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Abstract

We are performing whole genome sequencing (WGS) of families with Autism Spectrum Disorder 

(ASD) to build a resource, named MSSNG, to enable the sub-categorization of phenotypes and 

underlying genetic factors involved. Here, we report WGS of 5,205 samples from families with 

ASD, accompanied by clinical information, creating a database accessible in a cloud platform, and 

through an internet portal with controlled access. We found an average of 73.8 de novo single 

nucleotide variants and 12.6 de novo insertion/deletions (indels) or copy number variations 

(CNVs) per ASD subject. We identified 18 new candidate ASD-risk genes such as MED13 and 

PHF3, and found that participants bearing mutations in susceptibility genes had significantly lower 

adaptive ability (p=6×10−4). In 294/2,620 (11.2%) of ASD cases, a molecular basis could be 

determined and 7.2% of these carried CNV/chromosomal abnormalities, emphasizing the 

importance of detecting all forms of genetic variation as diagnostic and therapeutic targets in ASD.

Introduction

Autism is a term coined about a century ago, derived from the Greek root referring to “self”, 

and describes a wide range of human interpersonal behaviors1. Autistic tendencies may be 

recognized in many individuals as part of human variation2, but these features can be severe 

and, therefore, disabling3–5. The most recent Diagnostic and Statistical Manual of Mental 

Disorders, fifth edition (DSM-5) uses this single omnibus classification “autism spectrum 

disorder” (ASD) to encompass what once were considered several distinct diagnostic entities 
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(such as autistic disorder, Asperger disorder, and pervasive developmental disorder, not 

otherwise specified). The spectrum concept reflects both the diversity among individuals in 

severity of symptoms, from mild to severe, and the recognition of overlap among a 

collection of clinically-described disorders6–8. Features of this neurodevelopmental disorder, 

which has a worldwide population prevalence of ~1%, typically include impaired 

communication and social interaction, repetitive behaviors, and restricted interests; these 

may also be associated with psychiatric, neurological or physical co-morbidities, and/or 

intellectual disability.

Despite the unitary diagnostic classification, ASD is a heterogeneous spectrum, both in 

clinical presentation and in terms of the underlying etiology. Individuals with ASD are 

increasingly seen in clinical genetics services, and ~10% have an identifiable genetic 

condition4, 9. In fact, there are over 100 genetic disorders that can exhibit features of ASD 

(e.g. Rett and Fragile X syndromes)10. Clearly, ASD is strongly associated with genetic 

factors. Dozens of susceptibility genes (e.g. SHANK and NRXN family genes)11, 12 and 

copy number variation (CNV) loci (e.g. 16p11.2 deletion and 15q11-q13 duplication) 

facilitate a molecular diagnosis in ~5–40% of ASD cases. The variation largely depends on 

the cohort examined (e.g. syndromic or idiopathic), and the technology used (i.e. 

karyotyping, microarray, whole-exome sequencing)5, 9, 13–17.

In fact, the genetic diathesis towards ASD may be different for almost every individual18, 

making this a prime candidate for the coming age of precision medicine6, 7, 19. The first 

beneficiaries of a genetic diagnosis are young children, in whom formal diagnosis based on 

early developmental signs can be challenging, but who benefit most from earlier behavioral 

intervention3, 8. Understanding the genetic subtypes of ASD can also potentially inform 

prognosis, medical management, and assessment of familial recurrence risk, and in the 

future, it may facilitate pharmacologic-intervention trials through stratification based on 

pathway profiles14. The vast heterogeneity also means that meticulous approaches are 

needed to catalogue all the genetic factors that contribute to the phenotype, and to consider 

how these interact with one another and with non-genomic elements.

To move forward towards the goal of understanding all of the genetic factors involved in 

ASD, we recognize the need to scan the genome in its entirety using whole genome 

sequencing (WGS)14, 18, 20, 21 on thousands, if not tens of thousands (or more), of 

samples13, 22–24. Risk variants that remain undiscovered to this point are expected to be 

individually rare9, 18, 22, possibly involved in complex combinations18, 25, and to include 

single nucleotide variants (SNVs), small insertions/deletions (indels), more complex 

CNVs14, 18, 20, and other structural alterations15, 26. Some will reside in the ~98% non-

coding genome largely unexplored by other microarray and exome sequencing 

studies21, 27, 28. Abundant genome sequences may help to resolve the role of common 

variants in ASD2, 29, and integrating these data with those on rare variants will aid 

understanding of the issues of penetrance, variable expressivity, and pleiotropic effects4, 6.

Such research brings us to the realm of “big data”: massive sequence data sets from 

multitudes of individuals, requiring fast and intensive searches for meaningful patterns30. 

This is where cloud-based computing excels. Its capacity for bulk data storage, with efficient 
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processing and built-in security, is ushering in a new paradigm for data sharing, enabling 

access and collaboration across continents31, 32.

In our MSSNG initiative (where omission of letters from the name, represents the 

information about autism that is missing and yet to be uncovered), we are collecting whole 

genome sequences and detailed phenotypic information from individuals with ASD and their 

families, and making these data widely available to the research community (Figure 1). 

Here, we describe the MSSNG infrastructure, new analyses of the first 5,205 genomes, and 

examples of how to use the resource.

Results

Samples and phenotypes

Our pilot work14, 18, 21 established four principles to guide the prioritization of the samples 

selected for WGS (Table 1), (1) DNA from whole blood is preferred for detecting de novo 
mutations (especially for the proband) rather than DNA from cell lines, which may acquire 

variants in vitro. (2) For a comprehensive ASD resource, it is important to sample families 

with different genetic characteristics in order to delineate the full spectrum of relevant 

variation (for example, heritable variants may differ from those arising de novo, and 

ascertainment biases can influence the frequency of genetic variants identified). (3) Families 

with extensive phenotype data who are accessible to participate in further study are most 

informative for ASD. (4) To participate in ASD genomic research on this scale, consent 

must be in place, or obtainable, for WGS and for the data to be stored in a cloud-based 

platform.

Here, we report on the WGS and analysis of 5,205 samples (5,193 unique individuals; 12 

individuals were sequenced on two different platforms for technical replication, or were 

from different DNA sources). From nine collections, these samples included 2,626 from 

2,620 individuals (2,066 unique families) diagnosed with ASD (Table 1). Of the total, 3,100 

samples (3,090 individuals) are from simplex (one child with ASD) and 2,105 samples 

(2,103 individuals) from multiplex families (two or more affected siblings); 1,745 samples 

(1,740 individuals) are from probands and 879 samples (878 individuals) are from affected 

siblings (with the exception of two affected individuals within this cohort who are the father 

and paternal grandfather of a proband). The samples from individuals with ASD include 

2,067 from males (2,062 individuals) and 559 from female (558 individuals) (3.7:1 male-to-

female ratio). For 339 samples (46 ASD and 293 parents) only cell-line DNA was available. 

Based on self-reports and confirmed with genotypes from WGS or microarrays, the majority 

(72.6%) of participants are of European ancestry (Supplementary Table 1, Supplementary 

Figure 1). For all individuals, we obtained informed consent, as approved by the respective 

Research Ethics Boards (REBs). We have also developed a prospective consent form for 

WGS in ASD (Supplementary note).

An ASD diagnosis was of research quality when it met criteria on one (n=437) or both 

(n=1,361) of the diagnostic measures (Table 2): Autism Diagnostic Interview-Revised (ADI-

R) and Autism Observation Schedule (ADOS) or considered a clinical diagnosis (n=819) 

when given by an expert clinician according to the DSM (IV or 5 editions). Additionally, 
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many participants were assessed with standardized measures of intelligence (IQ), language 

and general adaptive function. Out of the 1,102 individuals with IQ data available, 216 

(19.6%) had scores within the range for intellectual disability (Full Scale IQ<70). Physical 

measurements are also available for some individuals (n=1,022). Most samples of affected 

individuals (n=1,658) were genotyped on high-resolution microarrays (see below) and some 

by karyotyping or gene-specific assays.

WGS

We used different WGS platforms as they became available and were tested to assess data 

quality characteristics. We present data generated using Complete Genomics (n=1,233), 

Illumina HiSeq 2000 (n=561) and HiSeq X (n=3,411). The different WGS approaches and 

tools used for mapping/variant calling yield data with different characteristics (Figure 2), 

but, all platforms reliably called SNV and smaller indels (up to 100bp; larger CNVs are 

described below). Relative to the human reference sequence (hg19), the average coverage 

across all samples on three platforms was 93%, with an average of 40.4X sequence depth 

(Table 1; Supplementary Table 1). On average, we detected 3,654,992 SNVs and 722,816 

indels per sample (Supplementary Table 1).

Systematic detection of sequence-level de novo mutations and candidate ASD-risk genes

Identification of multiple de novo mutations occurring in the same gene from unrelated 

individuals highlighted candidate ASD-risk genes13, 22. Modifying our previous 

approaches14, 18, 21 (Methods), we studied those 1,239 families (1,627 parents-child trios) 

for which child and parental WGS data were available (excluding children whose DNA was 

derived from cell lines). We identified 86.4 spontaneous events per genome (73.8 SNVs and 

12.6 indels) (Supplementary Table 2 and 3), including 1.3 de novo exonic variants per 

genome14, 18, 21. Experimental validation rates for selected de novo SNVs and indels were 

88.2% (494/560) and 85.1% (103/121), respectively. Most (58.3%) of the non-validated calls 

were caused by false negative detection in the parents. In total, we detected 230 

experimentally validated de novo LOF mutations (Supplementary Table 4 and 5).

To increase the power for ASD-risk gene identification, we combined our data with the de 
novo mutations detected from other large-scale systematic whole-exome or WGS studies, 

which included 2,864 de novo missense mutations and 599 de novo LOF mutations in 4,087 

trios13, 23, 33–35. To identify candidate ASD-risk genes, we initially considered genes likely 

to be mutation-intolerant based on the ExAC database36 (with pLI> 0.9 for LOF mutations; 

with z-score of >0.2 for missense mutations), and higher than expected mutation rate 

(FDR<15%). This approach yielded 54 putative ASD-risk genes (Figure 3a).

In addition to the de novo LOF mutations, we have also combined the de novo or 

maternally-inherited LOF mutations on the X chromosome in the affected males. We 

identified 7 genes (MECP2, AFF2, FAM47A, KIAA2022, NLGN3, NLGN4X and 

PCDH11X) with multiple LOF mutations and with pLI>0.65 (Figure 3a). Taken together, 

112 of the 2,620 subjects (4.3%) bear de novo LOF or missense mutations or inherited LOF 

mutations in the 61 ASD-risk genes identified (Figure 3a; Supplementary Table 5). Among 

Yuen et al. Page 4

Nat Neurosci. Author manuscript; available in PMC 2017 October 01.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



these, 43 were found as ASD-risk genes in a previous meta-analysis of exome sequencing24 

or other CNV studies10, 15, 17.

Detection of CNVs and chromosome abnormalities

We examined CNVs detected from WGS using two calling algorithms for samples 

sequenced in Illumina platforms or provided by Complete Genomics, and for a subset of 

samples using additional microarray data (Methods). From the WGS derived CNVs, we 

detected 401.4 CNVs (>2kb) per genome. We validated these using laboratory-based 

methods and/or WGS read-depth comparisons (Methods, Figure 3b and Figure 4). We found 

that 189/2,620 (7.2%) of the subjects to carry one or more pathogenic chromosomal 

abnormalities (n=21), megabase CNVs (n=25), CNVs involving genomic disorder loci 

(n=69), or CNVs affecting previously reported ASD-risk genes (n=58), all determined by 

standard diagnostic reporting criteria16, 17, 37, many associated with known syndromes of 

which ASD can be a component feature5, 9, 10. There were also 22 CNVs that overlapped 

with the ASD-risk genes found in this study (Figure 3a). Three of the CNVs were around or 

less than 10kb, which were only detectable using WGS, and five were non-coding (Figure 

4c).

Medical genetics and functional properties

Among these 61 ASD-risk genes with sequence-level mutations, 18 had not previously been 

reported in the literature (CIC, CNOT3, DIP2C, MED13, PAX5, PHF3, SMARCC2, 
SRSF11, UBN2, DYNC1H1, AGAP2, ADCY3, CLASP1, MYO5A, TAF6, PCDH11X, 
KIAA2022, and FAM47A). For two of these putative novel ASD-risk genes, mutations were 

found in at least three families from our data (Supplementary Figure 2); MED13, which is 

related to the intellectual disability gene MED13L38, carried putative damaging mutations in 

three families. PHF3 mutations, with PHF2 involved in ASD24, were found in four families; 

this gene encodes a PHD finger protein that regulates transcription by influencing chromatin 

structure39, a mechanism increasingly being implicated in ASD17, 21, 40. Some other 

mutation-intolerant genes were implicated in three or more families included PER2 and 

HECTD4 (Supplementary Figure 2). While they did not meet the statistical significance for 

Figure 3a, they may still potentially represent interesting functional candidates for the ASD 

or associated complications in these individuals.

Interestingly, of these 61 ASD susceptibility genes, 36 (59%) are associated with known 

syndromes/phenotypes in OMIM (with CHD8, SHANK2 and NLGN3 associated only with 

ASD). Most (78%) of the known syndromes/phenotypes involved were intellectual disability 

or other related disorders, which may highlight the pleiotropic effects of these genes 

(Supplementary Table 6). Combining the list of 61 genes with the CNV data identified in the 

WGS analysis yielded a framework map of ~100 ASD-linked loci or chromosomal 

abnormalities (all listed in Figure 3) for molecular diagnostic comparisons, accounting for 

11.2% (294/2,620) of the subjects included in this study. Consistent with our previous 

findings18, ASD-relevant mutations were often different in affected siblings (Supplementary 

Figure 2).
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To assess the functional impact of genotypes, we compared the phenotypes (listed in Table 

2) of participants with: de novo LOF mutations, mutations in the ASD-risk genes, 

pathogenic CNVs and no identified mutation in ASD-risk genes/CNV. Only the differences 

in Vineland Adaptive Behavior Score (FDR=0.04) and IQ Full Scale Standard Score 

(FDR=5×10−4) were significant after multiple testing corrections using Benjamini Hochberg 

approach. Consistent with the previous studies41, 42, we found that individuals with 

pathogenic CNVs have significantly lower IQ (p=2×10−3, −8.5, 95%CI: −16 to −3) (Figure 

5a). Similarly, individuals with mutations in ASD-risk genes also have a trend of lower IQ 

(p=0.02, −11, 95%CI: −15 to −1.6×10−6). More strikingly, however, we found that those 

individuals carrying mutations in ASD-risk genes have significantly lower Vineland adaptive 

ability score (p=6×10−4, −6.5, 95%CI: −10 to −3) (Figure 5b). Given that Vineland adaptive 

score captures the adaptive functioning better than cognitive ability, it may suggest that the 

ASD-risk genes identified here are more specific to ASD behavioural traits than general 

cognitive deficits43.

Many of the ASD-risk genes (80%; 49/61) identified connected into gene networks (Figure 

6). These genes are enriched in synaptic transmission, transcriptional regulation and RNA 

processing functions, consistent with previous findings17, 21. We found genes associated 

with transcriptional regulation and RNA processing more often expressed in brain prenatally, 

while synaptic function related genes are expressed in brain throughout development44. Our 

extended gene network revealed more interactions of genes. The novel ASD-risk genes such 

as SRSF11 may closely interact with the known ASD-risk genes such as UPF3B (Figure 6).

Data access and processing

All data are available in the MSSNG Google Cloud or linked databases, with Autism Speaks 

as the MSSNG Data Custodian. A web-based portal was also developed (Figure 1 and 4, 

Supplementary Figure 3). Example queries include retrieving predicted damaging variants 

for one (or more) genes of interest, or all damaging de novo variants in a subject. In 

addition, variant annotations, sequence – read pile-ups (using the Integrative Genomics 

Viewer plugin) and psychometric measurements can be accessed. Researchers receive 

authorization from the MSSNG’s Data Access Committee via an online application (https://

research.mss.ng/). Autism Speaks uses the Public Population Project in Genomics and 

Society (P3G) to independently recommend access according to guidelines established by 

Autism Speaks and P3G, based on consents provided by the data donors or on REB-

approved waivers of consent for retrospective collections.

Discussion

Considering the breadth of data in our pilot WGS studies 14, 18, 21 and global impact of the 

ASDs, it became evident that an ‘Autism WGS Project’ encouraging use of data in a manner 

as unrestricted as possible, for wide-ranging research questions, would be beneficial. We 

could move quickly because investment to develop biosample repositories from individuals 

with ASD and their families, consented for genetic research, have already been made. The 

resources generated and managed through MSSNG support ASD research in three related 

areas, namely, (1) new gene discovery and diagnostics, (2) genetic disease pathways, 
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mechanisms and pharmacologic development and trials, and (3) open-science queries of any 

type including exploring the significant heterogeneity underlying ASD, as well as the non-

coding genome, most of which can only start to be conceptualized now that the resource 

exists.

First, using the statistical framework defining genes with higher than expected mutation rate, 

we have already identified 18 new candidate genes for ASD or associated complications 

(Figure 3 highlights ~100 diagnostic loci for ASD). Some of the newly detected mutations 

could reasonably be considered pathogenic and/or have possible implications for clinical 

management or genetic counselling for the subject or family members4, 8. Examples include 

screening for cardiac defects or maturity-onset diabetes of the young in cases with 1q21.1 or 

17q12 deletions, respectively, secondary prevention to avoid the development of obesity in 

those with 16p11.2 microdeletion4, 45, and monitoring the use of growth factors (e.g. IGF-1) 

in PTEN mutation carriers who may react negatively8. In numerous other cases – including 

all instances of CNV and chromosomal abnormalities – detection of the mutation would lead 

to prioritization of these individuals for comprehensive clinical assessment and referral for 

earlier intervention3, 4, and end long-sought questions of causation8, 16. For other mutations, 

the role in ASD needs to be closely followed in the literature. Having the data accessible in 

the portal browser will continue to enable diagnosticians worldwide to remotely perform 

genotype-phenotype exploration of new testing results, against the latest WGS research data.

Second, 80% of the 61 ASD-risk genes on our refined list are connected in networks 

representing potential targets for pharmacologic intervention19. Sixteen genes contained 

subdomains that could be targeted by pharmaceutical intervention and 7 for which specific 

drugs-gene interactions are known (Supplementary Table 6). For example, individuals with 

mutations in SCN2A identify carriers as potential candidates for drug trials involving 

allosteric modulators of GABA receptors46. By extending the search to genes affected by 

CNV and/or to proteins that interact with or regulate these genes, the potential targets for 

modulating the pathways impacted in ASD expands. Additionally, the focus here was on 

gene products that could be pharmacologically modulated with small molecules, but the use 

of technologies such oligonucleotide-based therapeutics or gene therapy further increases 

the list of potential interventions that could be utilized in addressing the biological deficits 

created by the loss of function of these genes.

Third, solving the problem of the significant heterogeneity involved in ASDs will benefit by 

expanding this initiative, including partnering with other WGS projects and coordinating all 

information in a single open-science platform for which MSSNG provides a foundation. 

Regarding genotypic heterogeneity, using established criteria17, 47, in this study we were 

able to resolve a molecular basis in 11.2% of ASD cases and this tally should rise with more 

rare variant data to compare against22. An important message from our study was validation 

of the findings that CNV and chromosomal alterations contribute significantly in ASD 

(Figure 3b). These genetic alterations also often encompass multiple genes (Figure 3b), 

isoforms of single genes48, their regulatory elements27, 49, and can include non-coding genes 

such as the known ASD-risk gene PTCHD1-AS (Figure 4c), and combinations of mutations 

(7 cases have both ASD-relevant SNVs and CNVs), necessitating the use of a 

comprehensive technology like WGS.
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Regarding phenotypic heterogeneity, our previous analysis of a subset of multiplex families 

in the MSSNG resource already showed that siblings with discordant mutations tended to 

demonstrate more within sib-ship variability than those who shared a risk variant18 Here, 

with the increased sample size and access to richer phenotypic measures, our data reveal that 

participants bearing mutations in ASD susceptibility genes had lower adaptive ability 

compared to participants without identified risk variants. Adaptive functioning as measured 

here using the Vineland Adaptive Behavior Score is, in fact, composed of estimates of 

socialization, communication, daily living and motor skills50. This finding needs to be 

further dissected to determine whether the association with risk variant is specific to one of 

these sub-domains or is more linked to the composite. The same is true for the association 

with IQ.

Large-scale computing, for this project, can be done from within the MSSNG cloud, and/or 

using the investigator’s local resources. Our intent, as we have already started, is that 

researchers will ‘move new code to the data’ (i.e. to access data for analysis with the cloud 

platform), in particular for massive WGS and phenotypic queries including performing 

meta-analyses incorporating their own data. Ultimately, the new information arising should 

then be broadly shared. MSSNG researchers, for example, can use open-standard tools 

supported by the Global Alliance for Genomics and Health Application Programming 

Interfaces (APIs)31, so that tools developed by individual groups can be applied to data 

published elsewhere. This kind of continued interactive participation in shared open-access 

research will continue to enable a better understanding of ASD, and set a course for other 

genomic initiatives in neuroscience.

Online Methods

Samples for whole-genome sequencing and data access policy

We collected 5,205 unique samples (5,193 individuals) from 2,066 unique families with 

children diagnosed with ASD. The cohort consists of 2,618 children with ASD (1,740 

probands and 878 affected siblings). Details on the collections the samples were drawn from 

are described in Supplementary Table 7. Data collection and analysis were not performed 

blind to the conditions of the experiments”. We recruited other siblings and members of the 

family across generations whenever possible. We obtained informed consents, or waiver of 

consent, which were approved by the Western Institutional Review Board, Montreal 

Children’s Hospital – McGill University Health Centre Research Ethics Board, McMaster 

University – Hamilton Integrated Research Ethics Board, Eastern Health Research Ethics 

Board, Holland Bloorview Research Ethics Board and The Hospital for Sick Children 

Research Ethics Board. According to the consents or waiver of consent, participants agreed 

to make their coded genetic and phenotypic information available to researchers to help in 

the discovery of the DNA alterations underlying ASD, and ASD-related disorders. Their 

coded data were uploaded to the MSSNG Google Cloud database. Based on the current 

approved consent the genomic and phenotypic data can be submitted to this type of online 

database provided that all data is coded, that access to data is controlled and that specific 

data access policies are in place. The data access policy generated by the legal team at 

Autism Speaks was modelled on accepted practice in international research consortia such 
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as the International Cancer Genome Consortium (ICGC). A researcher seeking to gain 

access to the data, and perform their analyses in the cloud-based environment or download 

the data to use their own analysis tools, will have to apply for access following the process 

outlined in the Data Access Policy (Supplementary note). Sequencing data is coded and 

access to the data is controlled and governed via an REB/IRB approved data access policy 

(Western Institution Review Board for use of AGRE data, and other Review Boards for 

specific sites contributing data). At the time or writing, 7,214 samples from individuals with 

ASD or their family members were analyzed by WGS and available. The goal of this project 

was to collect a large cohort of families to facilitate genetic analysis as previously 

described22. No statistical methods were used to pre-determine sample sizes.

Researchers can access data at multiple stages and levels of analysis: 1) through the MSSNG 

portal, which provides an interface for searching, filtering and browsing the final, curated 

variants, annotations and statistics via a web application; 2) using BigQuery tables (a 

petabyte-scale distributed data warehousing (storage) and analytics (query) service) under 

their own account to perform custom queries, which allows flexibility for development of 

new analyses and applications; 3) via user’s own Google Cloud Storage (GCS) bucket on 

request for raw sequencing data and results of primary mapping (BAM files) and variant 

calling (MasterVar, VCF, gVCF) processes. At the time of writing, 75 researchers from 17 

institutions in four countries (Canada, South Korea, UK and USA) were approved access to 

MSSNG data.

WGS and data storage

We extracted DNA from whole-blood or lymphoblast-derived cell lines (LCLs). We assessed 

the DNA quality by PicoGreen and gel electrophoresis. We sequenced the 5,205 genomes 

using Complete Genomics (n=1,233), Illumina HiSeq 2000 (n=561) and HiSeq X (n=3,411) 

technology. WGS by Complete Genomics (Mountain View, CA) and Illumina HiSeq 2000 

were performed as previously described14, 18, 21. For WGS by Illumina HiSeq X, we used 

between 100ng and 1ug of genomic DNA for genomic library preparation and whole 

genome sequencing. We quantified DNA samples using Qubit High Sensitivity Assay and 

checked sample purity using Nanodrop OD260/280 ratio. We used the Illumina TruSeq 

Nano DNA Library Prep Kit following the manufacturer’s recommended protocol. In brief, 

we fragmented the DNA into 350 bp average length using sonication on a Covaris LE220 

instrument. The fragmented DNA was end-repaired, A-tailed and indexed TruSeq Illumina 

adapters with overhang-T added to the DNA. We validated the libraries on a Bioanalyzer 

DNA High Sensitivity chip to check for size and absence of primer dimers, and quantified it 

by qPCR using Kapa Library Quantification Illumina/ABI Prism Kit protocol (KAPA 

Biosystems). We pooled the validated libraries in equimolar quantities and sequenced the 

paired-end reads of 150-bases in length on an Illumina HiSeq X platform following 

Illumina’s recommended protocol.

For samples sequenced on Illumina platforms, raw reads are uploaded to GCS. For samples 

sequenced by Complete Genomics, only analyzed results from the Complete Genomics 

pipeline were uploaded to GCS. Results of variant calling and filtering pipelines were also 
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uploaded to GCS for permanent archiving, sharing with MSSNG researchers, and processing 

into BigQuery tables for access via the portal.

Alignment and variant calling

Alignment and variant calling for genomes sequenced by Complete Genomics were 

performed as previously described18. For genomes sequenced by Illumina platforms, we 

processed them on Google Cloud using Google Genomics Application Programming 

Interfaces with a pipeline that follows the Best Practices recommended by the Broad 

Institute51. We inputted primarily the paired FASTQ files (with a few samples processed 

from Binary Alignment Maps/BAMs). We aligned the reads to the reference genome (build 

GRCh37) using the Burrows-Wheeler Aligner (BWA; version 0.7.10). We removed 

duplicated reads using Picard (version 1.117). We performed local realignment and quality 

recalibration with the Genome Analysis Toolkit (GATK; version 3.3) by each chromosome. 

We detected single SNVs and indels using GATK with HaplotypeCaller. We extracted non-

variant segments (reference intervals) that were emitted by HaplotypeCaller using a custom 

Java program (NonVariantSiteFilter.jar). The output file was generated in the universal 

Variant Call Format (VCF). Both the VCF output by this process and the calls from 

Complete Genomics samples (MasterVar) were converted to separate variants and reference 

blocks in VCF and saved in GCS. The variants and reference blocks were imported into 

Google Genomics, then exported to a BigQuery table.

Sample quality controls

We performed quality control checks for samples utilizing codes from Google Genomics 

Codelab following the methodology developed previously52. We performed i) Duplicate 

Samples, ii) Samples per Platform, iii) Genome Call Rate, iv) Missingness Rate, v) 

Singleton Rate, vi) Heterozyosity Rate, vii) Homozygosity Rate, viii) Ti/Tv ratio, ix) 

Inbreeding Coefficient, and x) Sex Inference. To reduce the batch and cross-platform effects 

for analysis, we applied additional quality filters to remove variants caused by technical 

issues. We required variants to have genotype quality (GQ for Illumina; VAF for Complete 

Genomics) of at least 99. Since our analyses focused on rare variants, we required variants to 

be found in the population less than 1% of the time. We also required the variant to be called 

more than 95% of the time as a reference allele and less than 1% of time as a variant in the 

parents. Batch and cross-platform biases were substantially reduced after filtering (Figure 2). 

Detailed procedures and findings can be found in the Supplementary note.

Detection of de novo SNVs and indels

As described previously14, 18, 21, we considered a variant to be a potential de novo mutation 

when it is inconsistent with Mendelian inheritance (present in the offspring, but not in either 

parent). For a variant in the autosomal region, we considered it to be a potential de novo 
mutation when there was a heterozygous alternative genotype in the offspring, and 

homozygous reference genotypes in both parents. For a variant in the X chromosome, we 

considered male and female offspring with different criteria: in sex-specific regions of male 

offspring, we considered it to be a de novo variant when there was a hemizygous alternative 

genotype in the offspring and a homozygous reference genotype in the mother. We 

considered X-linked variants in female offspring and X-linked variants in pseudoautosomal 
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regions in male offspring as for autosomal regions. We considered a variant in the Y 

chromosome to be de novo when a hemizygous alternative variant was present in the male 

offspring but absent at the same position in the father.

We performed de novo SNV and indel detection from Complete Genomics data as 

previously described18, except that here we considered both parents with each offspring in 

the same family as separate trios. We used DenovoGear (version 0.5.4) for de novo SNV and 

indel detection on genomes sequenced by Illumina platforms, running the program by each 

chromosome. We also extracted high quality variants (passed quality filter) that were 

inconsistent with Mendelian inheritance based on GATK with allelic frequency among 

parents less than 1%. We define a putative de novo SNV as if it has a pp_DNM from 

DenovoGear higher than 0.95 and overlap with GATK calls (GQ of at least 99). We define a 

putative de novo indel if it is found by both DenovoGear and GATK methods with the same 

start site. In addition, we have also performed a manual inspection on the quality of variants 

by inspecting reads from the BAM for the variants found to be de novo by DenovoGear or 

GATK for the ASD-risk genes.

We used Primer 3 to design primers to span at least 100 bp upstream and downstream of a 

putative variant. In designing primers, we avoided regions of repetitive elements, segmental 

duplication or known SNPs. We randomly selected putative de novo SNVs from the Illumina 

WGS data of two probands (2-1266-003 and 3-0141-000) in the trio families and from 

Complete Genomics WGS data of one proband (2-1292-003) in a quartet family for Sanger 

sequencing (Supplementary Table 3). In addition, by Sanger sequencing we validated all the 

de novo LOF SNVs and indels and reported pathogenic variants from all families, using 

DNA from whole blood. Candidate regions were amplified by PCR for all families and 

assayed by Sanger sequencing (Supplementary Table 3).

No substantial difference on de novo mutation detection rate (average number of de novo 
mutation for CG: 88.9; Illumina: 85.2) or distribution (Supplementary Figure 4) was found 

between platforms. There is a difference on the validation rate for de novo LOF mutations 

between two platforms (CG: 78%; Illumina: 92%), but samples from CG only constitute 

23.7% of the total samples (Table 1). We found 27.9% of total exonic de novo mutations 

were contributed by CG, which is proportional to the given number of samples.

Identification ASD-risk genes

We performed a meta-analysis of de novo mutations for identification of ASD-risk genes. 

We concatenated the de novo mutations detected here with those detected from five other 

previous large-scale systematic whole-exome or WGS studies (from a total of 4,087 

trios)13, 23, 33–35. To avoid sample duplication, we have checked through registry that none 

of the samples from MSSNG were studied in the previous large-scale exome or WGS 

studies. Since the raw data for the previous studies were not easily accessible, we could not 

identify duplicated sample based on the genotypes. However, we checked the possibility of 

duplicated samples based on the de novo mutation profiles given by each study. Focusing on 

exonic de novo mutations examined, there were only four pairs of samples sharing the same 

de novo variant out of the 4,087 trios examined. Two of these pairs were found within same 
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studies. While these pairs could be derived from the same samples, they only constitute a 

small portion (<0.1%) of the cohort.

The variants were re-annotated using our custom annotation pipeline (see below). There 

were a total of 2,864 de novo missense mutations and 599 de novo LOF mutations reported. 

Combining with the de novo mutations detected in the present study (Supplementary Table 

3), we performed a statistical analysis to identify genes with higher than expected mutation 

rate based on the model framework described previously47. Observed rate of de novo 
mutation for each gene was compared with its expected rate using binominal test. To address 

for the potential bias on mutation rate between observed data and expected simulation, we 

rescaled the statistics with a constant, k, which is derived from the ratio of overall de novo 
mutation rate observed to that expected. For LOF mutations, we required genes to have at 

least 2 de novo LOF mutations and a probability of loss-of-function intolerant rate (pLI) of 

>0.9. For missense mutations, we required genes to have at least 4 de novo missense 

mutations and a missense z-score of >0.2 (derived based on scores from known ASD-risk 

genes and comparable gene number distribution as pLI>0.9). We corrected p values with 

Benjamini-Hochberg procedure and defined candidate ASD-risk genes as having a false 

discovery rate (FDR) <0.15. We have also analyzed X-linked LOF mutations. We defined 

candidate ASD-risk genes as having at least two LOF mutations found in males or de novo 
LOF in females, and required genes to have pLI>0.65 (since X-linked genes and autosomal 

genes have different constraint, we derived the score for X-linked genes from the score of 

MECP2: pLI=0.69).

SNV and indel annotation

We annotated the variants on Google Cloud Engine using a custom pipeline based on 

Annovar as previously described14, 18, 21, 53. The annotation process infrastructure includes a 

separate internal portal, which automates distribution of annotation jobs in parallel over a 

dedicated Virtual Machine (VM)-based computing infrastructure cluster. The variant 

annotations were then exported to a BigQuery table. Variant information was downloaded 

from databases for the allele frequency (Exome aggregation Consortium36, 1000 

Genomes54, NHLBI-ESP55 and internal Complete Genomics control databases), genomic 

conservation (UCSC PhyloP and phastCons for placental mammals and 100 vertebrates56), 

variant impact predictors (SIFT57, PolyPhen258, Mutation Assessor59 and CADD60), and 

implication in human genetic disorders (Human Phenotype Ontology61, Human Gene 

Mutation Database62 and Clinical Genomics Database63). Detailed descriptions of the 

annotation effort can be found in Supplementary note.

Genetic network construction

For each of the 61 ASD-risk genes, we retrieved top 200 closely interacting gene neighbors 

using GeneMANIA64. We generated an aggregate interaction network in GeneMANIA, 

based on physical protein interaction and pathways with the “Gene Ontology Biological 

Process” weighting option. We then computed a pairwise weighted jaccard index to model 

the similarity of the genes’ interacting neighborhoods, resulting in the final gene network 

(Figure 6). Finally, we performed hierarchical clustering, and manually optimized the 

weighted jaccard index cutoff for displaying the gene network in Cytoscape65, so that the 
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gene clusters suggested by the network layout algorithm are similar to the clusters suggested 

by hierarchical clustering.

CNV analysis

For samples sequenced on Illumina platforms, we detected CNVs from WGS for each 

sample using two algorithms, CNVnator66 and ERDS67, as previously described14, 21. 

Algorithms were run using default parameters. We used 500bp as window size for 

CNVnator. For CNVnator, we removed calls with >50% of q0 (zero mapping quality) reads 

within the CNV regions (q0 filter), except for the homozygous autosomal deletions or 

hemizygous X-linked deletions in males (with normalized average read depth; NRD<0.03). 

We defined stringent calls as those that were called by both algorithms (with 50% overlap). 

For samples sequenced by Complete Genomics, CNV calls were taken as provided as 

described previously18. Sixty-five samples have a total number of CNVs >= 2 standard 

deviations of the average number, including 28 affected individuals. We retained CNVs with 

size >2kb. We defined a rare CNV as that found in less than 1% of the time in the parents, 

less than 0.1% in the population from microarray data and overlap with a region that is at 

least 75% copy number stable according to the copy number variation map of the human 

genome68. We have also performed a manual inspection on the quality of CNVs by 

inspecting reads from the BAM for confirmation.

We also analyzed CNV data for 1,658 affected individuals genotyped on one or more of the 

following microarrays: Illumina1M single or duo; Affymetrix CytoScan HD; Affymetrix 

single-nucleotide polymorphism 6.0; Illumina OMNI 2.5M; Agilent 1M CGH array; 

Affymetrix GeneChip Human Mapping 500K Array (Supplementary Table 8). We defined 

rare, stringent CNVs as previously described17, and also required them to overlap a region 

that is at least 75% copy number stable according to the copy number variation map of the 

human genome68.

We determined pathogenic CNVs as those resulting in chromosome abnormities; large rare 

CNVs between 3 and 10Mb in size; genomic disorders with recurrent breakpoints (including 

all DECIPHER loci and other loci known to be associated with ASD10, 17) and CNVs 

impacting coding exons of known ASD-risk genes or noncoding exons of PTCHD1-AS or 

MBD5. All pathogenic CNVs found by microarray were found by WGS, except CNVs that 

were filtered out based on the quality issues or size difference (Supplementary Table 8).

Statistical tests

We compared the scores for phenotype tests (Table 2) available for four groups of samples: 

(a) samples with pathogenic CNVs (n=177), (b) de novo LOF mutations (n=170), (c) 

mutations in ASD-risk genes (n=116) and (d) other samples without any of these mutations 

(2,153). Samples included in each category were mutually exclusive to each other and no 

replicates (randomization not applicable). Phenotype tests investigated included (i) Vineland 

Adaptive Behavior Standard Score, (ii) Repetitive Behaviour Scale Revised Overall Score, 

(iii) Repetitive Behaviour Scale Overall Score, (iv) Social Responsiveness Total T Score, (v) 

Social Communication Questionnaire Total Score, (vi) Language OWLS Total Standard 

Score, (vii) Language PLS Total Standard Score, (viii) IQ Full Scale Standard Score, and 
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(ix) IQ Non-verbal Standard Score. Data distribution was assumed to be normal but this was 

not formally tested. We performed ANOVA for the mean difference of the 4 groups in each 

of these tests (degree of freedom (df)=3 in i, df=3 in ii, df=2 in iii, df=3 in iv, df=3 in v, df=3 

in vi, df=3 in vii, df=3 in viii and df=1 in ix). The difference between samples with 

mutations and samples without mutations was further tested using Wilcoxon signed-rank 

Test (one-sided) since they were not normally distributed.

Gene-based drug targets

The 61 genes listed in Figure 3a were annotated utilizing D.A.V.I.D.69 for a number of gene 

ontology categories and structural elements including PFAM subdomains. The PFAM labels 

were compared to lists of protein families generally considered to be druggable70, 71. To 

identify previously validated gene-drug interactions, the 61 gene list was used to search the 

Drug Gene Interaction Database72 (http://dgidb.genome.wustl.edu/). Only those results with 

associated peer-reviewed publications were reported.
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Figure 1. Schematic of sample and data processing in MSSNG
An executive committee oversees the project. The parameters for DNA sample selection and 

(genetic and phenotypic) data are managed by the committee, including consenting and 

ethics protocols. Coded identifiers’ for samples selected for WGS are posted as they are 

identified at MSSNG portal (http://mss.ng/research), so the ASD research community can 

monitor progress. Phenome data include subject information (identity number, year of birth, 

sex), family code (proband, parent, sibling), results of diagnostic tests (e.g. ADOS, ADI-R, 

age at diagnosis, functional assessments, intelligence tests, body measurements and 

dysmorphic features). The database accommodates as much of this information as is 

available for each sample, but that varies widely. Future plans include incorporation of fields 

for co-morbidities, related conditions, exposures, extended family history, interventions, and 

other parameters that become apparent. WGS technologies were Complete Genomics and 

Illumina HiSeq (2000 and X). WGS data are transferred to Google Genomics for data 

processing through the Google Cloud. Ref-blocked gVCFs were generated and stored in 

Google Cloud Storage, which were also processed for de novo mutation detection in the 

local cluster (for Complete Genomics data using filtering method) and Google Compute 

Engine (for Illumina data using DenovoGear). The Ref-blocked gVCFs and the de novo 
mutations were annotated through the Google Compute Engine (using Annovar), which can 

be accessed through the BigQuery tables. Quality controls of the genomic data were 

performed in the local cluster and the Google Cloud. The processed genetic data and the 

phenotypic data are accessible through the MSSNG Portal interface. The MSSNG database 

is designed to support incremental addition of data without changes in architecture, scaling 

to at least tens of thousands. New WGS and phenotype data are continually added to 

MSSNG as new batches of 1,000 samples are processed. DACO: Data access committee; 

UPD: Uniparental disomy; Ti/Tv: Transition to transversion ratio; IBS: Identity by state.
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Figure 2. Characteristics and quality of WGS from different sequencing platforms
(a) Number of SNVs detected per genome. (b) Number of indels detected per genome. (c) 

Number of rare coding SNVs detected per genome after quality filtering. (d) Number of rare 

coding indels detected per genome after quality filtering. Genomes sequenced by Complete 

Genomics with 2.0 pipeline version are colored in orange, by Complete Genomics with 2.4 

pipeline version are colored in brown, by Complete Genomics with 2.5 pipeline version are 

colored in green, by Illumina HiSeq 2000 are colored in blue, and by Illumina HiSeq X are 

colored in purple. Details of quality for individual samples can be found in Supplementary 

Table 1.
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Figure 3. ASD-susceptibility genes/loci
(a) ASD-risk genes with higher than expected mutation rate from MSSNG integrated with 

other large-scale high-throughput sequencing projects. ASD-risk genes are ranked in 

descending order of the number of mutations found for each gene. Other LOF mutations, 

including inherited LOF mutations and LOF mutations with unknown inheritance (where 

parents are unavailable for testing), and CNVs found in the MSSNG cohort are indicated 

(except for genes found by higher than expected de novo missense mutation rate). MSSNG 

data are in green and published data are in yellow. Novel putative ASD-risk genes identified 

in this study carry an asterisk. Δ indicate genes with druggable protein domains identified 

(Supplementary Table 6). (b) Pathogenic chromosomal abnormalities and CNVs identified 

falling into one of four categories: Chromosomal abnormalities; DECIPHER loci and other 

genomic disorders associated with ASD; large rare CNVs between 3–10Mb and CNVs 

disrupting ASD candidate genes not described above in Figure 3a. Deletions are in red, 

duplications are in blue and complex variants are in purple. # indicate CNVs shared between 

affected siblings; ‡ indicates a CNV carried by an individual with a second pathogenic CNV; 

† indicates a CNV shared between individuals within an extended pedigree. Details can be 

found in Supplementary Table 8. Examples of CNVs affecting the NRXN1 and CHD8 
genes, and the PTCHD1-AS non-coding gene identified from the WGS are shown in Figure 

4.
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Figure 4. CNV characterization via WGS reads in the MSSNG Portal
(a–c) Visualization of CNVs in WGS data. (a) A heterozygous 246kb deletion of three exons 

of NRXN1 at chromosome 2p16.3 in subject 2-1428-003 (average 50% decrease in 

sequence read-depth); (b) a 31.1kb duplication within CHD8 at chromosome 14q11.2 in 

subject 2-1375-003 (average of 50% increase in sequence read-depth) and (c) 125kb deletion 

of exon 3 of the non-coding gene PTCHD1-AS at Xp22.11 in male subject 1-0277-003 (no 

reads apparent, other than a small stretch of likely mis-aligned repetitive sequences). Left 

and right panels show the proximal and distal breakpoints of the CNVs respectively. Aligned 

reads viewed from the BAM files in the MSSNG browser are shown indicating the read 

depth. Genome co-ordinates are shown above and impacted genes below. The predicted 

CNVs visible from the WGS data and high-resolution microarray are shown by the red 

(deletion) and blue (duplication) bars. For 32 CNVs described in Figure 3b plus 17 

additional CNVs, we derived a more accurate estimate of the breakpoints by visual 

inspection of read depth from the BAM file in the MSSNG browser. On average, the size 

difference between the CNV predicted by microarray data and the estimated size from WGS 

data was 6.9kb and for 31/49 (63%) CNVs, the size of the CNV was smaller in the 

microarray data than WGS. For four CNVs, the WGS-resolved breakpoints altered the exons 

of genes being annotated as deleted or duplicated. In another case, this resulted in a CNV 
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from microarray no longer being classified as pathogenic as the revised breakpoints no 

longer included coding sequence.
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Figure 5. Phenotype comparison for the samples with and without identified mutations
Standard score of (a) IQ Full scale and (b) Vineland Adaptive Behavior were compared 

between samples with pathogenic CNVs, de novo LOF mutations, mutations in ASD-risk 

genes and other samples without any of these mutations.
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Figure 6. Interaction similarity network of ASD-risk genes
Connections represent gene similarity based on physical protein interactions and pathway 

interactions. Connection thickness is proportional to the fraction of interaction partners 

shared by the connected genes. The size of the node for each gene is proportional to the total 

mutation count (Figure 3). Genes associated with LOF mutations are in circle shape, while 

genes associated with missense mutations are in diamond shape. The node color corresponds 

to the BrainSpan brain expression Principal Component 1 (prenatal in yellow, postnatal in 

blue, balanced in light blue, undetermined in grey). The labels of novel ASD-risk genes are 

displayed in red. The network was visualized using Cytoscape.
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