MR of a patient with Hodgkin Lymphoma
(a) 18F-FDG PET maximum intensity projection shows FDG-avid disease of the neck, chest, 

axillaries, abdomen and pelvis. (b) Coronal 18F-FDG PET images superimposed on 

ferumoxytol-enhanced T1-weighted LAVA images clearly show the relation between vessels 

and multiple hypermetabolic lymph nodes. Three lesions in the spleen are also noted. (c) 

Axial integrated 18F-FDG PET/LAVA images provide diagnostic information similar to a 

PET/CT scan, but with improved soft tissue contrast.
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Figure 2. Intravenous MR contrast agent administration improves soft tissue contrast of 
integrated PET/MR images
(a–c) Coronally reconstructed 18F-FDG PET images, superimposed on unenhanced T1-

weighted LAVA images show limited soft tissue resolution. (d–f) Coronal 18F-FDG PET 

images, superimposed on ferumoxytol-enhanced T1-weighted LAVA images of a patient 

with Hodgkin lymphoma show improved soft tissue contrast: The ferumoxytol-

enhanced 18F-FDG PET/MR images facilitate the delineation of mediastinal vessels and 

hypermetabolic lymph nodes. This is important, because current clinical protocols require 

accurate assessment of the tumor size and metabolic activity before, during and after 

therapy.
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Figure 3. Spatial resolution on 18F-FDG PET/MR is important to render accurate diagnostic 
information in a young adult with retroperitoneal soft tissue sarcoma
(a,c) Axial 18F-FDG PET images, superimposed on ferumoxytol-enhanced T1-weighted 

LAVA images (TR/TE/alpha = 4.1ms/1.7ms/15), obtained for attenuation correction of 18F-

FDG PET data. These images with a field of view (FOV) or 50 cm, a matrix of 256 x 128 

pixels and a slice thickness of 5.2 mm provide limited anatomical resolution. For example, 

the superior mesenteric artery is not seen on these scans. (b,d) Axial 18F-FDG PET images, 

superimposed on ferumoxytol-enhanced T1-weighted LAVA images (TR/TE/alpha = 4.2ms/

1.7ms/15), acquired for diagnostic purposes. These images with a field of view (FOV) or 48 

cm, a matrix of 320 x 224 pixels and a slice thickness 3.4 mm provide improved tumor 

delineation from adjacent vessels and bowel. We conclude that current pulse sequences for 

AC correction do not have sufficient anatomical resolution to be used for diagnostic 

purposes.
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Figure 4. Ferumoxytol shows differential enhancement of hypercellular hematopoietic marrow 
and tumor
(a) Coronal and axial 18F-FDG PET/MR in a young adult after chemotherapy shows 

diffusely hypermetabolic hematopoietic marrow, (b) axial diffusion-weighted MR images 

and coronal LAVA images in the same patient after intravenous injection of ferumoxytol 

show homogeneous iron oxide uptake in the bone marrow, as indicated by homogenous 

hypointense (dark) marrow signal. (c) Coronal ferumoxytol-enhanced T2-weighted fast 

spinecho scan of the lumbar spine and pelvis in an 11 year-old patient with biopsy-proven 

Hodgkin’s leukemia shows multiple focal tumor lesions in the bone marrow (arrows). The 

normal marrow shows negative (dark) ferumoxytol enhancement while focal tumors show 

little or no ferumoxytol uptake and stand out as hyperintense (bright) lesions.
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Figure 5. 18F-FDG PET/MR shows differential enhancement of an osteosarcoma and peri-
lesional edema
(a) Axial T1-weighted ferumoxytol-enhanced LAVA scan shows an ill defined, aggressive 

lesion in the proximal left humerus with extensive perilesional contrast-enhanced edema 

(arrows). (b) Integrated ferumoxytol-enhanced 18F-FDG PET/LAVA scan shows improved 

delineation of the 18F-FDG avid tumor (arrow) from enhancing peritumoral edema.
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Table 1
Pathways for clinical translation of PET/MR studies for pediatric cancer staging

(Imaging protocol will require *whole body scan or ** whole body scan plus dedicated scan of primary tumor 

or #customized scan, which could be a local scan only or an extended scan, as deemed appropriate for a given 

patient)

Current Clinical Practice Clinical Translation Future Clinical Practice

Lymphoma: 18F-FDG PET/CT before, during and after 
therapy

Validate equivalence of Deauville and 
Lugano Criteria for 18F-FDG PET/CT 
and 18F-FDG PET/MR for staging and 
therapy response assessment

18F-FDG PET/MR before, during and 
after therapy*

Soft Tissue Sarcoma: 18F-FDG PET/CT before, during 
and after therapy

Validate equivalence of 18F-FDG 
PET/CT and PET/MR-derived SUV 
and Recist criteria for staging and 
therapy response assessment

18F-FDG PET/MR before, during and 
after therapy**

Bone Sarcoma: Local MRI, Chest CT and Bone scan Validate equivalence of conventional 
staging and 18F-FDG PET/MR for 
staging and therapy response 
assessment

18F-FDG PET/MR before, during and 
after therapy**

Melanoma and Carcinoma: 18F-FDG PET/CT before, 
during and after therapy

Validate equivalence of 18F-FDG 
PET/CT and PET/MR for staging and 
re-staging

18F-FDG PET/MR before, during and 
after therapy**

Hepatoblastoma/HCC: MRI and bone scan before, 
during and after therapy

Evaluate if and for whom 18F-FDG 
PET/MR may provide additional 
information. Define indications for a 
local, extended or whole body scan.

MRI and bone scan before, during 
and after therapy; 18F- FDG PET/MR 
in selected patients with multifocal or 
extrahepatic disease#

Wilm’s Tumor: MRI or CT scan Evaluate if and for whom 18F-FDG 
PET/MR may provide additional 
information. Define indications for a 
local, extended or whole body scan.

MRI before, during and after 
therapy; 18F-FDG PET/MR in 
selected patients with extra-renal or 
recurrent disease#

Neuroblastoma: MRI or CT scan, MIBG scan, Bone scan Compare diagnostic accuracy and 
efficiency of PET-radiotracers with 
classical 123I-MIBG scan

124I-MIBG PET/MR scan before, 
during and after therapy**

Germ Cell Tumors (GCT): MRI or CT scan, rarely 18F-
FDG PET/CT for malignant tumors

Validate equivalence of 18F-FDG 
PET/CT and PET/MR for staging and 
therapy response assessment of 
malignant GCT

18F-FDG PET/MR before, during and 
after therapy for selected cases of 
malignant GCT**
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