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Abstract

Cell packs a lot of genetic and regulatory information through a structure known as chromatin, i.e. 

DNA is wrapped around histone proteins and is tightly packed in a remarkable way. To express a 

gene in a specific coding region, the chromatin would open up and DNA loop may be formed by 

interacting enhancers and promoters. Furthermore, the mediator and cohesion complexes, 

sequence-specific transcription factors, and RNA polymerase II are recruited and work together to 

elaborately regulate the expression level. It is in pressing need to understand how the information, 

about when, where, and to what degree genes should be expressed, is embedded into chromatin 

structure and gene regulatory elements. Thanks to large consortia such as Encyclopedia of DNA 

Elements (ENCODE) and Roadmap Epigenomic projects, extensive data on chromatin 

accessibility and transcript abundance are available across many tissues and cell types. This rich 

data offer an exciting opportunity to model the causal regulatory relationship. Here, we will review 

the current experimental approaches, foundational data, computational problems, interpretive 

frameworks, and integrative models that will enable the accurate interpretation of regulatory 

landscape. Particularly, we will discuss the efforts to organize, analyze, model, and integrate the 

DNA accessibility data, transcriptional data, and functional genomic regions together. We believe 

that these efforts will eventually help us understand the information flow within the cell and will 

influence research directions across many fields.
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INTRODUCTION

Information always needs to be coded and compressed to achieve efficient storage. In every 

human cell, the 2 meters long DNA molecule is packed so tightly that it actually fits into a 

nucleus just a few micrometers in diameter. This remarkable process involves wrapping 

DNA around special histone proteins and forming the nucleosome structure. The loosely 

linked nucleosomes are coiled into a more compact structure known as chromatin fiber. 

Finally, in closed chromatin regions or in metaphase chromosome the chromatin fiber is 

further compacted through the formation of higher order structures [1]. It is known that 

chromatin structure will affect the gene expression, protein expression, biological pathway, 

and eventually the complex phenotype. Specifically, in a specific cell type only some regions 

of the genome are accessible to transcription factors (TFs), RNA polymerases (RNAPs), and 

other cellular machines involved in gene expression, while other regions are compactly 

wrapped, sequestered, and unavailable to most cellular machinery. We named these two 

types of regions as open or closed regions. The basic concept is illustrated in Fig. 1. The 

open and close states are believed to be highly dynamic, i.e. the regions can change their 

states during important biological processes, such as during differentiation of progenitor 

cells to specific cell types [2,3].

Chromatin offers the platform to store, read, and deliver the genomic information and is 

essential to understand intracellular regulatory landscape. The epigenome consists of signals 

from chemical modifications of histones, DNA methylation, noncoding RNA (ncRNA) 

expression, and TF that work in concert to determine the accessibility of the regulatory 

regions, so-called open regulatory region. In a simplified and global picture, chromatin 

regulates the accessibility of the DNA sequence information and carries the chemical 

modifications that may be established due to external signals. Together those information is 

organized in many functional regions in the chromatin [4]. Chromatin is the mediator for the 

epigenetics and genetics factors. It lies right in the middle of genome and epigenome and 

serves as the bridge. Therefore, the chromatin state is key to the understanding of the 

information flow in the cell and the regulatory mechanism among the functional molecules. 

The chromatin state can be quantified as open or close. The open regulatory regions serve as 

the site of action for TF, RNAPs, and other cellular regulatory machines to produce the final 

gene expression pattern.

Thanks to recent advances in sequencing technologies, the location and state of the 

functional regions now can be measured by sequencing following various assays. Each essay 

was designed to probe a specific aspect of the chromatin state. For example, chromatin 

immunoprecipitation (ChIP)-seq assays are used to profile whole genome TF–DNA binding 

and epigenomic states involving histone modifications. Chromatin capture methods such as 

Hi-C identify physical interactions between different parts of the genome. DNase I digestion 

combined with high-throughput DNA sequencing (DNase-seq), formaldehyde-assisted 

isolation of regulatory elements with sequencing (FAIRE-seq), and an assay for transposase-

accessible chromatin using sequencing (ATAC-seq) are used to characterize DNA 

accessibility. Combinations of these emerging technologies have allowed groups to study 

gene regulation more comprehensively than previously possible. We will review the recent 

progresses in this direction.

Wang et al. Page 2

Natl Sci Rev. Author manuscript; available in PMC 2017 July 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Particularly, we will review progress on three areas in the study of gene regulatory network, 

namely the identification of (a) functional gene regulatory elements (b) and cognate 

regulators that act on these elements, and (c) the target genes whose expression is regulated 

by these elements. Furthermore, we will discuss the integration of data from chromatin level 

and transcriptome level for the modeling of causal regulatory network.

CHROMATIN BIOLOGY AND ASSAYS ON OPEN CHROMATIN

As mentioned above, chromatin ‘openness’ measures the accessibility of DNA to TF, 

RNAPs, and other cellular machines involved in gene expression. The recent revolution in 

high-throughput, genome-wide methods invented several biological assays for extracting 

open chromatin. We will briefly review the biological assays in current use for extracting 

open chromatin information: DNase Digestion, FAIRE-seq, and ATAC-seq (Fig. 1).

DNase I is a DNA-digestion enzyme. Treatment by DNase I causes degradation of 

accessible chromatin while leaving the closed regions largely intact. In a DNase I digestion 

assay, nuclei of samples are isolated and digested with DNase I for a short period of time. 

This generates many released DNA fragments and they are isolated and sequenced to 

identify the DNase I-hypersensitive regions. This assay allows the systematic identification 

of hundreds of thousands of DNase I-hypersensitive sites (DHS) per cell type, and this in 

turn has helped to delineate genomic regulatory compartments [5, 6].

FAIRE-Seq is a successor of DNase-seq for the genome-wide identification of accessible 

DNA regions in the genome. It takes advantage of the fact that formaldehyde cross-linking is 

more efficient in nucleosome-bound DNA than the nucleosome-depleted regions of the 

genome. There are three steps in this assay. In the first step, the cells are treated with 

formaldehyde and the cross-linked chromatin is extracted. In the second step, the covalently 

linked protein–DNA complexes between histones and DNA are sequestered. In the last step, 

the protein-free DNA fragments are extracted and then sequenced [7].

The third assay to be reviewed is the recently proposed ATAC-seq method [8]. Instead of 

relying on DNase I cleavage, it uses an engineered Tn5 transposase to integrate primer DNA 

sequences into the cleaved DNA fragments, which are largely generated from accessible 

regions. The sample preparation can be carried out in hours with little reagent consumption 

without the time-consuming steps of genomic fragmentation and ligation. In addition to the 

simplified protocol, the main advantage for ATAC-seq is resource efficiency. ATAC requires 

only about 10 000 cells, while the required numbers for DNase-seq and Faire-seq are 100 

times higher [8]. Thus, ATAC-seq is particularly attractive for real clinical applications, 

where the materials are very limited. It is believed that the time and resource efficiency of 

ATAC-seq will make it a very useful tool in personalized medicine [9].

Even more excitingly, ATAC-seq has recently been shown to work at the single cell level 

[9,10]. They generate chromatin accessibility maps in several types of mammalian cells that 

allow to assess variation in accessibility across sets of genomic features and find particular 

TF associated with increased accessibility variation. This is a very timely technological 

advance after the recent establishment of single cell measurement of gene expression [11].
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These three assays for chromatin accessibility generally produce consistent results, as shown 

in Ref. [8]. A study of seven diverse human cell types also shows that DNase-seq and 

FAIRE-seq produced consistent measurement with each cell type having 1%–2% of the 

human genome as open chromatin [7]. In addition to the three assays, Fig. 1 also illustrates 

two related technologies. ChIP-seq uses specific antibodies to extract DNA fragments that 

are bound to the TF or a complex that contains the target factor. Micrococcal nuclease 

digestion followed by sequencing (MNase-seq) identifies the nucleosome-binding region 

digested by an endo–exonuclease. Together, those technologies provide a genome-wide 

picture for the chromatin state.

Although promising, all the protocols for identifying open chromatin regions have biases 

depending on underlying sequence context. Such biases have been shown to confound the 

detection of subtle features such as the ‘footprint’ that signifies the binding of a particular 

TF. Removing those biases and enhancing the signal provide challenges to statistical 

modeling [6,12,13].

ACCESSIBILITY AND EXPRESSION DATA ARE AVAILABLE FOR DIVERSE 

CELL TYPES

These open chromatin assays with high-throughput sequencing have been applied to obtain 

massive data sets of whole genome open chromatin measurement in a wide variety of cell 

lines and tissue samples. Coupled with suitable computational analysis, this data provide 

invaluable information on areas of TF binding, active transcription start sites (TSS), 

enhancers, and insulators in diverse cellular context.

For example, the Encyclopedia of DNA Elements (ENCODE) project included as one of its 

aims the mapping all of the DHSs in the human genome with the intention of cataloging 

human regulatory DNA. The first extensive map of human DHSs in 125 diverse cell and 

tissue types is derived in Ref. [14]. Integration of this information with other datasets 

generated by ENCODE identified new relationships between chromatin accessibility, 

transcription, DNA methylation, and regulatory factor occupancy patterns [14]. In parallel, 

the NIH Roadmap Epigenomics Consortium published the largest collection of epigenomes 

characterized to date: 111 primary human tissues and cells profiled for his-tone modification 

patterns, DNA accessibility, DNA methylation, and gene expression. The findings provide 

remarkable insights into the complexity of the human epigenome [15]. In a similar effort, the 

Mouse ENCODE Consortium has mapped transcription, DNase I hypersensitivity, TF 

binding, chromatin modifications, and replication domains throughout the mouse genome in 

diverse cell and tissue types [16]. Open chromatin data is also available in other species. The 

high-resolution mapping of DHSs in the model plant Arabidopsis thaliana reported 38 290 

and 41 193 DHSs in leaf and flower tissues [17]. As the newest technology, ATAC-seq is 

only beginning to generate data but the rate of increase is very rapid. GEO database already 

host many small-scale ATAC-seq datasets. There are 122 results for searching ‘ATAC-seq’ in 

the GEO DataSets. The samples are collected from Mus musculus, Homo sapiens, and 

Saccharomyces cerevisiae.
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It is challenging to organize the huge data sources for integrative analysis across projects, 

and only limited progress has been made so far. UCSC genome browser coordinated data for 

the ENCODE Consortium. The ENCODE Project Portal also hosts ENCODE data from the 

first production phase, additional ENCODE access tools, and ENCODE project pages. 

ENCODE data and tracks can be viewed, searched, and visualized in the UCSC Genome 

Browser. There are also some databases based on the ENCODE data. RegulomeDB is a 

database that annotates single-nucleotide polymorphisms (SNPs) with known and predicted 

regulatory DNA elements that include regions of DNase hypersensitivity, binding sites of 

TF, and promoter regions that have been biochemically characterized to regulate 

transcription [18].

In addition to chromatin accessibility, large consortia such as ENCODE and Roadmap also 

provided important knowledge of the transcriptome data across many cell types. For a subset 

of the samples, matched transcriptome data and chromatin accessibility data are both 

available. Table 1 lists the current available matched samples in the major datasets. As an 

example, Fig. 2 illustrates the hierarchical tree for the ENCODE mouse experiments with 

DNase-seq data. A total of 28 out of 59 samples have matched DNase-seq and RNA-seq data 

(labeled with ***). It is our expectation that in the near future such matched data will be 

available for a diverse set of samples covering many cell and tissue types, and from many 

developmental, physiological, and disease contexts. This rich data resource will offer 

exciting opportunities for discoveries of gene regulatory mechanisms through computational 

analysis under novel interpretative frameworks and integrative models. In the following, we 

will outline the opportunity for modeling regulatory network.

FOOTPRINTING MAY REVEAL TF OCCUPANCY REGULATORY REGIONS

Chromatin accessibility data is useful for the identification of functional regions by various 

peak calling algorithms. For example, ATAC-seq currently allows inference of accessible 

chromatin, TF occupancy, and nucleosome positions in regulatory regions in a single 

experiment. Those regions mark transcriptionally active regions and are tissue specific. 

About 5% are in TSS regions and 95% are in intronic and intergenic regions. The regions 

highlight the great complexity regulating the genetic expression in the human genome and 

the quantity of elements that control this regulation [14].

Those openness signals, as read out with base-specific sensitivity, can be used to footprint-

binding sites of some TF within open chromatin regions. The rationale is that the enzyme 

(for example DNase I) is known to cleave DNA preferentially in accessible regions and is 

sterically hindered by DNA-bound proteins such as TFs. This leads to the creation of 

‘footprints’ in which the presence of a bound TF diminishes cleavage at its binding site. This 

can be formulated as a computational problem to detect the shape from the read count data. 

CENTIPEDE is a pioneering work and presents a computational framework for predicting 

protein-binding sites based on a multinomial model for the distribution of reads to model for 

signal patterns [19]. PIQ is a recent method that uses Gaussian process for read count 

modeling, and that integrates time-series experiments to learn the cross-experiment structure 

as a Gaussian graphical model using L1 regularization [20]. Further by the footprint patterns, 

TFs are grouped as pioneer TFs, settler TFs, and migrant TFs. Pioneers TFs are capable of 
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opening closed chromatin and is quantified by a pioneer index to measure the motif-specific 

local increase in chromatin opening activity (DNase I accessibility) from one time point to 

the next in developmental time course [21]. Settlers TFs require open chromatin to bind and 

the genomic binding is principally governed by proximity to open chromatin. Migrants TFs 

require both open chromatin to bind and the presence of coregulators. Together, these TFs 

support a hierarchical TF-binding model, which illustrates when and how the TFs interact 

with chromatin state [20].

In addition to single TF study, a comprehensive analysis on the footprint of DNase shows 

that footprint is both common and informative [22]. Transcriptional regulation is a pivotal 

process that confers cellular identity and modulates the biological activities within a cell. 

Footprint data derived in vivo can define TF regulatory networks by observing TFs that bind 

near the promoters of other regulatory genes. DNase I footprints have been utilized to 

assemble an extensive core human regulatory network comprising connections among 475 

sequence-specific TFs across 41 diverse cell and tissue types [23]. The dynamics of these 

connections indicates that human TF networks are highly cell selective. All cell-type 

regulatory networks independently converge on a common architecture that closely 

resembles the topology of living neuronal networks [23].

Though conceptually appealing, at present DNase hypersensitivity analysis is still plagued 

by many difficulties such as against enzyme cut bias, non-homogeneous read count 

distribution, factor dynamics, GC content, and sequencing artifact [12]. Recent studies 

discussed the limitations of the DNase-based genomic footprinting approach and indicated a 

confounding factor as the scope of detectable protein occupancy, especially for TFs with 

short-lived chromatin binding. A distinct correlation was observed between footprint depth 

and the reported residence time of DNA binding for a compilation of TFs with in vivo DNA-

binding dynamics data available in the literature [24]. Key practical experimental 

considerations crucial to the success of a genomic footprinting experiment, including library 

quality, complexity and sequencing depth, and single-versus paired-end sequencing, are 

discussed in Ref. [25]. Taken together, deep sequencing of a high-quality DNase I library to 

obtain a high proportion of all mapped reads and analytical strategies and considerations 

should be combined for a successful genomic footprinting experiment. These must be 

addressed by careful and through statistical research before footprinting information can be 

extracted in a robust manner. More high-quality data and novel analysis statistical methods 

are in pressing need.

TF COLOCALIZATION AND DYNAMICS BY CHROMATIN ACCESSIBILITY

TFs collaborate and act in concert at distinct loci to perform accurate regulation of their 

target genes. Chromatin accessibility can be used to reveal the TF colocalization pattern. It 

has been demonstrated that DHSs can identify 95% of TF binding when pooled across a 

large number of cell types by the ENCODE data. This fact indicates open chromatin and 

motif binding can mimic ChIP-seq. This is true over thousand TFs and multiple cell types 

[26]. A large amount of ChIP-seq data from ENCODE has been used to study TF 

colocalization. The results include studying 76 TFs in K562 cells [27] and 128 TFs in three 

human cell types [28]. Given the fact that one open chromatin data can identify binding sites 

Wang et al. Page 6

Natl Sci Rev. Author manuscript; available in PMC 2017 July 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for many TFs, the large scale of open chromatin data will greatly broaden the scope of this 

type of study. Figure 3 illustrates the ideas and procedure to study TF colocalization by 

DNA sequence motif and open chromatin data. As the first step, the open regions can be 

identified from DNA accessibility data as the active regulatory regions in chromatin. Then 

those regions are scanned for the motif occurrence. Finally, the co-occurrence pattern of 

motifs in open region can be modeled to recover the TF colocalization cluster. The 

feasibility of this strategy has been demonstrated as the downstream analysis of footprint 

prediction and the colocalization was detected by a two-sample Poisson test [19]. There is 

still plenty of room to better model the co-occurrence pattern. Furthermore, TF dynamics 

can be examined and correlated with phenotype changes since open chromatin data can 

easily capture the condition-specific information.

CORRELATION OF OPENNESS TO GENE EXPRESSION MAY REVEAL 

TARGET GENES OF REGULATORY ELEMENTS

In addition to finding the upstream TF regulator in an open region, we can also correlate the 

chromatin state with expression and find the downstream target genes. Specifically when 

looking at tissues or samples that constitute sequential temporal or developmental snapshots 

of a biological process, we can correlate changes in accessible chromatin, TF binding, and 

network topology with changes in gene expression. This provides powerful insight into 

relationships between epigenetic regulatory landscape and phenotype as reported by gene 

expression profiling.

In a previous work, we have found that in mESC a remarkably high proportion of variation 

in gene expression (65%) can be explained by the binding signals of 12 TFs [29]. Since open 

chromatin data can be used to determine chromatin accessibility and state, nucleosome 

positioning as well as TF-binding sites, we believe that ATAC-seq data can be used to 

predict gene expression. There are a number of works studying the correlation between open 

chromatin regions and gene expression. A colocalization between DNase-hypersensitive 

exons with promoters and distal regulatory elements leads to a new thinking about gene 

expression at DHSs [30]. A pipeline is presented for predicting cell-type-specific gene 

expression in Ref. [31]. First, the observation that cell-type-specific genes have different 

DNase sensitivity profiles is shown. Then the information is employed to determine whether 

a gene is cell-type specific or not [31]. We next present a general framework for this type of 

analysis.

Figure 4 illustrates the basic idea to link the upstream regulatory factors and downstream 

target genes to interpret the chromatin activity. Annotated promoters and enhances will be 

included in the analysis automatically. The result is a large set of numerical or categorical 

features that we can associate to each gene across cell types, which we can use to learn a 

model for predicting gene expression. More formally, for each gene and in each cell type, we 

have a multidimensional data point (y, z) where y is the expression level of the gene 

measured by RNA-seq, and z is a vector of features computed as above from open chromatin 

data in the surrounding genomic region. We will have plenty of data points to learn the 
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model. The chromatin activity can be a hidden variable. There are many statistical learning 

methodologies that can be developed to address the challenge.

Figure 4 is not limited to a static picture. When we have multiple samples across conditions 

or time points, we have more chance to reveal causal regulations. For example, in Ref. [32] 

the authors generate the open chromatin and expression data from cells undergoing 

hematopoietic differentiation. Correlating significant changes in chromatin accessibility, 

nucleosome positioning in regulatory regions, TF occupancy, chromatin state change, and 

gene expression using can identify causal enhancer.

In addition to gene expression, the study of open chromatin data is ready to be combined 

with other information, which allows analysis of regulatory network. This information 

includes but not limited to TF, chromatin regulator, DNA methylation patterns, promoter 

chromatin signature, and promoter/enhancer connections.

MODELS AND ALGORITHMS FOR MATCHED SAMPLE

Cells have evolved multilayer gene regulatory networks that allow them to maintain a stable 

cellular state and response to external stimuli or signals. To study these networks and their 

implication on the systems-level properties of the cell, it is necessary to go beyond 

individual regulator, target and cis-element, to study the cross-regulatory relationships 

among the regulators. Matched open chromatin and gene expression data allow us to go 

beyond single layer to study the interplay of two regulatory levels.

Figure 5 illustrates a network perspective to integrate the DNA accessibility and 

transcriptome data. We show that joint modeling of open chromatin and gene expression 

data can be represented by a two-layer network. First, the large amount of RNA-seq samples 

can be utilized to reconstruct the regulatory network among mRNAs, microRNA (miRNA), 

and long non-coding RNA (lncRNA). There are many existing models and algorithms that 

can be used to quantify the coexpression relationships and to reveal the coexpression 

modules [33]. Furthermore, assays on open chromatin provide the coopening relationships 

among functional regions. Here the term ‘functional regions’ is used to denote any genomic 

location or region with potential regulatory relevance, such as SNP loci, somatic mutation 

locis, TF-binding sites, promoter, enhancer, histone modification sites, conserved region, and 

topological domains. By measuring the covariation of two functional regions’ degrees of 

openness, we may identify regions that interact with each other to affect gene expression. 

For example, distal cis-regulatory elements, such as enhancers, can modulate the activity of 

the promoters. Thus, the distal cis-regulatory elements tend to synchronize its cooperating 

with their promoter in the cellular context in which the element of is activated. Correlations 

between openness can identify promoter/enhancer connections. In this way, a map of 

candidate enhancers controlling specific genes may be created.

Most interestingly, as shown in Fig. 5, the connections between the chromatin and gene 

expression level can be reconstructed by utilizing those samples with matched gene 

expression and open chromatin data. With those connections as bridges, many causal 

relationships can be modeled by borrowing information across different layers. In fact, the 
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cross-network module represents exactly is the general biological machinery performing 

specific function.

One advantage of the two-layer network representation is that it can be easily integrated with 

genotype and ontology information. Generally speaking, a group of functional regions may 

share the same annotations. For example, genome-wide association study (GWAS) usually 

identify a group of SNP variants connecting a disease type. Similarly, the gene set may be 

annotated by enriched GO function, pathway, and other annotations. Bridging by the cross-

network module, those annotations can be cross-compared, and consistent ones can be used 

to annotate the module itself.

In general, we assume that we have two matrices X (n × p) and Y (n × m) for DNA 

accessibility data with p functional regions and transcriptome data with m genes, measured 

for the same n samples. We further assume that both X and Y have been columnwise 

standardized (zero mean, unit variance). Two layer data integration involves solving the 

problem to maximize certain combination of ΣXY, ΣXX, and ΣYY by selecting a single pair of 

variables for functional regions and genes. Here ΣXX and ΣYY are the covariance matrices of 

X and Y, respectively. ΣXY is the covariance matrix of X and Y. To study this two layer 

dataset in this framework, many existing methods can be utilized. Those methods are 

developed for many applications to identify disease-drug-gene module, integrate miRNA-

gene-methylation, combine CNV and gene expression, and prioritize disease genes. The 

authors in Ref. [34] noticed that high-throughput technologies can be used to generate more 

than one type of data from the same biological samples. To properly integrate such data, they 

propose the drug-gene comodules, which describe coherent patterns across paired data sets, 

and conceive the ping-pong algorithm for their identification. Multivariate methods based on 

canonical correlation analysis (CCA), called sparse CCA, have been proposed for integrating 

paired genetic datasets [35,36]. Matrix decomposition framework is also useful in this task. 

The miRNA and gene expression profiles are jointly analyzed in a multiple non-negative 

matrix factorization framework, and additional network data are simultaneously integrated in 

a regularized manner [37]. This optimization framework is also used to study the drug-gene-

disease comodule by treating the genes as the matched dimension [38]. Zhao et al. proposed 

a Bayesian partition method to identify drug-gene-disease comodules underlying the gene 

closeness data [39]. Linear regression and random walk also provide elegant solution for this 

task utilizing some reliable information as gold standard positives [40–42].

Recently, we casted the matched data integration into a multivariate regression framework 

and proposed a new method, T-SVD [43]. The application example is to analyze miRNA and 

lncRNA data from The Cancer Genome Atlas (TCGA) consortium. We formulated a 

statistical model for the regulation of global gene expression by multiple regulatory 

programs and propose a thresholding singular value decomposition regression method for 

learning such a model from data. Extensive simulations demonstrate that this method offers 

improved computational speed and higher sensitivity and specificity over competing 

approaches. The analysis on TCGA yields previously unidentified insights into the 

combinatorial regulation of gene expression by ncRNAs, as well as findings that are 

supported by evidence from the literature. The advantage of T-SVD is that the sparsity-

inducing modeling and inference approach is effective in extracting the regulatory relations 
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among very high-dimensional responses and predictors, even when the sample size is much 

lower. This is exactly the case in Fig. 5, in which functional regions in chromatin are in 

really high dimension.

Another recent effort to relate DHS to gene expression levels across multiple cell types is 

presented in Ref. [44]. A new statistics, called ARS, was proposed to characterize the 

relationship between chromatin accessibility and gene expression in a cell-type-specific 

manner and applied in a dataset on genome-wide, high-resolution chromatin accessibility 

measurements for 20 distinct human primary and culture cell lines. To deal with the 

challenge from variation across cell types and the non-linear chromatin and gene expression 

relationship, they placed the measurement units on a common scale and then ARS was 

computed as the product of the normalized distances and the angular penalties.

INCORPORATING CHROMATIN ACCESSIBILITY INTO THERMODYNAMICS-

BASED MODELS

Since ATAC-seq is resource efficient, it is particularly attractive for dynamic biological 

processes, where the materials are very limited in time course. It is expected that the time 

and resource efficiency of ATAC-seq will make it a very useful tool in modeling causal gene 

regulation. It helps to quantitatively understand the precise relationship between gene 

expression and regulatory sequences, especially enhancers. We know enhancers as the cis-

regulatory modules in some contexts are sequences ~1 kbp long that harbor DNA-binding 

sites or one or more TFs that act together to regulate a gene’s expression pattern. DNA 

accessibility data provide the measurement of open/close state for those enhancers and open 

a new door for detailed modeling.

As shown in Fig. 6, thermodynamics-based sequence-to-expression models have proven 

capable of producing highly accurate fits to complex gene expression patterns. The models 

are built around molecular interactions involving TF proteins, DNA, and the basal 

transcriptional machinery, RNAP [45,46]. It uses the language of statistical thermodynamics 

to map combinations of interactions, both strong and weak, to gene expression levels. Fits of 

these models to sequence and expression data capture underlying mechanistic details of gene 

regulation.

Based on the thermodynamics scheme, we can model gene expression regulation as a 

dynamical system. Let x ∈ Rm represent RNA concentrations and y ∈ Rm represent protein 

concentrations corresponding to a set of n genes. The production rate of the RNA transcript 

xi of gene i is assumed to be proportional to the probability f(y) that RNAP is bound to the 

promoter and enhancer. By assuming that RNA transcription occurs at a rate whenever 

RNAP is bound to the promoter, the probability that RNAP is bound to the promoter as a 

non-linear function f of y, since RNAP binding is regulated by a set of TFs. The non-linear 

form of f(y) can be deduced from the thermodynamics of RNAP and TF binding, as shown 

in Bintu’s equation [45].

The above representation is useful to propose an experimental design and associated 

statistical method for inferring an unknown gene network by fitting the ODE-based Bintu 
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gene regulation model. Our recent study shows how to design a sequence of experiments to 

collect the data and how to use it to fit the parameters of the Bintu model, leading to a set of 

ODEs that quantitatively characterize the regulatory network [47]. The required data are 

gene expression measurements at a set of perturbed steady states induced by gene 

knockdown and overexpression.

Now it is right time to incorporate DNA accessibility data in thermodynamics model. We 

expect the time course measurement of the chromatin state, especially general accessibility 

patterns, of cis-regulatory regions correlates with expression and with regulatory events 

leading to expression. One pilot study built and evaluated a quantitative model that maps 

regulatory DNA sequence to the expression of the regulated gene while integrating DNA 

accessibility data [48]. Figure 6 illustrates the major components of transcriptional 

regulation and their interactions in thermodynamic equilibrium. Considering the DNA 

accessibility of those regulatory elements, one can quantitatively describe the TF-DNA 

binding energy at functional regions changes according to the open chromatin state. The 

improved thermodynamics model allows us to predict the level of gene expression in the 

dynamical system by modeling the energies associated with these interactions. It provides an 

elegant and detailed way to integrate chromatin accessibility and transcriptome data and to 

model the causal regulatory network.

BIOLOGICAL APPLICATIONS OF OPEN CHROMATIN DATA

Open chromatin data identifies a large number of functional regions and can be used to 

interpret genetic variants. The rationale is based on the fact that variants of biological 

significance are expected to be enriched in open regions. Maurano et al. found that 57.1% of 

the non-coding GWAS-identified SNPs associated with 207 diseases and 447 quantitative 

traits were found within DHS regions and a further 19.5% in complete linkage 

disequilibrium [49]. This information can also be used to interpret expression quantitative 

trait loci (eQTLs). eQTLs are stretches of DNA that regulate gene transcription and 

expression and contribute to a particular phenotypic trait. eQTL mapping is an important 

tool for linking genetic variation to changes in gene regulation, but identifying the causal 

variants underlying eQTLs and the regulatory mechanisms involved remains a challenge. 

Degner et al. used DNaseI sequencing to measure genome-wide chromatin accessibility in 

70 Yoruba lymphoblastoid cell lines to produce genome-wide maps of chromatin 

accessibility for each individual. They intersect these regions with eQTL’s derived from 

these samples, to identify variants, called DNaseI sensitivity quantitative trait loci. The 

implication is that changes in chromatin accessibility or transcription factor binding occur at 

many gene loci and are likely to be important contributors to phenotypic variation [50].

In addition to the genetic variants, open chromatin data may enable better interpretation of 

the somatic mutations identified in cancer samples. A recent effort discovered a remarkable 

change in the accessible regulatory landscape between these two tissues, with several 

thousand regions becoming more accessible in the cancer tissue [51]. Two TFs are identified 

to be involved in cancer (AP-1 and Stat92E), which regulate these newly accessible 

regulatory regions.
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Finally, chromatin structure dynamics plays a fundamental role during development and cell 

differentiation. Open chromatin data provides valuable insight into this fundamentally 

process. Recently, Lara-Astiaso et al. developed a high-sensitivity indexing first ChIP 

approach to identify 48 415 enhancer regions and characterize their dynamics [32]. 

Combining their enhancer catalog with genome-wide open chromatin sites from ATAC-seq 

data and gene expression profiles, they elucidated the TF network controlling chromatin 

dynamics and lineage specification in hematopoiesis. Integrating chromatin and expression 

levels provides a comprehensive model of chromatin dynamics during development.

FUTURE GOALS AND CHALLENGES

Open chromatin data has the potential to generate many types of useful information. This 

approach has the important advantages of being cost-effective and time-efficient, as many 

types of information is generated from a single, relatively simple assay. We already 

discussed some existing problems and challenges in analyzing the data and integrating the 

data from gene regulatory network’s perspective. Here we will end the perspective with 

some general discussions.

Organizing the massive data will require new information technologies. Single open 

chromatin data will identify over 300 000 hotspots. The number of potential open regions 

will increase very rapidly. This massive data give rise to challenges in storage, analysis, and 

modeling, which must be met with the development of new computational and statistical 

approaches. It is expected that these methods will be built on top of modern distributed 

computation platforms such as Hadoop distributed file system, map-reduce computation 

model, and ‘big table’ style data management. The distributed file system, map reduce, big 

table ideas from Google should be borrowed. This combination of method and architecture 

will address the distinct and complementary need to effectively utilize the massive data.

Both RNA-seq and ATAC-seq can be pushed to single cell level [11,52]. The intrinsically 

noisy single cell data will pose new difficulties in modeling. An additional challenge relates 

to the need to combine and integrate different sets of ‘omics’ data from the same cell. For 

example, a method has been developed for simultaneous sequencing of genomic DNA and 

mRNA in a single cell [53]. Such methodology will help elucidate the correlation between 

molecular variability and phenotypic diversity—a fundamental question in biology. We will 

expect the measurement of chromatin state and mRNA expression for the same cell in near 

future. Then this integrative study will bring more insights and will impact many fields.

Because of its simplicity, ATAC-seq technology is a promising assay to measure the 

epigenomic state of individual patients and monitor the therapeutic intervention changes in 

real time. In this scenario, the challenge is to develop methods to integrate the diverse 

epigenomic measurements to infer causal regulators and specific regulatory elements 

affecting gene expression, reveal key dynamic and disease-specific features based on 

temporal data of the same individuals. To achieve precision, these regulatory insights should 

be iteratively refined to ensure comprehensiveness and accuracy.
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Figure 1. 
The basic concepts for open chromatin. Chromosomal DNA is compacted inside a nucleus 

by hierarchically folding DNA into certain chromatin structures. Most of the DNA 

fragments are compact chromatin and are tightly wrapped around histones (the cylinders are 

the core histones and around which the DNA is wrapped). Open chromatin are the DNA 

fractions which are accessible to the transcriptional machinery (including the bound TF and 

cofactors to regulate genes and the chromatin regulator (CR) modulating the chromatin 

state.) and further influences gene expression (turn the genes on or off). The rapidly 

developing sequencing methods, such as FAIRE-seq, DNase-seq, ATAC-seq, MNase-seq, 

and ChIP-seq, together provide the necessary information to decode the regulatory landscape 

inside cell. Those techniques utilize different mechanisms and provide complementary 

information. The FAIRE assay enriches for such open chromatin regions by differential 

solubility in phenol. The DNase I assay utilizes the fact that regions of the open chromatin 

are much more susceptible to DNase I digestion. ATAC assay integrates sequencing adaptors 

into regions of accessible chromatin by Tn5 transposase. MNase assay uses micrococcal 

nuclease to digest chromatin to study nucleosomes. The ChIP assay uses a specific antibody 

to enrich for DNA regions binding to a specific TF or a modified histone. Modeling the 

massive data generated by those technologies allows us to reveal the interplay among TF 

binding, active TSS, nucleosomes and nucleosome modifications, enhancers, and insulators 

in a wide variety of cell lines and tissue samples. Particularly causal regulatory network 

inference is promising by integrating the information from chromatin level with the gene 

expression data.
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Figure 2. 
The mouse ENCODE experiments with DNase-seq data are organized in a hierarchical tree. 

The experiments labeled by ‘***’ have matched DNase-seq and RNA-seq data.
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Figure 3. 
Illustration of the principle to use open chromatin data to study the transregulatory elements. 

Integrating open chromatin data with the available DNA sequence motif data can infer the 

TF colocalization patterns. As the first step, the open regions are derived from DNA 

accessibility data as the active regulatory regions in chromatin. Then those regions are 

scanned for the motif occurrence and quantify the binding strength of TF motifs. Finally, 

motif’s co-occurrence pattern in open region can be modeled to recover the TF 

colocalization cluster. Furthermore, the dynamics of TF colocalization clusters can be 

revealed by comparing open chromatin data in different conditions and even time series.
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Figure 4. 
Illustration of the idea to use open chromatin data to annotate the cis-regulatory elements. 

An integrative model can put open chromatin data and RNA-seq data together to identify the 

upstream TFs and downstream genes for a given chromatin region. This local regulatory 

network will help us to better understand the regulatory role of active regulatory region, i.e. 

the mechanism that TFs bind to the genome, displace nucleosomes, and thereby expose the 

DNA and making it more sensitive to cleavage by enzymes. Since the cis-regulatory element 

is widely defined and it spans from the single base variant to Kb level promoter region and 

Mb wide topological domain. Particularly, it is useful to interpret the genomic variants and 

mutations given the fact the large amount of data will be available in near future.
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Figure 5. 
A network perspective to integrate the DNA accessibility and transcriptome data. We show 

that joint modeling open chromatin and gene expression data can be achieved by a two-layer 

network. Cell is organized into two layers as chromatin level and transcriptome level. First, 

the large amount of RNA-seq samples can be utilized to reconstruct the regulatory network 

among mRNAs, ncRNAs, and miRNAs (denoted by rectangle, diamond, and parallelogram). 

There are many existing models and algorithms that can be borrowed to quantify the 

coexpression relationships and reveal the coexpression modules (green circle). Furthermore, 

assays on open chromatin provide the coopening relationships among functional regions. 

Here functional regions are used to denote any genomic location or region with potential 

regulatory relevance, such as SNP loci, somatic mutation loci, TF binding sites, promoter, 

enhancer, histone modification sites, conserved region, and topological domains (denoted by 

different shapes). Then sophisticated modeling is in pressing need to quantify the openness 

of those regions and their correlations. The coopening module in this network can be 

identified and studied (the blue circle). Most interestingly, the connections between the 

chromatin level and gene expression level can be reconstructed by crossing those samples 

with matched gene expression and chromatin level data. With those connections as bridges, 

many causal relationships can be modeled by borrow information across different layers. In 

fact, the cross-network module represents exactly the general biological machinery 

performing specific function (the orange circle). This module can provide annotation for a 

specific region by finding downstream genes.
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Figure 6. 
Illustration of incorporating DNA accessibility in thermodynamics model. It shows the 

major components of transcriptional regulation and their interactions in thermodynamic 

equilibrium. A simplified transcriptional system where the enhancer contains a single 

binding site for a TF, with the TF bound or not bound at its site and the RNAP bound or not 

bound at the promoter. Arrows indicate TF-DNA, RNAP-DNA, and TF-RNAP interactions. 

Thermodynamics model allows us to predict the level of gene expression in the dynamical 

system by modeling the energies associated with these interactions. Considering the DNA 

accessibility of those regulatory elements, one can quantitatively describe the TF-DNA 

binding energy at functional regions changes according to the open chromatin state.
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